metal-organic compounds
Tetrakis(2,6-dimethylpyridinium) dihydrogen decavanadate dihydrate
aComenius University, Faculty of Natural Sciences, Department of Inorganic Chemistry, Mlynská dolina CH2, 842 15 Bratislava, Slovak Republic
*Correspondence e-mail: rakovsky@fns.uniba.sk
The structure of the title compound, (C7H10N)4[H2V10O28]·2H2O, was solved from a non-merohedrally twinned crystal (ratio of twin components ∼0.6:0.4). The consists of one-half decavanadate anion (the other half completed by inversion symmetry), two 2,6-dimethylpyridinium cations and one water molecule of crystallization. In the crystal, the components are connected by strong N—H⋯O and O—H⋯O hydrogen bonds, forming a supramolecular chain along the b-axis direction. There are weak C—H⋯O interactions between the chains.
CCDC reference: 1003037
Related literature
For our previously published research on polyoxidovanadates, see: Rakovský & Gyepes (2006); Pacigová et al. (2007); Klištincová et al. (2008, 2010); Bartošová et al. (2012). For more general background to their applications, see: Crans (1998); Hagrman et al. (2001). Other decavanadates with pyridinium derivatives as the cations have been reported by Asgedom et al. (1996); Arrieta et al. (1988); Santiago et al. (1988). For IR spectra interpretation, see: Ban-Oganowska et al. (2002); Elassal et al. (2011); Medhi & Mukherjee (1965). For hydrogen-bond criteria, see: Jeffrey (1997).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1003037
10.1107/S1600536814011118/gk2606sup1.cif
contains datablocks I, Ie. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011118/gk2606Isup2.hkl
All reactants with the exception of purified vanadium pentoxide were obtained commercially and used without further purification.
Purified vanadium pentoxide was prepared as follows: to 1.5 l of water, NH4VO3 (50 g) and NH3 (60 ml, w = 25%) were added. The mixture was stirred and heated in a water bath until the temperature reached 343 K and left cool down for about 1 h. After cooling the mixture was filtered. White NH4VO3 was precipited by adding of crystalline NH4NO3 (70 g) to the filtrate, filtered out and washed with distilled water (20 ml) and ethanol (20 ml). The product was dried on air. Purified NH4VO3 was heated in a porcelain dish at 773 K for at least 2 h.
2 NH4VO3 → V2O5 + 2 NH3 + H2O
Test for purity of prepared V2O5: small amout of the product added to cold 1 M solution of KOH in a test tube completely dissolves.
Synthesis of the (C7H10N)4H2V10O28.2H2O (I): V2O5 (0.9 g, 0.005 mol) was dissolved after stirring overnight in 100 ml of 0.1 M solution of 2,6-dimethylpyridine. Yellow solution obtained was filtered and adjusted to pH 2.5 with 4 M HClO4. Orange plate crystals were isolated after standing 5 days at 277 K.
Vanadium was determined gravimetrically as V2O5. C, H and N were estimated on a CHN analyser (Carlo Erba). Analysis calculated for C28H46N4O30V10 (found): C 23.55 (23.59), H 3.25 (3.21), N 3.92 (3.89), V 35.67 (35.58).
The FT—IR spectra were performed with a Nonius 6700 FTIR spectrophotometer in nujol mulls. The IR spectrum of prepared compound exhibits characteristic bands of the decavanadate anion [965 (s), 944 (s), 926 (m), 829 (s) and 589 (m) cm-1] (Klištincová et al., 2010) as well as characteristic bands for protonated 2,6-dimethylpyridine (2534 (sh) – ν(NH+); 1629 (s), 1641 (s) – δ(NH+)) and other bands for the base (716 (s), 794 (s) – δ(CH); 971 (s) – ν(C–CH3); 1175 (m), 1280 (m) – δ(CH comb.), 1415 (m) – ν(C–C) or ν(C–N)) (Ban-Oganowska et al., 2002; Elassal et al., 2011; Medhi et al., 1965).
The selected crystal was a non-merohedral twin with the
-1 0 0; 0 -1 0; 1 0 1 (given by rows) and the domain volume ratio approx. 0.6:0.4. The structure was solved and refined from detwinned HKLF 4 data, however, due to approximately equal domain volume ratio, some reflections were strongly affected (typically Fo >> Fc) by these reflections were omitted in the final stages of the refinement.The H atoms bound to the C atoms of the cations were placed in geometrically idealized positions (C–H = 0.93 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2 Ueq(C)] with the exception of the methyl groups, which were treated as rigid rotors [C–H = 0.96 Å, Uiso(H) = 1.5 Ueq(C)]. The H atoms bound to N atoms were refined semi-freely using distance restraint (N–H = 0.86 (2) Å) and with Uiso(H) = 1.5 Ueq(N). The H atoms of the anion and water molecule were located in a difference map and refined with d(O–H) = 0.82 (2) Å and d(H···H) = 1.36 (2) Å for water molecule.
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The structure of the title compound, showing the atom labelling scheme and hydrogen bonding interactions (dashed lines). Displacement ellipsoids are drawn ar the 30% probability level. The symmetry operation: (i) 3/2 – x, 3/2 – y, 1 – z. | |
Fig. 2. A view of the cell packing of (I) along the b axis. Supramolecular chains are running in the b axis direction, N–H···O and O–H···O hydrogen bonds are drawn as red dashed lines. Carbon-bound hydrogen atoms are omitted for clarity. |
(C7H10N)4[H2V10O28]·2H2O | F(000) = 2848 |
Mr = 1428.09 | Dx = 2.003 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 27323 reflections |
a = 24.7777 (5) Å | θ = 3.6–28.7° |
b = 8.35654 (16) Å | µ = 1.98 mm−1 |
c = 25.0089 (6) Å | T = 293 K |
β = 113.878 (3)° | Plate, orange |
V = 4735.0 (2) Å3 | 0.41 × 0.22 × 0.08 mm |
Z = 4 |
Oxford Diffraction Gemini R diffractometer | 5867 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5086 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 10.4340 pixels mm-1 | θmax = 28.9°, θmin = 3.5° |
ω–scans | h = −33→33 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | k = −11→11 |
Tmin = 0.575, Tmax = 0.873 | l = −33→33 |
59285 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0401P)2 + 8.437P] where P = (Fo2 + 2Fc2)/3 |
5867 reflections | (Δ/σ)max = 0.001 |
344 parameters | Δρmax = 0.77 e Å−3 |
6 restraints | Δρmin = −0.39 e Å−3 |
(C7H10N)4[H2V10O28]·2H2O | V = 4735.0 (2) Å3 |
Mr = 1428.09 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 24.7777 (5) Å | µ = 1.98 mm−1 |
b = 8.35654 (16) Å | T = 293 K |
c = 25.0089 (6) Å | 0.41 × 0.22 × 0.08 mm |
β = 113.878 (3)° |
Oxford Diffraction Gemini R diffractometer | 5867 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 5086 reflections with I > 2σ(I) |
Tmin = 0.575, Tmax = 0.873 | Rint = 0.032 |
59285 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 6 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.77 e Å−3 |
5867 reflections | Δρmin = −0.39 e Å−3 |
344 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.81781 (2) | 0.47465 (4) | 0.51737 (2) | 0.02165 (9) | |
V2 | 0.70304 (2) | 0.55586 (4) | 0.40183 (2) | 0.02228 (9) | |
V3 | 0.60060 (2) | 0.74652 (5) | 0.41309 (2) | 0.02433 (9) | |
V4 | 0.68019 (2) | 0.91657 (5) | 0.36342 (2) | 0.02475 (9) | |
V5 | 0.79281 (2) | 0.82080 (4) | 0.47073 (2) | 0.01834 (8) | |
O1 | 0.82181 (7) | 0.30171 (19) | 0.49035 (7) | 0.0303 (3) | |
O2 | 0.70776 (8) | 0.3908 (2) | 0.37228 (7) | 0.0342 (4) | |
O3 | 0.53181 (7) | 0.7150 (2) | 0.39512 (8) | 0.0374 (4) | |
O4 | 0.67212 (8) | 1.0004 (2) | 0.30321 (7) | 0.0371 (4) | |
O5 | 0.60486 (6) | 0.8555 (2) | 0.35266 (6) | 0.0281 (3) | |
O6 | 0.76907 (6) | 0.91441 (18) | 0.40574 (6) | 0.0237 (3) | |
O7 | 0.86611 (6) | 0.84722 (18) | 0.50288 (6) | 0.0238 (3) | |
O8 | 0.62630 (6) | 0.55718 (18) | 0.39335 (6) | 0.0254 (3) | |
O9 | 0.69435 (7) | 0.69902 (19) | 0.34630 (6) | 0.0258 (3) | |
O10 | 0.88874 (6) | 0.55388 (19) | 0.54352 (7) | 0.0254 (3) | |
O11 | 0.81944 (7) | 0.41941 (18) | 0.58919 (7) | 0.0261 (3) | |
O12 | 0.78823 (6) | 0.60759 (17) | 0.44582 (6) | 0.0204 (3) | |
O13 | 0.72489 (6) | 0.48316 (17) | 0.48854 (6) | 0.0203 (3) | |
O14 | 0.70334 (6) | 0.78365 (17) | 0.45323 (6) | 0.0192 (3) | |
H13 | 0.7096 (11) | 0.407 (3) | 0.4957 (11) | 0.029* | |
N1 | 0.66681 (9) | 0.6432 (3) | 0.23502 (8) | 0.0326 (4) | |
H1 | 0.6763 (13) | 0.660 (4) | 0.2699 (8) | 0.049* | |
C11 | 0.57585 (15) | 0.5319 (5) | 0.23387 (15) | 0.0640 (10) | |
H11A | 0.5905 | 0.4366 | 0.2566 | 0.096* | |
H11B | 0.5364 | 0.5137 | 0.2055 | 0.096* | |
H11C | 0.5758 | 0.6181 | 0.2592 | 0.096* | |
C12 | 0.61462 (12) | 0.5743 (3) | 0.20330 (11) | 0.0395 (6) | |
C13 | 0.60049 (13) | 0.5490 (4) | 0.14473 (12) | 0.0488 (7) | |
H13A | 0.5644 | 0.5035 | 0.1212 | 0.059* | |
C14 | 0.63984 (13) | 0.5913 (4) | 0.12099 (11) | 0.0498 (8) | |
H14 | 0.6309 | 0.5702 | 0.0818 | 0.060* | |
C15 | 0.69227 (13) | 0.6644 (3) | 0.15484 (12) | 0.0420 (6) | |
H15 | 0.7182 | 0.6963 | 0.1385 | 0.050* | |
C16 | 0.70592 (11) | 0.6900 (3) | 0.21315 (11) | 0.0344 (5) | |
C17 | 0.76196 (14) | 0.7645 (4) | 0.25454 (15) | 0.0542 (8) | |
H17A | 0.7806 | 0.6952 | 0.2876 | 0.081* | |
H17B | 0.7535 | 0.8656 | 0.2676 | 0.081* | |
H17C | 0.7879 | 0.7806 | 0.2351 | 0.081* | |
N2 | 0.49294 (9) | 0.1465 (3) | 0.38718 (9) | 0.0333 (4) | |
H2 | 0.5234 (10) | 0.170 (4) | 0.3827 (13) | 0.050* | |
C21 | 0.46457 (12) | 0.0171 (4) | 0.29325 (12) | 0.0489 (7) | |
H21A | 0.4366 | −0.0615 | 0.2702 | 0.073* | |
H21B | 0.5038 | −0.0253 | 0.3058 | 0.073* | |
H21C | 0.4610 | 0.1115 | 0.2702 | 0.073* | |
C22 | 0.45261 (10) | 0.0582 (3) | 0.34534 (11) | 0.0353 (5) | |
C23 | 0.40287 (13) | 0.0113 (4) | 0.35294 (15) | 0.0536 (8) | |
H23 | 0.3737 | −0.0482 | 0.3242 | 0.064* | |
C24 | 0.39681 (16) | 0.0534 (5) | 0.40350 (18) | 0.0674 (10) | |
H24 | 0.3634 | 0.0221 | 0.4091 | 0.081* | |
C25 | 0.43990 (16) | 0.1415 (5) | 0.44557 (15) | 0.0629 (10) | |
H25 | 0.4361 | 0.1680 | 0.4800 | 0.075* | |
C26 | 0.48857 (13) | 0.1904 (4) | 0.43713 (12) | 0.0453 (7) | |
C27 | 0.53721 (15) | 0.2890 (5) | 0.47929 (15) | 0.0758 (12) | |
H27A | 0.5409 | 0.3863 | 0.4606 | 0.114* | |
H27B | 0.5736 | 0.2303 | 0.4920 | 0.114* | |
H27C | 0.5286 | 0.3140 | 0.5125 | 0.114* | |
O1W | 0.57679 (8) | 0.2656 (2) | 0.35592 (9) | 0.0425 (4) | |
H1W | 0.6068 (11) | 0.208 (3) | 0.3669 (15) | 0.064* | |
H2W | 0.5882 (14) | 0.357 (2) | 0.3674 (15) | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.02131 (17) | 0.01978 (18) | 0.02536 (18) | 0.00097 (13) | 0.01099 (14) | 0.00127 (13) |
V2 | 0.02531 (18) | 0.02300 (18) | 0.01948 (17) | −0.00306 (14) | 0.01005 (14) | −0.00278 (13) |
V3 | 0.01854 (17) | 0.0285 (2) | 0.02501 (19) | −0.00254 (13) | 0.00786 (14) | 0.00077 (14) |
V4 | 0.02526 (18) | 0.0288 (2) | 0.02013 (18) | −0.00009 (14) | 0.00916 (14) | 0.00546 (14) |
V5 | 0.01910 (16) | 0.01996 (17) | 0.01882 (17) | −0.00175 (12) | 0.01063 (13) | 0.00133 (12) |
O1 | 0.0325 (8) | 0.0226 (8) | 0.0393 (9) | 0.0017 (6) | 0.0182 (7) | −0.0010 (7) |
O2 | 0.0425 (9) | 0.0288 (9) | 0.0352 (9) | −0.0049 (7) | 0.0196 (8) | −0.0096 (7) |
O3 | 0.0220 (8) | 0.0459 (10) | 0.0418 (10) | −0.0054 (7) | 0.0104 (7) | 0.0006 (8) |
O4 | 0.0378 (9) | 0.0459 (10) | 0.0265 (8) | −0.0009 (8) | 0.0119 (7) | 0.0116 (8) |
O5 | 0.0229 (7) | 0.0341 (9) | 0.0238 (7) | −0.0007 (6) | 0.0058 (6) | 0.0046 (6) |
O6 | 0.0256 (7) | 0.0263 (8) | 0.0223 (7) | −0.0023 (6) | 0.0130 (6) | 0.0047 (6) |
O7 | 0.0211 (7) | 0.0271 (8) | 0.0261 (7) | −0.0026 (6) | 0.0125 (6) | −0.0002 (6) |
O8 | 0.0244 (7) | 0.0260 (8) | 0.0249 (7) | −0.0059 (6) | 0.0089 (6) | −0.0028 (6) |
O9 | 0.0289 (8) | 0.0316 (8) | 0.0180 (7) | −0.0034 (6) | 0.0107 (6) | −0.0008 (6) |
O10 | 0.0208 (7) | 0.0278 (8) | 0.0297 (8) | 0.0021 (6) | 0.0122 (6) | 0.0019 (6) |
O11 | 0.0263 (7) | 0.0243 (8) | 0.0279 (8) | 0.0011 (6) | 0.0113 (6) | 0.0064 (6) |
O12 | 0.0230 (7) | 0.0214 (7) | 0.0203 (7) | −0.0012 (5) | 0.0125 (5) | −0.0010 (5) |
O13 | 0.0226 (7) | 0.0181 (7) | 0.0225 (7) | −0.0039 (5) | 0.0117 (6) | −0.0003 (5) |
O14 | 0.0201 (6) | 0.0216 (7) | 0.0179 (6) | −0.0006 (5) | 0.0097 (5) | 0.0013 (5) |
N1 | 0.0405 (11) | 0.0356 (11) | 0.0211 (9) | 0.0010 (9) | 0.0118 (8) | −0.0025 (8) |
C11 | 0.0545 (19) | 0.087 (3) | 0.0526 (19) | −0.0222 (18) | 0.0243 (15) | −0.0066 (18) |
C12 | 0.0385 (13) | 0.0433 (15) | 0.0332 (13) | −0.0004 (11) | 0.0109 (10) | −0.0037 (11) |
C13 | 0.0405 (15) | 0.063 (2) | 0.0323 (14) | 0.0043 (13) | 0.0034 (11) | −0.0131 (13) |
C14 | 0.0530 (16) | 0.069 (2) | 0.0234 (12) | 0.0252 (15) | 0.0117 (11) | −0.0029 (12) |
C15 | 0.0517 (16) | 0.0445 (15) | 0.0386 (14) | 0.0181 (12) | 0.0275 (12) | 0.0038 (12) |
C16 | 0.0406 (13) | 0.0294 (12) | 0.0362 (13) | 0.0050 (10) | 0.0186 (10) | −0.0030 (10) |
C17 | 0.0502 (17) | 0.0553 (19) | 0.063 (2) | −0.0145 (14) | 0.0293 (15) | −0.0199 (16) |
N2 | 0.0273 (10) | 0.0437 (12) | 0.0305 (10) | 0.0029 (9) | 0.0134 (8) | −0.0008 (9) |
C21 | 0.0386 (14) | 0.075 (2) | 0.0339 (14) | −0.0052 (14) | 0.0153 (11) | −0.0131 (14) |
C22 | 0.0291 (11) | 0.0425 (14) | 0.0365 (13) | −0.0005 (10) | 0.0155 (10) | −0.0022 (11) |
C23 | 0.0396 (15) | 0.0593 (19) | 0.070 (2) | −0.0120 (14) | 0.0303 (15) | −0.0107 (16) |
C24 | 0.057 (2) | 0.083 (3) | 0.087 (3) | −0.0003 (19) | 0.056 (2) | 0.004 (2) |
C25 | 0.069 (2) | 0.087 (3) | 0.0500 (18) | 0.023 (2) | 0.0415 (17) | 0.0048 (18) |
C26 | 0.0453 (15) | 0.0560 (18) | 0.0327 (13) | 0.0176 (13) | 0.0139 (11) | −0.0036 (12) |
C27 | 0.057 (2) | 0.100 (3) | 0.053 (2) | 0.016 (2) | 0.0038 (16) | −0.038 (2) |
O1W | 0.0294 (9) | 0.0320 (10) | 0.0617 (13) | −0.0050 (7) | 0.0139 (9) | −0.0002 (9) |
V1—O1 | 1.6153 (16) | C11—H11B | 0.9600 |
V1—O10 | 1.7390 (15) | C11—H11C | 0.9600 |
V1—O11 | 1.8391 (15) | C11—C12 | 1.492 (4) |
V1—O12 | 1.9776 (14) | C12—C13 | 1.378 (4) |
V1—O13 | 2.1170 (14) | C13—H13A | 0.9300 |
V1—O14i | 2.2818 (14) | C13—C14 | 1.377 (4) |
V2—O2 | 1.5916 (17) | C14—H14 | 0.9300 |
V2—O8 | 1.8261 (15) | C14—C15 | 1.374 (4) |
V2—O9 | 1.7788 (15) | C15—H15 | 0.9300 |
V2—O12 | 1.9931 (14) | C15—C16 | 1.374 (3) |
V2—O13 | 2.1009 (15) | C16—C17 | 1.491 (4) |
V2—O14 | 2.2952 (14) | C17—H17A | 0.9600 |
V3—O3 | 1.5990 (16) | C17—H17B | 0.9600 |
V3—O5 | 1.8035 (16) | C17—H17C | 0.9600 |
V3—O7i | 2.0752 (15) | N2—H2 | 0.830 (17) |
V3—O8 | 1.8458 (16) | N2—C22 | 1.338 (3) |
V3—O10i | 1.9487 (16) | N2—C26 | 1.348 (3) |
V3—O14 | 2.3486 (14) | C21—H21A | 0.9600 |
V4—O4 | 1.5983 (16) | C21—H21B | 0.9600 |
V4—O5 | 1.8468 (15) | C21—H21C | 0.9600 |
V4—O6 | 2.0208 (15) | C21—C22 | 1.488 (3) |
V4—O9 | 1.9321 (16) | C22—C23 | 1.378 (4) |
V4—O11i | 1.8097 (16) | C23—H23 | 0.9300 |
V4—O14 | 2.3588 (14) | C23—C24 | 1.378 (5) |
V5—O6 | 1.6810 (14) | C24—H24 | 0.9300 |
V5—O7 | 1.6768 (14) | C24—C25 | 1.371 (5) |
V5—O12 | 1.8757 (15) | C25—H25 | 0.9300 |
V5—O13i | 2.0678 (15) | C25—C26 | 1.368 (5) |
V5—O14i | 2.0592 (13) | C26—C27 | 1.488 (5) |
V5—O14 | 2.1015 (13) | C27—H27A | 0.9600 |
O13—H13 | 0.796 (17) | C27—H27B | 0.9600 |
N1—H1 | 0.817 (17) | C27—H27C | 0.9600 |
N1—C12 | 1.343 (3) | O1W—H1W | 0.832 (17) |
N1—C16 | 1.349 (3) | O1W—H2W | 0.825 (17) |
C11—H11A | 0.9600 | ||
O1—V1—O10 | 105.91 (8) | V5—O12—V2 | 107.31 (7) |
O1—V1—O11 | 101.72 (8) | V1—O13—H13 | 116.6 (19) |
O1—V1—O12 | 100.78 (7) | V2—O13—V1 | 98.72 (6) |
O1—V1—O13 | 97.47 (7) | V2—O13—H13 | 121.1 (19) |
O1—V1—O14i | 171.01 (7) | V5i—O13—V1 | 106.09 (6) |
O10—V1—O11 | 96.25 (7) | V5i—O13—V2 | 105.18 (6) |
O10—V1—O12 | 94.27 (7) | V5i—O13—H13 | 107.7 (19) |
O10—V1—O13 | 155.43 (7) | V1i—O14—V2 | 164.90 (7) |
O10—V1—O14i | 82.58 (6) | V1i—O14—V3 | 84.49 (5) |
O11—V1—O12 | 151.43 (6) | V1i—O14—V4 | 83.74 (5) |
O11—V1—O13 | 86.10 (6) | V2—O14—V3 | 83.90 (5) |
O11—V1—O14i | 79.89 (6) | V2—O14—V4 | 85.00 (5) |
O12—V1—O13 | 73.70 (6) | V3—O14—V4 | 81.46 (4) |
O12—V1—O14i | 75.23 (5) | V5—O14—V1i | 99.36 (6) |
O13—V1—O14i | 73.74 (5) | V5i—O14—V1i | 90.48 (5) |
O2—V2—O8 | 102.71 (8) | V5i—O14—V2 | 98.86 (6) |
O2—V2—O9 | 103.22 (8) | V5—O14—V2 | 90.18 (5) |
O2—V2—O12 | 100.59 (8) | V5—O14—V3 | 167.97 (7) |
O2—V2—O13 | 101.07 (8) | V5i—O14—V3 | 88.61 (5) |
O2—V2—O14 | 174.13 (8) | V5—O14—V4 | 87.61 (5) |
O8—V2—O12 | 152.03 (6) | V5i—O14—V4 | 168.93 (7) |
O8—V2—O13 | 86.72 (6) | V5i—O14—V5 | 102.69 (6) |
O8—V2—O14 | 80.05 (6) | C12—N1—H1 | 120 (2) |
O9—V2—O8 | 96.54 (7) | C12—N1—C16 | 124.2 (2) |
O9—V2—O12 | 92.96 (6) | C16—N1—H1 | 116 (2) |
O9—V2—O13 | 154.09 (7) | H11A—C11—H11B | 109.5 |
O9—V2—O14 | 81.46 (6) | H11A—C11—H11C | 109.5 |
O12—V2—O13 | 73.75 (6) | H11B—C11—H11C | 109.5 |
O12—V2—O14 | 75.43 (5) | C12—C11—H11A | 109.5 |
O13—V2—O14 | 73.78 (5) | C12—C11—H11B | 109.5 |
O3—V3—O5 | 105.36 (8) | C12—C11—H11C | 109.5 |
O3—V3—O7i | 99.44 (8) | N1—C12—C11 | 117.7 (2) |
O3—V3—O8 | 103.16 (8) | N1—C12—C13 | 117.6 (3) |
O3—V3—O10i | 100.73 (8) | C13—C12—C11 | 124.7 (3) |
O3—V3—O14 | 171.75 (7) | C12—C13—H13A | 120.0 |
O5—V3—O7i | 154.82 (6) | C14—C13—C12 | 120.0 (3) |
O5—V3—O8 | 93.73 (7) | C14—C13—H13A | 120.0 |
O5—V3—O10i | 89.65 (7) | C13—C14—H14 | 119.8 |
O5—V3—O14 | 82.56 (6) | C15—C14—C13 | 120.4 (2) |
O7i—V3—O14 | 72.50 (5) | C15—C14—H14 | 119.8 |
O8—V3—O7i | 84.75 (6) | C14—C15—H15 | 120.4 |
O8—V3—O10i | 154.02 (6) | C16—C15—C14 | 119.2 (3) |
O8—V3—O14 | 78.23 (6) | C16—C15—H15 | 120.4 |
O10i—V3—O7i | 81.40 (6) | N1—C16—C15 | 118.5 (2) |
O10i—V3—O14 | 76.69 (6) | N1—C16—C17 | 117.3 (2) |
O4—V4—O5 | 104.49 (8) | C15—C16—C17 | 124.2 (3) |
O4—V4—O6 | 101.04 (8) | C16—C17—H17A | 109.5 |
O4—V4—O9 | 99.69 (8) | C16—C17—H17B | 109.5 |
O4—V4—O11i | 104.52 (9) | C16—C17—H17C | 109.5 |
O4—V4—O14 | 173.18 (8) | H17A—C17—H17B | 109.5 |
O5—V4—O6 | 153.74 (6) | H17A—C17—H17C | 109.5 |
O5—V4—O9 | 88.34 (7) | H17B—C17—H17C | 109.5 |
O5—V4—O14 | 81.40 (6) | C22—N2—H2 | 117 (2) |
O6—V4—O14 | 72.76 (5) | C22—N2—C26 | 124.0 (2) |
O9—V4—O6 | 81.40 (6) | C26—N2—H2 | 119 (2) |
O9—V4—O14 | 76.82 (6) | H21A—C21—H21B | 109.5 |
O11i—V4—O5 | 92.39 (7) | H21A—C21—H21C | 109.5 |
O11i—V4—O6 | 87.03 (7) | H21B—C21—H21C | 109.5 |
O11i—V4—O9 | 154.77 (7) | C22—C21—H21A | 109.5 |
O11i—V4—O14 | 78.36 (6) | C22—C21—H21B | 109.5 |
O6—V5—O12 | 99.81 (7) | C22—C21—H21C | 109.5 |
O6—V5—O13i | 92.68 (7) | N2—C22—C21 | 117.5 (2) |
O6—V5—O14i | 163.23 (6) | N2—C22—C23 | 118.4 (2) |
O6—V5—O14 | 86.60 (6) | C23—C22—C21 | 124.1 (3) |
O7—V5—O6 | 106.83 (7) | C22—C23—H23 | 120.3 |
O7—V5—O12 | 101.10 (7) | C22—C23—C24 | 119.3 (3) |
O7—V5—O13i | 93.67 (7) | C24—C23—H23 | 120.3 |
O7—V5—O14i | 88.66 (6) | C23—C24—H24 | 120.0 |
O7—V5—O14 | 164.97 (6) | C25—C24—C23 | 120.1 (3) |
O12—V5—O13i | 156.90 (6) | C25—C24—H24 | 120.0 |
O12—V5—O14i | 83.00 (6) | C24—C25—H25 | 119.9 |
O12—V5—O14 | 82.74 (6) | C26—C25—C24 | 120.2 (3) |
O13i—V5—O14 | 78.66 (6) | C26—C25—H25 | 119.9 |
O14i—V5—O13i | 79.67 (6) | N2—C26—C25 | 117.9 (3) |
O14i—V5—O14 | 77.31 (6) | N2—C26—C27 | 117.5 (3) |
V3—O5—V4 | 114.58 (8) | C25—C26—C27 | 124.6 (3) |
V5—O6—V4 | 113.02 (7) | C26—C27—H27A | 109.5 |
V5—O7—V3i | 110.20 (7) | C26—C27—H27B | 109.5 |
V2—O8—V3 | 115.45 (8) | C26—C27—H27C | 109.5 |
V2—O9—V4 | 115.80 (8) | H27A—C27—H27B | 109.5 |
V1—O10—V3i | 115.08 (8) | H27A—C27—H27C | 109.5 |
V4i—O11—V1 | 116.22 (8) | H27B—C27—H27C | 109.5 |
V1—O12—V2 | 107.42 (7) | H1W—O1W—H2W | 107 (2) |
V5—O12—V1 | 106.42 (7) |
Symmetry code: (i) −x+3/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···O1ii | 0.80 (2) | 2.00 (2) | 2.789 (2) | 172 (3) |
N1—H1···O9 | 0.82 (2) | 1.81 (2) | 2.625 (2) | 178 (3) |
C15—H15···O2iii | 0.93 | 2.54 | 3.396 (3) | 152 |
N2—H2···O1W | 0.83 (2) | 1.89 (2) | 2.689 (3) | 163 (3) |
C21—H21A···O4iv | 0.96 | 2.62 | 3.270 (3) | 125 |
C21—H21B···O5v | 0.96 | 2.50 | 3.454 (3) | 171 |
C24—H24···O12vi | 0.93 | 2.49 | 3.297 (3) | 145 |
C25—H25···O7vi | 0.93 | 2.53 | 3.237 (3) | 134 |
C25—H25···O10vi | 0.93 | 2.51 | 3.264 (3) | 138 |
C27—H27B···O1ii | 0.96 | 2.46 | 3.347 (4) | 153 |
O1W—H1W···O11ii | 0.83 (2) | 2.02 (2) | 2.833 (2) | 168 (3) |
O1W—H2W···O8 | 0.83 (2) | 1.90 (2) | 2.718 (2) | 171 (3) |
Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, y−1, −z+1/2; (v) x, y−1, z; (vi) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13···O1i | 0.796 (17) | 1.999 (17) | 2.789 (2) | 172 (3) |
N1—H1···O9 | 0.817 (17) | 1.808 (18) | 2.625 (2) | 178 (3) |
C15—H15···O2ii | 0.93 | 2.54 | 3.396 (3) | 152.3 |
N2—H2···O1W | 0.830 (17) | 1.89 (2) | 2.689 (3) | 163 (3) |
C21—H21A···O4iii | 0.96 | 2.62 | 3.270 (3) | 124.9 |
C21—H21B···O5iv | 0.96 | 2.50 | 3.454 (3) | 171.4 |
C24—H24···O12v | 0.93 | 2.49 | 3.297 (3) | 144.8 |
C25—H25···O7v | 0.93 | 2.53 | 3.237 (3) | 133.5 |
C25—H25···O10v | 0.93 | 2.51 | 3.264 (3) | 138.0 |
C27—H27B···O1i | 0.96 | 2.46 | 3.347 (4) | 153.4 |
O1W—H1W···O11i | 0.832 (17) | 2.015 (19) | 2.833 (2) | 168 (3) |
O1W—H2W···O8 | 0.825 (17) | 1.900 (19) | 2.718 (2) | 171 (3) |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, y−1, −z+1/2; (iv) x, y−1, z; (v) x−1/2, y−1/2, z. |
Acknowledgements
This work was supported by the Slovak Grant Agency VEGA (project No. 1/0336/13).
References
Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England. Google Scholar
Arrieta, J. M., Arnaiz, A., Lorente, L., Santiago, C. & Germain, G. (1988). Acta Cryst. C44, 1004–1008. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Asgedom, G., Sreedhara, A., Kivikoski, J. & Rao, C. P. (1996). Polyhedron, 16, 643–651. CSD CrossRef Web of Science Google Scholar
Ban-Oganowska, H., Godlewska, P., Macalik, L., Hanuza, J., Oganowski, W. & van der Maas, J. H. (2002). J. Mol. Struct. 605, 291–307. CAS Google Scholar
Bartošová, L., Padělková, Z., Rakovský, E. & Schwendt, P. (2012). Polyhedron, 31, 565–569. Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Crans, D. C. (1998). Peroxo, Hydroxylamido and acac Derived Vanadium Complexes: Chemistry, Biochemistry and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series 711, edited by Al. S. Tracey & D. C. Crans. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A. & Bensitel, M. (2011). Arab. J. Chem. 4, 313–319. Web of Science CrossRef CAS Google Scholar
Hagrman, P. J., Finn, R. C. & Zubieta, J. (2001). Solid State Sci. 3, 745–774. Web of Science CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press. Google Scholar
Klištincová, L., Rakovský, E. & Schwendt, P. (2008). Inorg. Chem. Commun. 11, 1140–1142. Google Scholar
Klištincová, L., Rakovský, E., Schwendt, P., Plesch, G. & Gyepes, R. (2010). Inorg. Chem. Commun. 13, 1275–1277. Google Scholar
Medhi, K. C. & Mukherjee, D. K. (1965). Spectrochim. Acta, 21, 895–902. CrossRef CAS Web of Science Google Scholar
Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419–m422. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rakovský, E. & Gyepes, R. (2006). Acta Cryst. E62, m2108–m2110. Web of Science CSD CrossRef IUCr Journals Google Scholar
Santiago, C., Arnaiz, A., Lorente, L., Arrieta, J. M. & Germain, G. (1988). Acta Cryst. C44, 239–242. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The reaction system V2O5 – 2,6-dimethylpyridine – H2O – HClO4 was studied as a part of our study of the formation of transition metal complexes with substituted pyridinium ligands in the presence of polyoxovanadate anions. We wish to obtain a better understanding of the role of the counter-ion in the formation of HnV10O28(6–n)– species and the influence of the cation and the decavanadate anion protonation mode on the IR spectra and information about possible side products of the syntheses. This article is a continuation of our previous work on salts of polyoxovanadates with organic cations (Rakovský & Gyepes, 2006; Pacigová et al., 2007). The oxovanadates(V) and peroxovanadium compounds are also of great interest in biochemistry and medicine because of their diverse biological activities (Crans, 1998). Heterobimetallic compounds containing, beside polyoxovanadate core, entities composed of other transition metals bound to organic ligands have been extensively studied due to their potential applications in the field of catalysis and material science (Hagrman et al., 2001; Klištincová et al., 2008; Klištincová et al., 2010; Bartošová et al., 2012). Several decavanadates with pyridine and its derivatives are already known. Asgedom et al. (1996) reported the structure of (C5H6N)6V10O28.2H2O. Pyridinium cations are bonded directly to the decavanadate anions via hydrogen bonds as it is in (C7H10N)3H3V10O28.H2O (Arrieta et al., 1988) and (C6H8N)3H3V10O28.H2O (Santiago et al., 1988).
The system mentioned above was studied in the pH range 2.5–7 and the crystalline product was only obtained at pH 2.5, which is typical pH value for the dihydrogendecavanadate formation. The asymmetric unit of the title compound, (I), consists of one-half decavanadate anion of Ci symmetry, lying on a special position on the centre of symmetry, which is protonated on the µ-OV3 bridging atom O13, two 2,6-dimethylpyridinium cations and one water molecule of crystallization (Fig. 1). The terminal vanadium-oxygen bond lengths are in the range 1.5916 (17)–1.6153 (16) Å, with an average value of 1.601 (10) Å. The bond lengths of the bridging O atoms with coordination numbers two are in the range 1.6768 (14)–2.0752 (15) Å with the mean value of 1.84 (12) Å . There are 2 types of µ-OV3 bridging oxygen groups present: unprotonated (O12) with bond lengths in the range 1.8757 (15)–1.9931 (14) Å with the mean value of 1.95 (6) Å, and protonated (O13) with bond lengths in the range 2.0678 (15)–2.1170 (14) Å with the mean value of 2.10 (3) Å. Bond lengths of the six-coordinated µ-OV6 oxygen atom (O14) are in the range 2.0592 (13)–2.3588 (14) Å with an average value of 2.24 (13) Å.
The supramolecular structure is formed by D–H···O hydrogen bonds [D = N, O or C, with H···O ≤ 2.72 Å and D–H···O > 120° (Jeffrey, 1997)] between cations and anions, cations and water molecules, between two anions and between water molecules and anions (Table 1). Adjacent [H2V10O28]4– anions are mutually linked together by the system of strong hydrogen bonds: directly by two anion-anion hydrogen bonds O13–H1V···O1 and via two bridging water molecules, where water acts as a H-bond donor for both anions, forming O1W–H1W···O11 and O1W–H2W···O8 hydrogen bonds. N–H group of the first cation is donating H-bond to the anion, thus forming N1–H10···O9 hydrogen bond, N–H group of the second cation acts as a H-bond donor for the water molecule, forming N2–H20···O1W hydrogen bond. This system of hydrogen bonds is forming supramolecular chain running in the b axis direction (Fig. 2).
The C–H···O weak hydrogen bonds present in the structure are involved in the interaction between neighbouring supramolecular chains, with exception of C21–H21B···O5 and C27–H27B···O1 bonds, which are reinforcing mutual bonding between one of the anions, cation and the water molecule hydrogen-bonded to the cation.