organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-4-(2-meth­­oxy­phen­yl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 15 March 2014; accepted 7 May 2014; online 10 May 2014)

In the title compound, C20H22N2O2, the central pyridine ring forms a dihedral angle of 76.32 (8)° with the pseudo-axial benzene ring. The cyclo­octane ring adopts a twisted boat chair conformation. In the crystal, weak inter­molecular C—H⋯π inter­actions between inversion-related mol­ecules result in the formation of linear double chains along the b-axis direction.

Related literature

For the biological activities of substituted pyridine derivatives, see: Yao et al. (1994[Yao, S. K., Ober, J. C., Ferguson, J. J., Maffrand, J. P., Anderson, H. V., Buja, L. M. & Willerson, J. T. (1994). Am. J. Physiol. pp. H488-H493.]); Lohaus & Dittmar (1968[Lohaus, G. & Dittmar, W. (1968). S. Afr. Patent 6 906 036.]). For a description of structure correlation, bond lengths and angles, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). The linearity of the cyano group seen in the title compound is typical of this class of 2-oxo­pyridine-3-carbo­nitrile compounds, see: Black et al. (1992[Black, S. N., Davey, R. J., Slawin, A. M. Z. & Williams, D. J. (1992). Acta Cryst. C48, 323-325.]); Hussain et al. (1996[Hussain, Z., Fleming, F. F., Norman, R. E. & Chang, S.-C. (1996). Acta Cryst. C52, 1010-1012.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O2

  • Mr = 322.40

  • Monoclinic, P 21 /n

  • a = 11.1652 (10) Å

  • b = 11.4205 (9) Å

  • c = 14.8540 (11) Å

  • β = 111.763 (2)°

  • V = 1759.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.29 × 0.25 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.981

  • 23618 measured reflections

  • 3266 independent reflections

  • 2251 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.137

  • S = 1.05

  • 3266 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.97 2.64 3.742 (2) 134
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine derivatives have a wide range of biological activities being used as fungicidal, antibacterial, antifungal, antimycotic (Lohaus et al., 1968) and antidepressant agents, as well as thienopyridines being used as antithrombotic agents (Yao et al., 1994) against platelet aggregation. The above observations prompted us to synthesize the title compound containing pyridine carbonitrile groups and substitued pyridine scaffolds to determine its crystal structure.

The molecular structure of the title compound is shown in Fig 1. The cyclooctane ring (C1–C8) adopts a twisted boat chair conformation as evidenced by the puckering parameters q2 = 1.1578 (8) Å, θ = 67.05 (2)°, ϕ = 103.05 (2)° (Cremer & Pople, 1975). The central pyridine component is planar, with a maximum deviation from the mean plane that of 0.0092 (1) Å for atom C10. The shortening of the C–N distances [1.354 (3) and 1.314 (3) Å] and the opening of the N1–C11–C10 angle [123.46 (2)°] may be attributed to the size of the substituent at C1. The sum of the C—N—C bond angle around N1 atom (365.0 (6)°) is implying a noticeable flattening of the trigonal pyramidal geometry about N1. The C10—C12 N2 bond angle of 178.27 (1)° defining the linearity of the cyano group are typical of this group of 2-oxopyridine-3-carbonitrile compounds (Black et al., 1992; Hussain et al., 1996). The bond distances in the central pyridine ring range 1.314 (1) – 1.400 (2) Å suggest possible delocalization of the π electrons over the ring (Allen et al., 1987). The dihedral angle between the pseudo-axial phenyl substituent and the plane of the pyridine ring is 76.32 (8)°. Due to conjugation, the bond length C11—O1 1.349 (4) Å is shorter than the bond length C13—O1 1.427 (2) Å.

The molecular structure features a weak intermolecular C—H···Cg1 interaction between inverse related molecules forming a linear double chain along b axis. [symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z](Fig 2)(Cg1 is the centroid of the pyridine ring N1/C1/C8–C11).

Related literature top

For the biological activities of substituted pyridine derivatives, see: (Yao et al., 1994); Lohaus et al.,1968. For a description of structure correlation, bond lengths and angles, see: Allen et al., (1987). For ring conformation parameters, see: Cremer & Pople (1975). The linearity of the cyano group seen in the title compound is typical of 2-oxopyridine-3-carbonitrile compounds, see: Black et al. (1992); Hussain et al. (1996).

Experimental top

Preparation: A mixture of cyclooctanone (1 mmol), 2-methoxy benzaldehyde (1 mmol) and malononitrile (1 mmol) were taken in methanol (10 ml) to which lithium ethoxide (1 equiv) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ ethyl acetate mixture (95:5 v/v) as eluent to obtain pure product. Melting point:151–156 °C, Yield: 71%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å and with Uiso = 1.2Ueq(C, N) for N, CH2 and CH atoms and Uiso = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Partial packing view of the compound showing molecules interconnected through a C—H···π stacking interaction (dotted lines; symmetry code: (i) 1/2 - x, 1/2 + y, 1/2 - z)
2-Methoxy-4-(2-methoxyphenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C20H22N2O2F(000) = 688
Mr = 322.40Dx = 1.217 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 11.1652 (10) Åθ = 2–26°
b = 11.4205 (9) ŵ = 0.08 mm1
c = 14.8540 (11) ÅT = 293 K
β = 111.763 (2)°Block, colourless
V = 1759.1 (2) Å30.30 × 0.29 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
3266 independent reflections
Radiation source: fine-focus sealed tube2251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.3°
ω and ϕ scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.977, Tmax = 0.981l = 1717
23618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.8085P]
where P = (Fo2 + 2Fc2)/3
3266 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H22N2O2V = 1759.1 (2) Å3
Mr = 322.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1652 (10) ŵ = 0.08 mm1
b = 11.4205 (9) ÅT = 293 K
c = 14.8540 (11) Å0.30 × 0.29 × 0.25 mm
β = 111.763 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3266 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2251 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.029
23618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
3266 reflectionsΔρmin = 0.29 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13770 (18)0.36565 (16)0.23039 (14)0.0433 (5)
C20.2136 (2)0.47203 (18)0.22349 (17)0.0564 (6)
H2A0.25780.45440.17980.068*
H2B0.27900.48710.28700.068*
C30.1343 (2)0.58356 (19)0.18823 (16)0.0601 (6)
H3A0.18580.63830.16790.072*
H3B0.05940.56390.13130.072*
C40.0876 (2)0.64636 (19)0.25967 (17)0.0629 (6)
H4A0.16150.65980.31900.075*
H4B0.05450.72240.23280.075*
C50.0158 (2)0.5844 (2)0.28588 (18)0.0645 (6)
H5A0.07830.64230.28790.077*
H5B0.06040.52970.23430.077*
C60.0304 (3)0.5184 (2)0.38079 (17)0.0655 (6)
H6A0.04300.47900.38730.079*
H6B0.06240.57460.43320.079*
C70.1354 (2)0.42796 (19)0.39301 (15)0.0574 (6)
H7A0.21470.46830.39980.069*
H7B0.15050.38440.45230.069*
C80.10287 (18)0.34305 (16)0.30965 (13)0.0424 (4)
C90.03020 (18)0.24227 (16)0.30695 (13)0.0407 (4)
C100.00175 (18)0.16888 (16)0.22689 (13)0.0413 (4)
C110.03687 (18)0.20046 (16)0.15077 (13)0.0419 (5)
C120.0716 (2)0.06187 (19)0.22081 (15)0.0559 (6)
C130.0307 (3)0.1604 (2)0.00811 (16)0.0795 (8)
H13A0.00030.10130.05740.119*
H13B0.12230.16830.01080.119*
H13C0.01020.23370.03300.119*
C910.0182 (2)0.21394 (17)0.38544 (15)0.0506 (5)
C920.1455 (3)0.2350 (2)0.3709 (2)0.0728 (7)
H920.20060.26610.31240.087*
C930.1909 (4)0.2101 (3)0.4427 (4)0.1232 (16)
H930.27700.22390.43270.148*
C940.1098 (7)0.1649 (3)0.5291 (4)0.140 (2)
H940.14120.14870.57760.167*
C950.0175 (5)0.1433 (3)0.5450 (2)0.1061 (13)
H950.07240.11300.60400.127*
C960.0628 (3)0.1673 (2)0.47174 (16)0.0682 (7)
C970.2778 (4)0.1043 (3)0.5663 (2)0.1477 (19)
H97A0.35960.09350.55990.222*
H97B0.24850.03080.58180.222*
H97C0.28710.15960.61710.222*
N10.10398 (15)0.29525 (13)0.15152 (11)0.0449 (4)
N20.1246 (3)0.0247 (2)0.21553 (17)0.0915 (8)
O10.00127 (16)0.12727 (12)0.07402 (10)0.0586 (4)
O20.1868 (2)0.14718 (16)0.47771 (13)0.0875 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (11)0.0372 (10)0.0509 (11)0.0009 (8)0.0167 (9)0.0006 (9)
C20.0571 (13)0.0514 (13)0.0674 (14)0.0139 (10)0.0309 (11)0.0060 (11)
C30.0770 (16)0.0461 (12)0.0592 (13)0.0144 (11)0.0276 (12)0.0010 (10)
C40.0774 (16)0.0416 (12)0.0674 (15)0.0042 (11)0.0244 (12)0.0003 (11)
C50.0678 (15)0.0527 (13)0.0741 (16)0.0009 (11)0.0275 (13)0.0095 (12)
C60.0912 (18)0.0495 (13)0.0666 (15)0.0145 (12)0.0418 (13)0.0169 (11)
C70.0752 (15)0.0499 (12)0.0419 (11)0.0153 (11)0.0155 (10)0.0025 (9)
C80.0453 (11)0.0368 (10)0.0417 (10)0.0017 (8)0.0121 (9)0.0003 (8)
C90.0440 (10)0.0351 (9)0.0429 (10)0.0029 (8)0.0159 (8)0.0036 (8)
C100.0470 (11)0.0329 (9)0.0451 (10)0.0001 (8)0.0182 (9)0.0026 (8)
C110.0489 (11)0.0338 (10)0.0431 (10)0.0033 (8)0.0172 (9)0.0002 (8)
C120.0764 (15)0.0459 (12)0.0517 (12)0.0099 (11)0.0309 (11)0.0051 (10)
C130.137 (2)0.0623 (15)0.0528 (13)0.0205 (16)0.0502 (15)0.0071 (12)
C910.0692 (14)0.0376 (10)0.0517 (12)0.0090 (10)0.0300 (11)0.0072 (9)
C920.0771 (17)0.0589 (15)0.103 (2)0.0064 (13)0.0573 (16)0.0143 (14)
C930.164 (4)0.089 (2)0.191 (4)0.038 (2)0.151 (4)0.050 (3)
C940.277 (7)0.083 (2)0.139 (4)0.083 (3)0.171 (5)0.056 (2)
C950.214 (4)0.0631 (18)0.0604 (16)0.058 (2)0.074 (2)0.0173 (13)
C960.107 (2)0.0470 (13)0.0490 (13)0.0246 (13)0.0276 (14)0.0059 (11)
C970.147 (3)0.098 (2)0.105 (3)0.044 (2)0.061 (2)0.048 (2)
N10.0512 (10)0.0376 (9)0.0501 (9)0.0003 (7)0.0237 (8)0.0013 (7)
N20.133 (2)0.0638 (14)0.0897 (16)0.0438 (14)0.0552 (15)0.0150 (12)
O10.0903 (11)0.0440 (8)0.0488 (8)0.0127 (8)0.0342 (8)0.0068 (7)
O20.0884 (14)0.0793 (13)0.0679 (11)0.0022 (10)0.0025 (10)0.0277 (9)
Geometric parameters (Å, º) top
C1—N11.354 (2)C10—C111.399 (3)
C1—C21.506 (3)C10—C121.434 (3)
C1—C81.394 (3)C11—N11.314 (2)
C2—C31.529 (3)C11—O11.349 (2)
C2—H2A0.9700C12—N21.140 (3)
C2—H2B0.9700C13—O11.427 (3)
C3—C41.524 (3)C13—H13A0.9600
C3—H3A0.9700C13—H13B0.9600
C3—H3B0.9700C13—H13C0.9600
C4—C51.523 (3)C91—C961.373 (3)
C4—H4A0.9700C91—C921.377 (3)
C4—H4B0.9700C92—C931.370 (4)
C5—C61.511 (3)C92—H920.9300
C5—H5A0.9700C93—C941.368 (6)
C5—H5B0.9700C93—H930.9300
C6—C71.522 (3)C94—C951.374 (6)
C6—H6A0.9700C94—H940.9300
C6—H6B0.9700C95—C961.387 (4)
C7—C81.507 (3)C95—H950.9300
C7—H7A0.9700C96—O21.373 (3)
C7—H7B0.9700C97—O21.418 (3)
C8—C91.400 (3)C97—H97A0.9600
C9—C101.389 (3)C97—H97B0.9600
C9—C911.491 (3)C97—H97C0.9600
N1—C1—C8123.06 (17)C10—C9—C91119.08 (16)
N1—C1—C2113.77 (17)C8—C9—C91122.01 (17)
C8—C1—C2123.16 (18)C9—C10—C11118.57 (17)
C1—C2—C3115.23 (18)C9—C10—C12121.95 (17)
C1—C2—H2A108.5C11—C10—C12119.48 (17)
C3—C2—H2A108.5N1—C11—O1120.39 (17)
C1—C2—H2B108.5N1—C11—C10123.46 (17)
C3—C2—H2B108.5O1—C11—C10116.15 (16)
H2A—C2—H2B107.5N2—C12—C10178.3 (3)
C4—C3—C2117.25 (19)O1—C13—H13A109.5
C4—C3—H3A108.0O1—C13—H13B109.5
C2—C3—H3A108.0H13A—C13—H13B109.5
C4—C3—H3B108.0O1—C13—H13C109.5
C2—C3—H3B108.0H13A—C13—H13C109.5
H3A—C3—H3B107.2H13B—C13—H13C109.5
C5—C4—C3116.56 (19)C96—C91—C92119.9 (2)
C5—C4—H4A108.2C96—C91—C9120.6 (2)
C3—C4—H4A108.2C92—C91—C9119.5 (2)
C5—C4—H4B108.2C93—C92—C91120.0 (3)
C3—C4—H4B108.2C93—C92—H92120.0
H4A—C4—H4B107.3C91—C92—H92120.0
C6—C5—C4116.2 (2)C94—C93—C92120.0 (4)
C6—C5—H5A108.2C94—C93—H93120.0
C4—C5—H5A108.2C92—C93—H93120.0
C6—C5—H5B108.2C93—C94—C95120.8 (3)
C4—C5—H5B108.2C93—C94—H94119.6
H5A—C5—H5B107.4C95—C94—H94119.6
C5—C6—C7115.56 (19)C94—C95—C96119.0 (4)
C5—C6—H6A108.4C94—C95—H95120.5
C7—C6—H6A108.4C96—C95—H95120.5
C5—C6—H6B108.4O2—C96—C91115.1 (2)
C7—C6—H6B108.4O2—C96—C95124.7 (3)
H6A—C6—H6B107.5C91—C96—C95120.2 (3)
C8—C7—C6113.47 (18)O2—C97—H97A109.5
C8—C7—H7A108.9O2—C97—H97B109.5
C6—C7—H7A108.9H97A—C97—H97B109.5
C8—C7—H7B108.9O2—C97—H97C109.5
C6—C7—H7B108.9H97A—C97—H97C109.5
H7A—C7—H7B107.7H97B—C97—H97C109.5
C1—C8—C9117.91 (17)C11—N1—C1118.11 (16)
C1—C8—C7121.13 (17)C11—O1—C13117.98 (16)
C9—C8—C7120.86 (17)C96—O2—C97118.4 (3)
C10—C9—C8118.87 (17)
N1—C1—C2—C396.0 (2)C12—C10—C11—O11.8 (3)
C8—C1—C2—C382.6 (3)C10—C9—C91—C96104.5 (2)
C1—C2—C3—C474.9 (3)C8—C9—C91—C9678.0 (3)
C2—C3—C4—C569.3 (3)C10—C9—C91—C9275.5 (2)
C3—C4—C5—C699.4 (2)C8—C9—C91—C92102.0 (2)
C4—C5—C6—C754.6 (3)C96—C91—C92—C930.4 (3)
C5—C6—C7—C851.8 (3)C9—C91—C92—C93179.6 (2)
N1—C1—C8—C90.3 (3)C91—C92—C93—C940.4 (5)
C2—C1—C8—C9178.87 (18)C92—C93—C94—C950.4 (5)
N1—C1—C8—C7176.05 (18)C93—C94—C95—C960.4 (5)
C2—C1—C8—C72.5 (3)C92—C91—C96—O2178.5 (2)
C6—C7—C8—C190.8 (2)C9—C91—C96—O21.5 (3)
C6—C7—C8—C985.4 (2)C92—C91—C96—C951.2 (3)
C1—C8—C9—C101.1 (3)C9—C91—C96—C95178.8 (2)
C7—C8—C9—C10177.50 (18)C94—C95—C96—O2178.5 (3)
C1—C8—C9—C91176.42 (18)C94—C95—C96—C911.2 (4)
C7—C8—C9—C910.0 (3)O1—C11—N1—C1179.78 (17)
C8—C9—C10—C111.8 (3)C10—C11—N1—C10.2 (3)
C91—C9—C10—C11175.77 (18)C8—C1—N1—C111.0 (3)
C8—C9—C10—C12177.52 (19)C2—C1—N1—C11179.66 (17)
C91—C9—C10—C124.9 (3)N1—C11—O1—C134.4 (3)
C9—C10—C11—N11.2 (3)C10—C11—O1—C13175.6 (2)
C12—C10—C11—N1178.16 (19)C91—C96—O2—C97177.0 (2)
C9—C10—C11—O1178.80 (16)C95—C96—O2—C973.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.972.643.742 (2)134
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.972.643.742 (2)134
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

JS and RV thank the management of the Madura College for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR)

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlack, S. N., Davey, R. J., Slawin, A. M. Z. & Williams, D. J. (1992). Acta Cryst. C48, 323–325.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHussain, Z., Fleming, F. F., Norman, R. E. & Chang, S.-C. (1996). Acta Cryst. C52, 1010–1012.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLohaus, G. & Dittmar, W. (1968). S. Afr. Patent 6 906 036.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, S. K., Ober, J. C., Ferguson, J. J., Maffrand, J. P., Anderson, H. V., Buja, L. M. & Willerson, J. T. (1994). Am. J. Physiol. pp. H488–H493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds