metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m225-m226

Tetra­kis­(2,6-di­methyl­pyridinium) di­hydrogen deca­vanadate dihydrate

aComenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina CH2, 842 15 Bratislava, Slovak Republic
*Correspondence e-mail: rakovsky@fns.uniba.sk

(Received 21 February 2014; accepted 14 May 2014; online 21 May 2014)

The structure of the title compound, (C7H10N)4[H2V10O28]·2H2O, was solved from a non-merohedrally twinned crystal (ratio of twin components ∼0.6:0.4). The asymmetric unit consists of one-half deca­vanadate anion (the other half completed by inversion symmetry), two 2,6-di­methyl­pyridinium cations and one water mol­ecule of crystallization. In the crystal, the components are connected by strong N—H⋯O and O—H⋯O hydrogen bonds, forming a supra­molecular chain along the b-axis direction. There are weak C—H⋯O inter­actions between the chains.

Related literature

For our previously published research on polyoxidovanadates, see: Rakovský & Gyepes (2006[Rakovský, E. & Gyepes, R. (2006). Acta Cryst. E62, m2108-m2110.]); Pacigová et al. (2007[Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419-m422.]); Klištincová et al. (2008[Klištincová, L., Rakovský, E. & Schwendt, P. (2008). Inorg. Chem. Commun. 11, 1140-1142.], 2010[Klištincová, L., Rakovský, E., Schwendt, P., Plesch, G. & Gyepes, R. (2010). Inorg. Chem. Commun. 13, 1275-1277.]); Bartošová et al. (2012[Bartošová, L., Padělková, Z., Rakovský, E. & Schwendt, P. (2012). Polyhedron, 31, 565-569.]). For more general background to their applications, see: Crans (1998[Crans, D. C. (1998). Peroxo, Hydroxylamido and acac Derived Vanadium Complexes: Chemistry, Biochemistry and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series 711, edited by Al. S. Tracey & D. C. Crans. Oxford University Press.]); Hagrman et al. (2001[Hagrman, P. J., Finn, R. C. & Zubieta, J. (2001). Solid State Sci. 3, 745-774.]). Other deca­vanadates with pyridinium derivatives as the cations have been reported by Asgedom et al. (1996[Asgedom, G., Sreedhara, A., Kivikoski, J. & Rao, C. P. (1996). Polyhedron, 16, 643-651.]); Arrieta et al. (1988[Arrieta, J. M., Arnaiz, A., Lorente, L., Santiago, C. & Germain, G. (1988). Acta Cryst. C44, 1004-1008.]); Santi­ago et al. (1988[Santiago, C., Arnaiz, A., Lorente, L., Arrieta, J. M. & Germain, G. (1988). Acta Cryst. C44, 239-242.]). For IR spectra inter­pretation, see: Ban-Oganowska et al. (2002[Ban-Oganowska, H., Godlewska, P., Macalik, L., Hanuza, J., Oganowski, W. & van der Maas, J. H. (2002). J. Mol. Struct. 605, 291-307.]); Elassal et al. (2011[Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A. & Bensitel, M. (2011). Arab. J. Chem. 4, 313-319.]); Medhi & Mukherjee (1965[Medhi, K. C. & Mukherjee, D. K. (1965). Spectrochim. Acta, 21, 895-902.]). For hydrogen-bond criteria, see: Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H10N)4[H2V10O28]·2H2O

  • Mr = 1428.09

  • Monoclinic, C 2/c

  • a = 24.7777 (5) Å

  • b = 8.35654 (16) Å

  • c = 25.0089 (6) Å

  • β = 113.878 (3)°

  • V = 4735.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 293 K

  • 0.41 × 0.22 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]) Tmin = 0.575, Tmax = 0.873

  • 59285 measured reflections

  • 5867 independent reflections

  • 5086 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.08

  • 5867 reflections

  • 344 parameters

  • 6 restraints

  • H atoms treated by a mixture of constrained and restrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O1i 0.80 (2) 2.00 (2) 2.789 (2) 172 (3)
N1—H1⋯O9 0.82 (2) 1.81 (2) 2.625 (2) 178 (3)
C15—H15⋯O2ii 0.93 2.54 3.396 (3) 152
N2—H2⋯O1W 0.83 (2) 1.89 (2) 2.689 (3) 163 (3)
C21—H21A⋯O4iii 0.96 2.62 3.270 (3) 125
C21—H21B⋯O5iv 0.96 2.50 3.454 (3) 171
C24—H24⋯O12v 0.93 2.49 3.297 (3) 145
C25—H25⋯O7v 0.93 2.53 3.237 (3) 134
C25—H25⋯O10v 0.93 2.51 3.264 (3) 138
C27—H27B⋯O1i 0.96 2.46 3.347 (4) 153
O1W—H1W⋯O11i 0.83 (2) 2.02 (2) 2.833 (2) 168 (3)
O1W—H2W⋯O8 0.83 (2) 1.90 (2) 2.718 (2) 171 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The reaction system V2O5 – 2,6-dimethylpyridine – H2O – HClO4 was studied as a part of our study of the formation of transition metal complexes with substituted pyridinium ligands in the presence of polyoxovanadate anions. We wish to obtain a better understanding of the role of the counter-ion in the formation of HnV10O28(6–n)– species and the influence of the cation and the decavanadate anion protonation mode on the IR spectra and information about possible side products of the syntheses. This article is a continuation of our previous work on salts of polyoxovanadates with organic cations (Rakovský & Gyepes, 2006; Pacigová et al., 2007). The oxovanadates(V) and peroxovanadium compounds are also of great interest in biochemistry and medicine because of their diverse biological activities (Crans, 1998). Heterobimetallic compounds containing, beside polyoxovanadate core, entities composed of other transition metals bound to organic ligands have been extensively studied due to their potential applications in the field of catalysis and material science (Hagrman et al., 2001; Klištincová et al., 2008; Klištincová et al., 2010; Bartošová et al., 2012). Several decavanadates with pyridine and its derivatives are already known. Asgedom et al. (1996) reported the structure of (C5H6N)6V10O28.2H2O. Pyridinium cations are bonded directly to the decavanadate anions via hydrogen bonds as it is in (C7H10N)3H3V10O28.H2O (Arrieta et al., 1988) and (C6H8N)3H3V10O28.H2O (Santiago et al., 1988).

The system mentioned above was studied in the pH range 2.5–7 and the crystalline product was only obtained at pH 2.5, which is typical pH value for the dihydrogendecavanadate formation. The asymmetric unit of the title compound, (I), consists of one-half decavanadate anion of Ci symmetry, lying on a special position on the centre of symmetry, which is protonated on the µ-OV3 bridging atom O13, two 2,6-dimethylpyridinium cations and one water molecule of crystallization (Fig. 1). The terminal vanadium-oxygen bond lengths are in the range 1.5916 (17)–1.6153 (16) Å, with an average value of 1.601 (10) Å. The bond lengths of the bridging O atoms with coordination numbers two are in the range 1.6768 (14)–2.0752 (15) Å with the mean value of 1.84 (12) Å . There are 2 types of µ-OV3 bridging oxygen groups present: unprotonated (O12) with bond lengths in the range 1.8757 (15)–1.9931 (14) Å with the mean value of 1.95 (6) Å, and protonated (O13) with bond lengths in the range 2.0678 (15)–2.1170 (14) Å with the mean value of 2.10 (3) Å. Bond lengths of the six-coordinated µ-OV6 oxygen atom (O14) are in the range 2.0592 (13)–2.3588 (14) Å with an average value of 2.24 (13) Å.

The supramolecular structure is formed by D–H···O hydrogen bonds [D = N, O or C, with H···O 2.72 Å and D–H···O > 120° (Jeffrey, 1997)] between cations and anions, cations and water molecules, between two anions and between water molecules and anions (Table 1). Adjacent [H2V10O28]4– anions are mutually linked together by the system of strong hydrogen bonds: directly by two anion-anion hydrogen bonds O13–H1V···O1 and via two bridging water molecules, where water acts as a H-bond donor for both anions, forming O1W–H1W···O11 and O1W–H2W···O8 hydrogen bonds. N–H group of the first cation is donating H-bond to the anion, thus forming N1–H10···O9 hydrogen bond, N–H group of the second cation acts as a H-bond donor for the water molecule, forming N2–H20···O1W hydrogen bond. This system of hydrogen bonds is forming supramolecular chain running in the b axis direction (Fig. 2).

The C–H···O weak hydrogen bonds present in the structure are involved in the interaction between neighbouring supramolecular chains, with exception of C21–H21B···O5 and C27–H27B···O1 bonds, which are reinforcing mutual bonding between one of the anions, cation and the water molecule hydrogen-bonded to the cation.

Related literature top

For our previously published research on polyoxovanadates, see: Rakovský & Gyepes (2006); Pacigová et al. (2007); Klištincová et al.(2008); Klištincová et al. (2010); Bartošová et al. (2012). For more general background to their applications, see: Crans (1998); Hagrman et al. (2001). Other decavanadates with pyridinium derivatives as the cations have been reported by Asgedom et al. (1996); Arrieta et al. (1988); Santiago et al. (1988). For IR spectra interpretation, see: Ban-Oganowska et al. (2002); Elassal et al. (2011); Medhi & Mukherjee (1965). For hydrogen-bond criteria, see: Jeffrey (1997).

Experimental top

All reactants with the exception of purified vanadium pentoxide were obtained commercially and used without further purification.

Purified vanadium pentoxide was prepared as follows: to 1.5 l of water, NH4VO3 (50 g) and NH3 (60 ml, w = 25%) were added. The mixture was stirred and heated in a water bath until the temperature reached 343 K and left cool down for about 1 h. After cooling the mixture was filtered. White NH4VO3 was precipited by adding of crystalline NH4NO3 (70 g) to the filtrate, filtered out and washed with distilled water (20 ml) and ethanol (20 ml). The product was dried on air. Purified NH4VO3 was heated in a porcelain dish at 773 K for at least 2 h.

2 NH4VO3 V2O5 + 2 NH3 + H2O

Test for purity of prepared V2O5: small amout of the product added to cold 1 M solution of KOH in a test tube completely dissolves.

Synthesis of the (C7H10N)4H2V10O28.2H2O (I): V2O5 (0.9 g, 0.005 mol) was dissolved after stirring overnight in 100 ml of 0.1 M solution of 2,6-dimethylpyridine. Yellow solution obtained was filtered and adjusted to pH 2.5 with 4 M HClO4. Orange plate crystals were isolated after standing 5 days at 277 K.

Vanadium was determined gravimetrically as V2O5. C, H and N were estimated on a CHN analyser (Carlo Erba). Analysis calculated for C28H46N4O30V10 (found): C 23.55 (23.59), H 3.25 (3.21), N 3.92 (3.89), V 35.67 (35.58).

The FT—IR spectra were performed with a Nonius 6700 FTIR spectrophotometer in nujol mulls. The IR spectrum of prepared compound exhibits characteristic bands of the decavanadate anion [965 (s), 944 (s), 926 (m), 829 (s) and 589 (m) cm-1] (Klištincová et al., 2010) as well as characteristic bands for protonated 2,6-dimethylpyridine (2534 (sh) – ν(NH+); 1629 (s), 1641 (s) – δ(NH+)) and other bands for the base (716 (s), 794 (s) – δ(CH); 971 (s) – ν(C–CH3); 1175 (m), 1280 (m) – δ(CH comb.), 1415 (m) – ν(C–C) or ν(C–N)) (Ban-Oganowska et al., 2002; Elassal et al., 2011; Medhi et al., 1965).

Refinement top

The selected crystal was a non-merohedral twin with the twin law: -1 0 0; 0 -1 0; 1 0 1 (given by rows) and the domain volume ratio approx. 0.6:0.4. The structure was solved and refined from detwinned HKLF 4 data, however, due to approximately equal domain volume ratio, some reflections were strongly affected (typically Fo >> Fc) by twinning; these reflections were omitted in the final stages of the refinement.

The H atoms bound to the C atoms of the cations were placed in geometrically idealized positions (C–H = 0.93 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2 Ueq(C)] with the exception of the methyl groups, which were treated as rigid rotors [C–H = 0.96 Å, Uiso(H) = 1.5 Ueq(C)]. The H atoms bound to N atoms were refined semi-freely using distance restraint (N–H = 0.86 (2) Å) and with Uiso(H) = 1.5 Ueq(N). The H atoms of the anion and water molecule were located in a difference map and refined with d(O–H) = 0.82 (2) Å and d(H···H) = 1.36 (2) Å for water molecule.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom labelling scheme and hydrogen bonding interactions (dashed lines). Displacement ellipsoids are drawn ar the 30% probability level. The symmetry operation: (i) 3/2 – x, 3/2 – y, 1 – z.
[Figure 2] Fig. 2. A view of the cell packing of (I) along the b axis. Supramolecular chains are running in the b axis direction, N–H···O and O–H···O hydrogen bonds are drawn as red dashed lines. Carbon-bound hydrogen atoms are omitted for clarity.
Tetrakis(2,6-dimethylpyridinium) dihydrogen decavanadate dihydrate top
Crystal data top
(C7H10N)4[H2V10O28]·2H2OF(000) = 2848
Mr = 1428.09Dx = 2.003 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 27323 reflections
a = 24.7777 (5) Åθ = 3.6–28.7°
b = 8.35654 (16) ŵ = 1.98 mm1
c = 25.0089 (6) ÅT = 293 K
β = 113.878 (3)°Plate, orange
V = 4735.0 (2) Å30.41 × 0.22 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R
diffractometer
5867 independent reflections
Radiation source: Enhance (Mo) X-ray Source5086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.4340 pixels mm-1θmax = 28.9°, θmin = 3.5°
ω–scansh = 3333
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
k = 1111
Tmin = 0.575, Tmax = 0.873l = 3333
59285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0401P)2 + 8.437P]
where P = (Fo2 + 2Fc2)/3
5867 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.77 e Å3
6 restraintsΔρmin = 0.39 e Å3
Crystal data top
(C7H10N)4[H2V10O28]·2H2OV = 4735.0 (2) Å3
Mr = 1428.09Z = 4
Monoclinic, C2/cMo Kα radiation
a = 24.7777 (5) ŵ = 1.98 mm1
b = 8.35654 (16) ÅT = 293 K
c = 25.0089 (6) Å0.41 × 0.22 × 0.08 mm
β = 113.878 (3)°
Data collection top
Oxford Diffraction Gemini R
diffractometer
5867 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
5086 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 0.873Rint = 0.032
59285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.77 e Å3
5867 reflectionsΔρmin = 0.39 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.81781 (2)0.47465 (4)0.51737 (2)0.02165 (9)
V20.70304 (2)0.55586 (4)0.40183 (2)0.02228 (9)
V30.60060 (2)0.74652 (5)0.41309 (2)0.02433 (9)
V40.68019 (2)0.91657 (5)0.36342 (2)0.02475 (9)
V50.79281 (2)0.82080 (4)0.47073 (2)0.01834 (8)
O10.82181 (7)0.30171 (19)0.49035 (7)0.0303 (3)
O20.70776 (8)0.3908 (2)0.37228 (7)0.0342 (4)
O30.53181 (7)0.7150 (2)0.39512 (8)0.0374 (4)
O40.67212 (8)1.0004 (2)0.30321 (7)0.0371 (4)
O50.60486 (6)0.8555 (2)0.35266 (6)0.0281 (3)
O60.76907 (6)0.91441 (18)0.40574 (6)0.0237 (3)
O70.86611 (6)0.84722 (18)0.50288 (6)0.0238 (3)
O80.62630 (6)0.55718 (18)0.39335 (6)0.0254 (3)
O90.69435 (7)0.69902 (19)0.34630 (6)0.0258 (3)
O100.88874 (6)0.55388 (19)0.54352 (7)0.0254 (3)
O110.81944 (7)0.41941 (18)0.58919 (7)0.0261 (3)
O120.78823 (6)0.60759 (17)0.44582 (6)0.0204 (3)
O130.72489 (6)0.48316 (17)0.48854 (6)0.0203 (3)
O140.70334 (6)0.78365 (17)0.45323 (6)0.0192 (3)
H130.7096 (11)0.407 (3)0.4957 (11)0.029*
N10.66681 (9)0.6432 (3)0.23502 (8)0.0326 (4)
H10.6763 (13)0.660 (4)0.2699 (8)0.049*
C110.57585 (15)0.5319 (5)0.23387 (15)0.0640 (10)
H11A0.59050.43660.25660.096*
H11B0.53640.51370.20550.096*
H11C0.57580.61810.25920.096*
C120.61462 (12)0.5743 (3)0.20330 (11)0.0395 (6)
C130.60049 (13)0.5490 (4)0.14473 (12)0.0488 (7)
H13A0.56440.50350.12120.059*
C140.63984 (13)0.5913 (4)0.12099 (11)0.0498 (8)
H140.63090.57020.08180.060*
C150.69227 (13)0.6644 (3)0.15484 (12)0.0420 (6)
H150.71820.69630.13850.050*
C160.70592 (11)0.6900 (3)0.21315 (11)0.0344 (5)
C170.76196 (14)0.7645 (4)0.25454 (15)0.0542 (8)
H17A0.78060.69520.28760.081*
H17B0.75350.86560.26760.081*
H17C0.78790.78060.23510.081*
N20.49294 (9)0.1465 (3)0.38718 (9)0.0333 (4)
H20.5234 (10)0.170 (4)0.3827 (13)0.050*
C210.46457 (12)0.0171 (4)0.29325 (12)0.0489 (7)
H21A0.43660.06150.27020.073*
H21B0.50380.02530.30580.073*
H21C0.46100.11150.27020.073*
C220.45261 (10)0.0582 (3)0.34534 (11)0.0353 (5)
C230.40287 (13)0.0113 (4)0.35294 (15)0.0536 (8)
H230.37370.04820.32420.064*
C240.39681 (16)0.0534 (5)0.40350 (18)0.0674 (10)
H240.36340.02210.40910.081*
C250.43990 (16)0.1415 (5)0.44557 (15)0.0629 (10)
H250.43610.16800.48000.075*
C260.48857 (13)0.1904 (4)0.43713 (12)0.0453 (7)
C270.53721 (15)0.2890 (5)0.47929 (15)0.0758 (12)
H27A0.54090.38630.46060.114*
H27B0.57360.23030.49200.114*
H27C0.52860.31400.51250.114*
O1W0.57679 (8)0.2656 (2)0.35592 (9)0.0425 (4)
H1W0.6068 (11)0.208 (3)0.3669 (15)0.064*
H2W0.5882 (14)0.357 (2)0.3674 (15)0.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02131 (17)0.01978 (18)0.02536 (18)0.00097 (13)0.01099 (14)0.00127 (13)
V20.02531 (18)0.02300 (18)0.01948 (17)0.00306 (14)0.01005 (14)0.00278 (13)
V30.01854 (17)0.0285 (2)0.02501 (19)0.00254 (13)0.00786 (14)0.00077 (14)
V40.02526 (18)0.0288 (2)0.02013 (18)0.00009 (14)0.00916 (14)0.00546 (14)
V50.01910 (16)0.01996 (17)0.01882 (17)0.00175 (12)0.01063 (13)0.00133 (12)
O10.0325 (8)0.0226 (8)0.0393 (9)0.0017 (6)0.0182 (7)0.0010 (7)
O20.0425 (9)0.0288 (9)0.0352 (9)0.0049 (7)0.0196 (8)0.0096 (7)
O30.0220 (8)0.0459 (10)0.0418 (10)0.0054 (7)0.0104 (7)0.0006 (8)
O40.0378 (9)0.0459 (10)0.0265 (8)0.0009 (8)0.0119 (7)0.0116 (8)
O50.0229 (7)0.0341 (9)0.0238 (7)0.0007 (6)0.0058 (6)0.0046 (6)
O60.0256 (7)0.0263 (8)0.0223 (7)0.0023 (6)0.0130 (6)0.0047 (6)
O70.0211 (7)0.0271 (8)0.0261 (7)0.0026 (6)0.0125 (6)0.0002 (6)
O80.0244 (7)0.0260 (8)0.0249 (7)0.0059 (6)0.0089 (6)0.0028 (6)
O90.0289 (8)0.0316 (8)0.0180 (7)0.0034 (6)0.0107 (6)0.0008 (6)
O100.0208 (7)0.0278 (8)0.0297 (8)0.0021 (6)0.0122 (6)0.0019 (6)
O110.0263 (7)0.0243 (8)0.0279 (8)0.0011 (6)0.0113 (6)0.0064 (6)
O120.0230 (7)0.0214 (7)0.0203 (7)0.0012 (5)0.0125 (5)0.0010 (5)
O130.0226 (7)0.0181 (7)0.0225 (7)0.0039 (5)0.0117 (6)0.0003 (5)
O140.0201 (6)0.0216 (7)0.0179 (6)0.0006 (5)0.0097 (5)0.0013 (5)
N10.0405 (11)0.0356 (11)0.0211 (9)0.0010 (9)0.0118 (8)0.0025 (8)
C110.0545 (19)0.087 (3)0.0526 (19)0.0222 (18)0.0243 (15)0.0066 (18)
C120.0385 (13)0.0433 (15)0.0332 (13)0.0004 (11)0.0109 (10)0.0037 (11)
C130.0405 (15)0.063 (2)0.0323 (14)0.0043 (13)0.0034 (11)0.0131 (13)
C140.0530 (16)0.069 (2)0.0234 (12)0.0252 (15)0.0117 (11)0.0029 (12)
C150.0517 (16)0.0445 (15)0.0386 (14)0.0181 (12)0.0275 (12)0.0038 (12)
C160.0406 (13)0.0294 (12)0.0362 (13)0.0050 (10)0.0186 (10)0.0030 (10)
C170.0502 (17)0.0553 (19)0.063 (2)0.0145 (14)0.0293 (15)0.0199 (16)
N20.0273 (10)0.0437 (12)0.0305 (10)0.0029 (9)0.0134 (8)0.0008 (9)
C210.0386 (14)0.075 (2)0.0339 (14)0.0052 (14)0.0153 (11)0.0131 (14)
C220.0291 (11)0.0425 (14)0.0365 (13)0.0005 (10)0.0155 (10)0.0022 (11)
C230.0396 (15)0.0593 (19)0.070 (2)0.0120 (14)0.0303 (15)0.0107 (16)
C240.057 (2)0.083 (3)0.087 (3)0.0003 (19)0.056 (2)0.004 (2)
C250.069 (2)0.087 (3)0.0500 (18)0.023 (2)0.0415 (17)0.0048 (18)
C260.0453 (15)0.0560 (18)0.0327 (13)0.0176 (13)0.0139 (11)0.0036 (12)
C270.057 (2)0.100 (3)0.053 (2)0.016 (2)0.0038 (16)0.038 (2)
O1W0.0294 (9)0.0320 (10)0.0617 (13)0.0050 (7)0.0139 (9)0.0002 (9)
Geometric parameters (Å, º) top
V1—O11.6153 (16)C11—H11B0.9600
V1—O101.7390 (15)C11—H11C0.9600
V1—O111.8391 (15)C11—C121.492 (4)
V1—O121.9776 (14)C12—C131.378 (4)
V1—O132.1170 (14)C13—H13A0.9300
V1—O14i2.2818 (14)C13—C141.377 (4)
V2—O21.5916 (17)C14—H140.9300
V2—O81.8261 (15)C14—C151.374 (4)
V2—O91.7788 (15)C15—H150.9300
V2—O121.9931 (14)C15—C161.374 (3)
V2—O132.1009 (15)C16—C171.491 (4)
V2—O142.2952 (14)C17—H17A0.9600
V3—O31.5990 (16)C17—H17B0.9600
V3—O51.8035 (16)C17—H17C0.9600
V3—O7i2.0752 (15)N2—H20.830 (17)
V3—O81.8458 (16)N2—C221.338 (3)
V3—O10i1.9487 (16)N2—C261.348 (3)
V3—O142.3486 (14)C21—H21A0.9600
V4—O41.5983 (16)C21—H21B0.9600
V4—O51.8468 (15)C21—H21C0.9600
V4—O62.0208 (15)C21—C221.488 (3)
V4—O91.9321 (16)C22—C231.378 (4)
V4—O11i1.8097 (16)C23—H230.9300
V4—O142.3588 (14)C23—C241.378 (5)
V5—O61.6810 (14)C24—H240.9300
V5—O71.6768 (14)C24—C251.371 (5)
V5—O121.8757 (15)C25—H250.9300
V5—O13i2.0678 (15)C25—C261.368 (5)
V5—O14i2.0592 (13)C26—C271.488 (5)
V5—O142.1015 (13)C27—H27A0.9600
O13—H130.796 (17)C27—H27B0.9600
N1—H10.817 (17)C27—H27C0.9600
N1—C121.343 (3)O1W—H1W0.832 (17)
N1—C161.349 (3)O1W—H2W0.825 (17)
C11—H11A0.9600
O1—V1—O10105.91 (8)V5—O12—V2107.31 (7)
O1—V1—O11101.72 (8)V1—O13—H13116.6 (19)
O1—V1—O12100.78 (7)V2—O13—V198.72 (6)
O1—V1—O1397.47 (7)V2—O13—H13121.1 (19)
O1—V1—O14i171.01 (7)V5i—O13—V1106.09 (6)
O10—V1—O1196.25 (7)V5i—O13—V2105.18 (6)
O10—V1—O1294.27 (7)V5i—O13—H13107.7 (19)
O10—V1—O13155.43 (7)V1i—O14—V2164.90 (7)
O10—V1—O14i82.58 (6)V1i—O14—V384.49 (5)
O11—V1—O12151.43 (6)V1i—O14—V483.74 (5)
O11—V1—O1386.10 (6)V2—O14—V383.90 (5)
O11—V1—O14i79.89 (6)V2—O14—V485.00 (5)
O12—V1—O1373.70 (6)V3—O14—V481.46 (4)
O12—V1—O14i75.23 (5)V5—O14—V1i99.36 (6)
O13—V1—O14i73.74 (5)V5i—O14—V1i90.48 (5)
O2—V2—O8102.71 (8)V5i—O14—V298.86 (6)
O2—V2—O9103.22 (8)V5—O14—V290.18 (5)
O2—V2—O12100.59 (8)V5—O14—V3167.97 (7)
O2—V2—O13101.07 (8)V5i—O14—V388.61 (5)
O2—V2—O14174.13 (8)V5—O14—V487.61 (5)
O8—V2—O12152.03 (6)V5i—O14—V4168.93 (7)
O8—V2—O1386.72 (6)V5i—O14—V5102.69 (6)
O8—V2—O1480.05 (6)C12—N1—H1120 (2)
O9—V2—O896.54 (7)C12—N1—C16124.2 (2)
O9—V2—O1292.96 (6)C16—N1—H1116 (2)
O9—V2—O13154.09 (7)H11A—C11—H11B109.5
O9—V2—O1481.46 (6)H11A—C11—H11C109.5
O12—V2—O1373.75 (6)H11B—C11—H11C109.5
O12—V2—O1475.43 (5)C12—C11—H11A109.5
O13—V2—O1473.78 (5)C12—C11—H11B109.5
O3—V3—O5105.36 (8)C12—C11—H11C109.5
O3—V3—O7i99.44 (8)N1—C12—C11117.7 (2)
O3—V3—O8103.16 (8)N1—C12—C13117.6 (3)
O3—V3—O10i100.73 (8)C13—C12—C11124.7 (3)
O3—V3—O14171.75 (7)C12—C13—H13A120.0
O5—V3—O7i154.82 (6)C14—C13—C12120.0 (3)
O5—V3—O893.73 (7)C14—C13—H13A120.0
O5—V3—O10i89.65 (7)C13—C14—H14119.8
O5—V3—O1482.56 (6)C15—C14—C13120.4 (2)
O7i—V3—O1472.50 (5)C15—C14—H14119.8
O8—V3—O7i84.75 (6)C14—C15—H15120.4
O8—V3—O10i154.02 (6)C16—C15—C14119.2 (3)
O8—V3—O1478.23 (6)C16—C15—H15120.4
O10i—V3—O7i81.40 (6)N1—C16—C15118.5 (2)
O10i—V3—O1476.69 (6)N1—C16—C17117.3 (2)
O4—V4—O5104.49 (8)C15—C16—C17124.2 (3)
O4—V4—O6101.04 (8)C16—C17—H17A109.5
O4—V4—O999.69 (8)C16—C17—H17B109.5
O4—V4—O11i104.52 (9)C16—C17—H17C109.5
O4—V4—O14173.18 (8)H17A—C17—H17B109.5
O5—V4—O6153.74 (6)H17A—C17—H17C109.5
O5—V4—O988.34 (7)H17B—C17—H17C109.5
O5—V4—O1481.40 (6)C22—N2—H2117 (2)
O6—V4—O1472.76 (5)C22—N2—C26124.0 (2)
O9—V4—O681.40 (6)C26—N2—H2119 (2)
O9—V4—O1476.82 (6)H21A—C21—H21B109.5
O11i—V4—O592.39 (7)H21A—C21—H21C109.5
O11i—V4—O687.03 (7)H21B—C21—H21C109.5
O11i—V4—O9154.77 (7)C22—C21—H21A109.5
O11i—V4—O1478.36 (6)C22—C21—H21B109.5
O6—V5—O1299.81 (7)C22—C21—H21C109.5
O6—V5—O13i92.68 (7)N2—C22—C21117.5 (2)
O6—V5—O14i163.23 (6)N2—C22—C23118.4 (2)
O6—V5—O1486.60 (6)C23—C22—C21124.1 (3)
O7—V5—O6106.83 (7)C22—C23—H23120.3
O7—V5—O12101.10 (7)C22—C23—C24119.3 (3)
O7—V5—O13i93.67 (7)C24—C23—H23120.3
O7—V5—O14i88.66 (6)C23—C24—H24120.0
O7—V5—O14164.97 (6)C25—C24—C23120.1 (3)
O12—V5—O13i156.90 (6)C25—C24—H24120.0
O12—V5—O14i83.00 (6)C24—C25—H25119.9
O12—V5—O1482.74 (6)C26—C25—C24120.2 (3)
O13i—V5—O1478.66 (6)C26—C25—H25119.9
O14i—V5—O13i79.67 (6)N2—C26—C25117.9 (3)
O14i—V5—O1477.31 (6)N2—C26—C27117.5 (3)
V3—O5—V4114.58 (8)C25—C26—C27124.6 (3)
V5—O6—V4113.02 (7)C26—C27—H27A109.5
V5—O7—V3i110.20 (7)C26—C27—H27B109.5
V2—O8—V3115.45 (8)C26—C27—H27C109.5
V2—O9—V4115.80 (8)H27A—C27—H27B109.5
V1—O10—V3i115.08 (8)H27A—C27—H27C109.5
V4i—O11—V1116.22 (8)H27B—C27—H27C109.5
V1—O12—V2107.42 (7)H1W—O1W—H2W107 (2)
V5—O12—V1106.42 (7)
Symmetry code: (i) x+3/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O1ii0.80 (2)2.00 (2)2.789 (2)172 (3)
N1—H1···O90.82 (2)1.81 (2)2.625 (2)178 (3)
C15—H15···O2iii0.932.543.396 (3)152
N2—H2···O1W0.83 (2)1.89 (2)2.689 (3)163 (3)
C21—H21A···O4iv0.962.623.270 (3)125
C21—H21B···O5v0.962.503.454 (3)171
C24—H24···O12vi0.932.493.297 (3)145
C25—H25···O7vi0.932.533.237 (3)134
C25—H25···O10vi0.932.513.264 (3)138
C27—H27B···O1ii0.962.463.347 (4)153
O1W—H1W···O11ii0.83 (2)2.02 (2)2.833 (2)168 (3)
O1W—H2W···O80.83 (2)1.90 (2)2.718 (2)171 (3)
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y1, z+1/2; (v) x, y1, z; (vi) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O1i0.796 (17)1.999 (17)2.789 (2)172 (3)
N1—H1···O90.817 (17)1.808 (18)2.625 (2)178 (3)
C15—H15···O2ii0.932.543.396 (3)152.3
N2—H2···O1W0.830 (17)1.89 (2)2.689 (3)163 (3)
C21—H21A···O4iii0.962.623.270 (3)124.9
C21—H21B···O5iv0.962.503.454 (3)171.4
C24—H24···O12v0.932.493.297 (3)144.8
C25—H25···O7v0.932.533.237 (3)133.5
C25—H25···O10v0.932.513.264 (3)138.0
C27—H27B···O1i0.962.463.347 (4)153.4
O1W—H1W···O11i0.832 (17)2.015 (19)2.833 (2)168 (3)
O1W—H2W···O80.825 (17)1.900 (19)2.718 (2)171 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y1, z; (v) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Slovak Grant Agency VEGA (project No. 1/0336/13).

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.  Google Scholar
First citationArrieta, J. M., Arnaiz, A., Lorente, L., Santiago, C. & Germain, G. (1988). Acta Cryst. C44, 1004–1008.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAsgedom, G., Sreedhara, A., Kivikoski, J. & Rao, C. P. (1996). Polyhedron, 16, 643–651.  CSD CrossRef Web of Science Google Scholar
First citationBan-Oganowska, H., Godlewska, P., Macalik, L., Hanuza, J., Oganowski, W. & van der Maas, J. H. (2002). J. Mol. Struct. 605, 291–307.  CAS Google Scholar
First citationBartošová, L., Padělková, Z., Rakovský, E. & Schwendt, P. (2012). Polyhedron, 31, 565–569.  Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCrans, D. C. (1998). Peroxo, Hydroxylamido and acac Derived Vanadium Complexes: Chemistry, Biochemistry and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series 711, edited by Al. S. Tracey & D. C. Crans. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A. & Bensitel, M. (2011). Arab. J. Chem. 4, 313–319.  Web of Science CrossRef CAS Google Scholar
First citationHagrman, P. J., Finn, R. C. & Zubieta, J. (2001). Solid State Sci. 3, 745–774.  Web of Science CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationKlištincová, L., Rakovský, E. & Schwendt, P. (2008). Inorg. Chem. Commun. 11, 1140–1142.  Google Scholar
First citationKlištincová, L., Rakovský, E., Schwendt, P., Plesch, G. & Gyepes, R. (2010). Inorg. Chem. Commun. 13, 1275–1277.  Google Scholar
First citationMedhi, K. C. & Mukherjee, D. K. (1965). Spectrochim. Acta, 21, 895–902.  CrossRef CAS Web of Science Google Scholar
First citationPacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419–m422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRakovský, E. & Gyepes, R. (2006). Acta Cryst. E62, m2108–m2110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSantiago, C., Arnaiz, A., Lorente, L., Arrieta, J. M. & Germain, G. (1988). Acta Cryst. C44, 239–242.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m225-m226
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds