organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl 3-bromo­benzoate

aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 1 May 2014; accepted 13 May 2014; online 21 May 2014)

In the title picryl-substituted ester, C13H6BrN3O8, the mean plane of the central ester C–O–C(=O)–C fragment (r.m.s. deviation= 0.0186 Å) is rotated by 84.73 (7)° and 19.92 (12)° to the picryl and phenyl rings, respectively. In the crystal, the mol­ecules are linked by C—H⋯O inter­actions, forming centrosymmetric dimers enclosing R22(10) and R22(22) ring motifs along [001] and further helical chains of dimers enclosing R22(10) ring motifs along [010].

Related literature

For related structures, including isostructural 2,4,6-tri­nitro­phenyl 3-chloro­benzoate, see: Moreno-Fuquen et al. (2013a[Moreno-Fuquen, R. (2013a). Acta Cryst. E69, o1787.],b[Moreno-Fuquen, R., Mosquera, F. & Kennedy, A. R. (2013b). Acta Cryst. E69, o1682.],c[Moreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013c). Acta Cryst. E69, o966.]). For a detailed study of the central ester moiety, see: Moreno-Fuquen et al. (2012[Moreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012). Acta Cryst. E68, o2187.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and for hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H6BrN3O8

  • Mr = 412.12

  • Monoclinic, P 21 /c

  • a = 11.2925 (4) Å

  • b = 9.5672 (3) Å

  • c = 14.0560 (6) Å

  • β = 94.625 (2)°

  • V = 1513.63 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.77 mm−1

  • T = 295 K

  • 0.27 × 0.24 × 0.13 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.486, Tmax = 0.601

  • 5971 measured reflections

  • 3082 independent reflections

  • 2572 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.03

  • 3082 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.93 2.51 3.140 (3) 125
C11—H11⋯O6ii 0.93 2.46 3.282 (3) 148
C13—H13⋯O3iii 0.93 2.40 3.314 (3) 166
C3—H3⋯O8iv 0.93 2.46 3.391 (3) 175
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The crystal structure determination of 2,4,6-trinitrophenyl 3-bromobenzoate (I), a picryl substituted-ester, is presented as part of an extensive study carried out in our research group about this type of compounds. Recently, we have published similar structures: 2,4,6-trinitrophenyl 4-bromobenzoate (Moreno-Fuquen, 2013a) and 2,4,6-trinitrophenyl 2-furancarboxylate (Moreno-Fuquen et al., 2013b). The molecular structure of (I) is shown in Fig. 1. The picryl and phenyl rings form angles of 84.73 (7)° and 19.92 (12)° respectively with the ester fragment. The nitro groups form dihedral angles with the adjacent benzene ring of 19.96 (14)°, 4.07 (20)° and 55.79 (9)° for O1–N1–O2, O3–N2–O4 and O5–N3–O6, respectively. The structure is essentially isotypic with the known chloro compound (Moreno-Fuquen et al., 2013c), thus the packing shows the same structural relationship as discussed for the chlorobenzoate. The molecules are packed through weak C–H···O interactions forming a three dimensional network (see Table 1, Nardelli, 1995). Considering the strongest C—H···O contacts, there are two mainly growth directions: one along b and the other one along c which are explained in terms of the substructures shown in Fig. 2 and 3 respectively. In the first one, C13-H13···O3 and C3-H3···O8 contacts, which reinforced each other, allow the molecules to propagate forming one-dimensional helical chains, along [010]. The C13 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to O3 atom of the nitro group at (-x, y-1/2, -z+1/2) and C3 atom of the picryl ring at (x,y,z) acts as hydrogen bond donor to carbonyl O8 atom at (-x, y+1/2, -z+1/2). The combination of these two contacts generate edge-fused rings R22(10) (Etter, 1990), (see Fig.2). This molecular synthon seems to be a common feature along picryl substituted-esters (Moreno-Fuquen et al., 2012). In the second substructure (Fig. 3), the additional weak C5-H5···O4 and C11-H11···O6 interactions, both forming dimers by an inversion centre within the structure with R22(10) and R22(22) edge-fused rings, allow the molecules to grow alternating dimers along [001]. The C5 atom of the picryl ring at (x,y,z) acts as hydrogen bond donor to O4 of the nitro group at (-x,-y,-z) and C11 atom of the phenyl ring at (x,y,z) acts as hydrogen bond donor to O6 atom of the nitro group at (-x+1,-y,-z+1).

Related literature top

For related structures, including isostructural 2,4,6-trinitrophenyl 3-chlorobenzoate, see: Moreno-Fuquen et al. (2013a,b,c). For a detailed study of the central ester moiety, see: Moreno-Fuquen et al. (2012). For hydrogen bonding, see: Nardelli (1995) and for hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First, 3-bromobenzoic acid (0.100 g, 0.243 mmol) was refluxed in excess of thionyl chloride (10 ml) for an hour. Then, the thionyl chloride was distilled off under reduced pressure to purify the 3-bromobenzoyl chloride obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.060 g, 0.243 mmol) in acetonitrile was dropped inside it with constant stirring. The reaction mixture was taken to reflux for about an hour. A pale-yellow solid was obtained after leaving the solvent to evaporate. This was washed with distilled water and cold methanol to eliminate impurities. Pale-yellow crystals of good quality [92% yield, m.p. 396 (1) K] and suitable for single-crystal X-ray diffraction were grown in acetonitrile.

Refinement top

All H-atoms were positioned at geometrically idealized positions, C—H= 0.93Å, and they were refined using a riding model approximation with Uiso(H) constrained to 1.2 times Ueq of the respective parent atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of helical rings running along [010]. H-atoms not involved are omitted. Symmetry code: (i) -x, y-1/2, -z+1/2; (ii) -x, y+1/2, -z+1/2.
[Figure 3] Fig. 3. Part of the crystal structure showing the formation of helical rings running along [001]. H-atoms not involved are omitted. Symmetry code: (iii) -x,-y,-z; (iv) -x+1,-y,-z+1.
(I) top
Crystal data top
C13H6BrN3O8F(000) = 816
Mr = 412.12Dx = 1.808 Mg m3
Monoclinic, P21/cMelting point: 396(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.2925 (4) ÅCell parameters from 5804 reflections
b = 9.5672 (3) Åθ = 3.1–26.4°
c = 14.0560 (6) ŵ = 2.77 mm1
β = 94.625 (2)°T = 295 K
V = 1513.63 (10) Å3Block, pale-yellow
Z = 40.27 × 0.24 × 0.13 mm
Data collection top
Nonius KappaCCD
diffractometer
3082 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
CCD rotation images, thick slices scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1414
Tmin = 0.486, Tmax = 0.601k = 1111
5971 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.7085P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3082 reflectionsΔρmax = 0.42 e Å3
227 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0122 (8)
Crystal data top
C13H6BrN3O8V = 1513.63 (10) Å3
Mr = 412.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2925 (4) ŵ = 2.77 mm1
b = 9.5672 (3) ÅT = 295 K
c = 14.0560 (6) Å0.27 × 0.24 × 0.13 mm
β = 94.625 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3082 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2572 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.601Rint = 0.021
5971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
3082 reflectionsΔρmin = 0.50 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42777 (2)0.02749 (3)0.715747 (17)0.05304 (13)
O10.1739 (2)0.4619 (2)0.36624 (13)0.0651 (5)
O20.0830 (2)0.5890 (2)0.25761 (16)0.0814 (7)
O30.1211 (2)0.3737 (3)0.01520 (17)0.0930 (9)
O40.06765 (18)0.1728 (2)0.06105 (14)0.0635 (5)
O50.3193 (2)0.0080 (2)0.10541 (17)0.0731 (6)
O60.2583 (2)0.0484 (2)0.24323 (15)0.0713 (6)
O70.28431 (12)0.23650 (17)0.30276 (10)0.0385 (4)
O80.15437 (13)0.14296 (19)0.39805 (11)0.0453 (4)
N10.12577 (19)0.4786 (2)0.28662 (15)0.0457 (5)
N20.06070 (18)0.2704 (2)0.00614 (15)0.0489 (5)
N30.26169 (17)0.0199 (2)0.17035 (15)0.0445 (5)
C10.19417 (17)0.2459 (2)0.23105 (14)0.0335 (5)
C20.11868 (19)0.3606 (2)0.21900 (15)0.0360 (5)
C30.03478 (19)0.3701 (2)0.14191 (15)0.0385 (5)
H30.01670.44600.13510.046*
C40.02977 (18)0.2642 (2)0.07569 (14)0.0356 (5)
C50.10472 (18)0.1513 (2)0.08195 (15)0.0364 (5)
H50.10180.08290.03480.044*
C60.18467 (18)0.1439 (2)0.16128 (14)0.0342 (5)
C70.25235 (18)0.1838 (2)0.38886 (14)0.0355 (5)
C80.35354 (18)0.1859 (2)0.46246 (14)0.0350 (5)
C90.4515 (2)0.2719 (3)0.45653 (16)0.0435 (5)
H90.45740.32960.40390.052*
C100.5406 (2)0.2703 (3)0.53043 (18)0.0531 (6)
H100.60600.32880.52760.064*
C110.5337 (2)0.1834 (3)0.60789 (17)0.0482 (6)
H110.59390.18290.65710.058*
C120.43635 (19)0.0970 (2)0.61152 (15)0.0383 (5)
C130.34547 (18)0.0974 (2)0.54011 (15)0.0368 (5)
H130.27990.03940.54370.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06119 (19)0.0611 (2)0.03652 (16)0.01162 (12)0.00239 (11)0.01329 (11)
O10.0973 (15)0.0632 (13)0.0334 (10)0.0016 (11)0.0035 (9)0.0101 (9)
O20.1105 (18)0.0569 (14)0.0728 (14)0.0343 (13)0.0170 (12)0.0218 (11)
O30.1003 (16)0.0825 (16)0.0870 (16)0.0552 (14)0.0486 (13)0.0217 (13)
O40.0767 (12)0.0491 (11)0.0588 (12)0.0011 (10)0.0308 (10)0.0065 (9)
O50.0713 (13)0.0773 (15)0.0722 (15)0.0310 (11)0.0148 (11)0.0117 (11)
O60.0920 (15)0.0594 (13)0.0594 (13)0.0284 (11)0.0131 (11)0.0154 (10)
O70.0352 (7)0.0526 (10)0.0269 (7)0.0028 (7)0.0020 (6)0.0040 (7)
O80.0388 (8)0.0594 (11)0.0369 (8)0.0083 (8)0.0021 (6)0.0078 (8)
N10.0504 (11)0.0471 (13)0.0404 (11)0.0032 (10)0.0086 (9)0.0076 (9)
N20.0510 (12)0.0476 (13)0.0453 (11)0.0063 (10)0.0137 (9)0.0030 (10)
N30.0431 (11)0.0434 (12)0.0447 (12)0.0097 (9)0.0103 (9)0.0057 (10)
C10.0333 (10)0.0419 (12)0.0249 (9)0.0002 (9)0.0009 (8)0.0042 (9)
C20.0408 (11)0.0375 (12)0.0302 (10)0.0016 (10)0.0052 (9)0.0017 (9)
C30.0404 (11)0.0371 (12)0.0379 (12)0.0052 (10)0.0034 (9)0.0038 (10)
C40.0385 (11)0.0381 (12)0.0289 (10)0.0024 (10)0.0044 (8)0.0055 (9)
C50.0430 (11)0.0369 (12)0.0286 (10)0.0014 (10)0.0009 (9)0.0004 (9)
C60.0354 (10)0.0360 (12)0.0309 (10)0.0057 (9)0.0004 (8)0.0040 (9)
C70.0394 (11)0.0384 (12)0.0283 (10)0.0006 (10)0.0000 (8)0.0011 (9)
C80.0365 (10)0.0388 (12)0.0289 (10)0.0022 (10)0.0013 (8)0.0013 (9)
C90.0451 (12)0.0461 (14)0.0382 (12)0.0038 (11)0.0030 (10)0.0090 (10)
C100.0452 (13)0.0570 (16)0.0545 (15)0.0135 (12)0.0116 (11)0.0084 (13)
C110.0445 (12)0.0549 (15)0.0423 (13)0.0012 (12)0.0136 (10)0.0027 (12)
C120.0445 (12)0.0401 (13)0.0300 (10)0.0103 (10)0.0008 (9)0.0011 (9)
C130.0378 (11)0.0392 (13)0.0332 (11)0.0003 (10)0.0016 (9)0.0002 (9)
Geometric parameters (Å, º) top
Br1—C121.897 (2)C3—C41.374 (3)
O1—N11.215 (3)C3—H30.9300
O2—N11.218 (3)C4—C51.370 (3)
O3—N21.201 (3)C5—C61.379 (3)
O4—N21.210 (3)C5—H50.9300
O5—N31.193 (3)C7—C81.478 (3)
O6—N31.218 (3)C8—C91.387 (3)
O7—C11.376 (2)C8—C131.391 (3)
O7—C71.386 (2)C9—C101.387 (3)
O8—C71.190 (2)C9—H90.9300
N1—C21.474 (3)C10—C111.377 (3)
N2—C41.477 (3)C10—H100.9300
N3—C61.470 (3)C11—C121.379 (3)
C1—C61.382 (3)C11—H110.9300
C1—C21.392 (3)C12—C131.376 (3)
C2—C31.384 (3)C13—H130.9300
C1—O7—C7115.73 (16)C5—C6—C1123.1 (2)
O1—N1—O2123.9 (2)C5—C6—N3117.15 (19)
O1—N1—C2119.4 (2)C1—C6—N3119.79 (18)
O2—N1—C2116.7 (2)O8—C7—O7121.61 (18)
O3—N2—O4124.0 (2)O8—C7—C8126.98 (19)
O3—N2—C4117.8 (2)O7—C7—C8111.41 (17)
O4—N2—C4118.1 (2)C9—C8—C13120.8 (2)
O5—N3—O6125.4 (2)C9—C8—C7122.8 (2)
O5—N3—C6118.0 (2)C13—C8—C7116.42 (19)
O6—N3—C6116.5 (2)C8—C9—C10118.9 (2)
O7—C1—C6118.96 (19)C8—C9—H9120.6
O7—C1—C2123.38 (19)C10—C9—H9120.6
C6—C1—C2117.32 (18)C11—C10—C9121.0 (2)
C3—C2—C1121.4 (2)C11—C10—H10119.5
C3—C2—N1116.9 (2)C9—C10—H10119.5
C1—C2—N1121.65 (19)C10—C11—C12119.1 (2)
C4—C3—C2118.0 (2)C10—C11—H11120.4
C4—C3—H3121.0C12—C11—H11120.4
C2—C3—H3121.0C13—C12—C11121.4 (2)
C5—C4—C3123.1 (2)C13—C12—Br1118.90 (17)
C5—C4—N2117.8 (2)C11—C12—Br1119.68 (16)
C3—C4—N2119.1 (2)C12—C13—C8118.8 (2)
C4—C5—C6117.0 (2)C12—C13—H13120.6
C4—C5—H5121.5C8—C13—H13120.6
C6—C5—H5121.5
C7—O7—C1—C6100.4 (2)C2—C1—C6—C50.1 (3)
C7—O7—C1—C286.5 (3)O7—C1—C6—N36.8 (3)
O7—C1—C2—C3175.27 (19)C2—C1—C6—N3179.71 (19)
C6—C1—C2—C32.0 (3)O5—N3—C6—C554.2 (3)
O7—C1—C2—N13.6 (3)O6—N3—C6—C5123.6 (2)
C6—C1—C2—N1176.81 (19)O5—N3—C6—C1126.1 (2)
O1—N1—C2—C3161.2 (2)O6—N3—C6—C156.0 (3)
O2—N1—C2—C319.6 (3)C1—O7—C7—O83.6 (3)
O1—N1—C2—C119.9 (3)C1—O7—C7—C8176.60 (18)
O2—N1—C2—C1159.3 (2)O8—C7—C8—C9159.4 (2)
C1—C2—C3—C41.6 (3)O7—C7—C8—C920.8 (3)
N1—C2—C3—C4177.32 (19)O8—C7—C8—C1319.8 (3)
C2—C3—C4—C50.9 (3)O7—C7—C8—C13159.95 (19)
C2—C3—C4—N2178.70 (19)C13—C8—C9—C101.3 (4)
O3—N2—C4—C5175.1 (3)C7—C8—C9—C10177.9 (2)
O4—N2—C4—C53.3 (3)C8—C9—C10—C111.1 (4)
O3—N2—C4—C35.3 (4)C9—C10—C11—C120.1 (4)
O4—N2—C4—C3176.3 (2)C10—C11—C12—C130.9 (4)
C3—C4—C5—C62.7 (3)C10—C11—C12—Br1178.1 (2)
N2—C4—C5—C6176.87 (19)C11—C12—C13—C80.7 (3)
C4—C5—C6—C12.2 (3)Br1—C12—C13—C8178.21 (16)
C4—C5—C6—N3177.4 (2)C9—C8—C13—C120.4 (3)
O7—C1—C6—C5173.62 (19)C7—C8—C13—C12178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.513.140 (3)125
C11—H11···O6ii0.932.463.282 (3)148
C13—H13···O3iii0.932.403.314 (3)166
C3—H3···O8iv0.932.463.391 (3)175
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.513.140 (3)125.4
C11—H11···O6ii0.932.463.282 (3)148.2
C13—H13···O3iii0.932.403.314 (3)166.2
C3—H3···O8iv0.932.463.391 (3)175.0
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

References

First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R. (2013a). Acta Cryst. E69, o1787.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J., De Simone, C. A. & Tenorio, J. C. (2013c). Acta Cryst. E69, o966.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F., Ellena, J. & Tenorio, J. C. (2012). Acta Cryst. E68, o2187.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Mosquera, F. & Kennedy, A. R. (2013b). Acta Cryst. E69, o1682.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds