organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zwitterionic 1-{(E)-[(2-methyl­phen­yl)iminium­yl]meth­yl}naphthalen-2-olate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences Exactes, Département de Chimie, Université Constantine 1, Algeria
*Correspondence e-mail: ammarkhelifabaghdouche@yahoo.fr

(Received 8 December 2013; accepted 17 April 2014; online 17 May 2014)

The title Schiff base, C18H15NO, crystallizes in its zwitterionic form and an N—H⋯O hydrogen bond closes an S(6) ring. The dihedral angle between the aromatic ring systems is 36.91 (10)°. Weak aromatic ππ stacking occurs in the crystal [minimum centroid–centroid separation = 3.7771 (15) Å].

Related literature

For background to Schiff bases derived from 2-hy­droxy-1-aromatic aldehydes and amines, see: Deneva et al. (2013[Deneva, V., Manolova, Y., Lubenov, L., Kuteva, V., Kamounah, F. S., Nikolova, R., Shivachev, B. & Antonov, L. (2013). J. Mol. Struct. 1036, 267-273.]); Martınez et al. (2011[Martınez, F. R., Avalos, M., Babiano, R., Cintas, P., Jime'nez, J. L., Light, M. E. & Palacios, J. C. (2011). Org. Biomol. Chem. 9, 8268-8275.]). For related structures, see: Albayrak et al. (2010[Albayrak, Ç., Koşar, B., Demir, S., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211-218.]); Petek et al. (2007[Petek, H., Albayrak, C., Ocak-Iskeleli, N., Ağar, E. & Şenel, I. (2007). J. Chem. Crystallogr. 37, 285-290.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO

  • Mr = 261.31

  • Orthorhombic, P 21 21 21

  • a = 7.3627 (5) Å

  • b = 12.4007 (10) Å

  • c = 14.4365 (12) Å

  • V = 1318.09 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.57 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.821, Tmax = 0.995

  • 14320 measured reflections

  • 1721 independent reflections

  • 1439 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.111

  • S = 1.13

  • 1721 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O1 0.88 1.85 2.546 (3) 134

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Schiff bases formed by condensation reactions of 2-hydroxy-1-aromatic aldehydes with various amines have been extensively studied (Deneva et al., 2013; Martınez et al., 2011). An interesting feature of these compounds is their faculty to display two possible tautomeric forms, the phenol-imine (OH) and the keto-amine (NH) forms. Depending on the tautomers, two types of intramolecular hydrogen bonds are observed in Schiff bases, O–H···N in phenol-imine and N–H···O in keto-amine forms. Another intermediate form of the Schiff base compounds is also known as zwitterion with an ionic intramolecular hydrogen bond N+–H···O-.

The molecular structure of (I) is illustrated in Fig. 1. The dihedral angle between the benzene ring and naphthalene ring is 33.7 (3)°. An intramolecular N—H···O hydrogen bond is found (Table 1).

The C12–N13 bond 1.312 (3) Å and the C2–O1 bond 1.301 (3) Å of the title compound are the most important indicators of the tautomeric type. While the C2–O1 bond is a double bond for a keto-amine tautomer, this bond has a single bond character in the corresponding phenol-imine tautomer; in addition, the C12–N13 bond is also a double bond in the phenol-imine tautomer but is a single bond length in the keto–amine tautomer (Albayrak et al., 2010; Petek et al., 2007). However, in the title Schiff base, these bond distances have intermediate values between single and double bonds which are 1.362 Å and 1.222 Å respectively for C–O and 1.339 and 1.279 Å respectively for C–N bond distance (Allen et al., 1987). The shortened C2–O1 bond and the slightly longer C12–N13 bond provide structural evidence for the zwitterionic tautomeric form of the title compound.

Related literature top

For background to Schiff bases derived from 2-hydroxy-1-aromatic aldehydes and amines, see: Deneva et al. (2013); Martınez et al. (2011). For related structures, see: Albayrak et al. (2010); Petek et al. (2007). For reference bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of a solution containing (3 mmol) of 2-hydroxy-1-naphthaldehyde and (3 mmol) of o-toluidine in 8 ml absolute ethanol. The mixture was stirred and heated under reflux for ca 5 h. The resulting solution was reduced under vacuum and cooled. A yellow solid was obtained; filtered off, washed with cold water and dried, the product was recrystallized from acetonitrile solvent as yellow rods.

Refinement top

All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. All H atoms, attached to carbon atoms have been placed in calculated positions positions and refined as riding, with C—H = 0.95 (aromatic), 0.98 Å(methyl) and N—H = 0.88, respectively, and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq (Cmethyl). The absolute structure was indeterminate in the present experiment.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
1-{(E)-[(2-Methylphenyl)iminiumyl]methyl}naphthalen-2-olate top
Crystal data top
C18H15NOF(000) = 552
Mr = 261.31Dx = 1.317 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3889 reflections
a = 7.3627 (5) Åθ = 2.8–26.6°
b = 12.4007 (10) ŵ = 0.08 mm1
c = 14.4365 (12) ÅT = 150 K
V = 1318.09 (18) Å3Rod, yellow
Z = 40.57 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 99
Tmin = 0.821, Tmax = 0.995k = 1616
14320 measured reflectionsl = 1818
1721 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.2897P]
where P = (Fo2 + 2Fc2)/3
1721 reflections(Δ/σ)max = 0.004
182 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H15NOV = 1318.09 (18) Å3
Mr = 261.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3627 (5) ŵ = 0.08 mm1
b = 12.4007 (10) ÅT = 150 K
c = 14.4365 (12) Å0.57 × 0.08 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1721 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1439 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.995Rint = 0.046
14320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.13Δρmax = 0.26 e Å3
1721 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9691 (3)0.33259 (13)0.36389 (11)0.0330 (4)
C20.9303 (3)0.23027 (19)0.36261 (17)0.0263 (5)
C30.9485 (3)0.1707 (2)0.27755 (17)0.0285 (5)
H30.98810.20690.22320.034*
C40.9106 (3)0.06523 (19)0.27381 (16)0.0278 (5)
H40.9250.02820.21670.033*
C50.8489 (3)0.00629 (18)0.35345 (16)0.0241 (5)
C60.8096 (4)0.10430 (19)0.34660 (18)0.0312 (6)
H60.81930.13910.2880.037*
C70.7575 (4)0.16291 (19)0.42255 (17)0.0338 (6)
H70.7340.2380.41730.041*
C80.7395 (4)0.11076 (18)0.50764 (17)0.0301 (6)
H80.70340.1510.56050.036*
C90.7730 (3)0.00172 (18)0.51646 (16)0.0251 (5)
H90.75770.03220.57490.03*
C100.8301 (3)0.06008 (17)0.43913 (15)0.0215 (5)
C110.8716 (3)0.17464 (18)0.44429 (16)0.0220 (5)
C120.8560 (3)0.23193 (18)0.52831 (16)0.0234 (5)
H120.81990.19370.58230.028*
N130.8891 (3)0.33555 (15)0.53540 (13)0.0240 (4)
H130.91420.37150.48440.029*
C140.8867 (3)0.39324 (17)0.62052 (15)0.0231 (5)
C150.9417 (3)0.34405 (19)0.70234 (17)0.0274 (5)
H150.980.27090.70180.033*
C160.9410 (4)0.4015 (2)0.78481 (18)0.0317 (6)
H160.97890.3680.84070.038*
C170.8846 (4)0.5081 (2)0.78508 (18)0.0331 (6)
H170.88220.54750.84150.04*
C180.8319 (4)0.55710 (19)0.70344 (18)0.0313 (6)
H180.79460.63040.70460.038*
C190.8321 (3)0.50159 (18)0.61949 (16)0.0257 (5)
C200.7722 (4)0.55641 (19)0.53136 (18)0.0325 (6)
H20A0.86490.54610.48340.049*
H20B0.75580.63370.54290.049*
H20C0.65710.52510.51050.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0429 (11)0.0269 (8)0.0292 (9)0.0071 (8)0.0015 (8)0.0044 (7)
C20.0240 (13)0.0271 (11)0.0278 (12)0.0004 (10)0.0033 (10)0.0019 (10)
C30.0268 (13)0.0369 (13)0.0218 (11)0.0019 (11)0.0004 (10)0.0019 (10)
C40.0273 (13)0.0356 (13)0.0206 (11)0.0033 (10)0.0018 (10)0.0038 (9)
C50.0204 (12)0.0269 (11)0.0251 (11)0.0040 (10)0.0032 (9)0.0015 (9)
C60.0359 (15)0.0294 (12)0.0284 (12)0.0050 (11)0.0046 (11)0.0042 (10)
C70.0405 (16)0.0231 (11)0.0378 (14)0.0012 (12)0.0053 (12)0.0001 (10)
C80.0313 (14)0.0263 (11)0.0328 (13)0.0032 (10)0.0020 (11)0.0078 (10)
C90.0258 (12)0.0248 (10)0.0247 (11)0.0008 (10)0.0004 (10)0.0003 (9)
C100.0174 (12)0.0234 (10)0.0236 (11)0.0021 (9)0.0014 (9)0.0001 (9)
C110.0193 (11)0.0240 (10)0.0227 (11)0.0010 (9)0.0007 (9)0.0003 (9)
C120.0188 (11)0.0252 (10)0.0261 (12)0.0003 (9)0.0026 (9)0.0018 (9)
N130.0240 (10)0.0243 (9)0.0239 (10)0.0020 (8)0.0003 (8)0.0011 (8)
C140.0191 (11)0.0262 (11)0.0239 (12)0.0041 (9)0.0030 (10)0.0018 (9)
C150.0263 (12)0.0264 (11)0.0295 (12)0.0035 (10)0.0016 (10)0.0024 (10)
C160.0307 (14)0.0379 (13)0.0266 (12)0.0086 (11)0.0042 (11)0.0023 (10)
C170.0348 (14)0.0380 (13)0.0266 (12)0.0087 (11)0.0018 (11)0.0082 (11)
C180.0311 (14)0.0263 (11)0.0367 (13)0.0020 (10)0.0026 (12)0.0032 (10)
C190.0246 (12)0.0247 (11)0.0278 (12)0.0036 (10)0.0015 (10)0.0015 (9)
C200.0359 (15)0.0278 (11)0.0338 (13)0.0017 (11)0.0001 (12)0.0042 (10)
Geometric parameters (Å, º) top
O1—C21.301 (3)C12—N131.312 (3)
C2—C111.433 (3)C12—H120.95
C2—C31.439 (3)N13—C141.422 (3)
C3—C41.339 (3)N13—H130.88
C3—H30.95C14—C151.390 (3)
C4—C51.436 (3)C14—C191.403 (3)
C4—H40.95C15—C161.387 (3)
C5—C61.405 (3)C15—H150.95
C5—C101.412 (3)C16—C171.385 (3)
C6—C71.370 (3)C16—H160.95
C6—H60.95C17—C181.382 (4)
C7—C81.395 (3)C17—H170.95
C7—H70.95C18—C191.394 (3)
C8—C91.380 (3)C18—H180.95
C8—H80.95C19—C201.508 (3)
C9—C101.418 (3)C20—H20A0.98
C9—H90.95C20—H20B0.98
C10—C111.455 (3)C20—H20C0.98
C11—C121.410 (3)
O1—C2—C11121.6 (2)N13—C12—C11123.1 (2)
O1—C2—C3119.5 (2)N13—C12—H12118.5
C11—C2—C3118.9 (2)C11—C12—H12118.5
C4—C3—C2121.1 (2)C12—N13—C14123.91 (19)
C4—C3—H3119.5C12—N13—H13118
C2—C3—H3119.5C14—N13—H13118
C3—C4—C5122.1 (2)C15—C14—C19120.9 (2)
C3—C4—H4119C15—C14—N13120.7 (2)
C5—C4—H4119C19—C14—N13118.4 (2)
C6—C5—C10120.2 (2)C16—C15—C14120.2 (2)
C6—C5—C4120.4 (2)C16—C15—H15119.9
C10—C5—C4119.5 (2)C14—C15—H15119.9
C7—C6—C5121.3 (2)C17—C16—C15119.6 (2)
C7—C6—H6119.4C17—C16—H16120.2
C5—C6—H6119.4C15—C16—H16120.2
C6—C7—C8119.0 (2)C18—C17—C16120.1 (2)
C6—C7—H7120.5C18—C17—H17120
C8—C7—H7120.5C16—C17—H17120
C9—C8—C7121.2 (2)C17—C18—C19121.6 (2)
C9—C8—H8119.4C17—C18—H18119.2
C7—C8—H8119.4C19—C18—H18119.2
C8—C9—C10120.7 (2)C18—C19—C14117.7 (2)
C8—C9—H9119.7C18—C19—C20120.7 (2)
C10—C9—H9119.7C14—C19—C20121.6 (2)
C5—C10—C9117.6 (2)C19—C20—H20A109.5
C5—C10—C11119.1 (2)C19—C20—H20B109.5
C9—C10—C11123.3 (2)H20A—C20—H20B109.5
C12—C11—C2119.3 (2)C19—C20—H20C109.5
C12—C11—C10121.2 (2)H20A—C20—H20C109.5
C2—C11—C10119.4 (2)H20B—C20—H20C109.5
O1—C2—C3—C4179.7 (2)C5—C10—C11—C12179.6 (2)
C11—C2—C3—C40.4 (4)C9—C10—C11—C120.4 (3)
C2—C3—C4—C50.5 (4)C5—C10—C11—C20.0 (3)
C3—C4—C5—C6179.7 (2)C9—C10—C11—C2179.3 (2)
C3—C4—C5—C101.1 (4)C2—C11—C12—N131.6 (3)
C10—C5—C6—C71.8 (4)C10—C11—C12—N13178.8 (2)
C4—C5—C6—C7177.4 (2)C11—C12—N13—C14175.4 (2)
C5—C6—C7—C81.5 (4)C12—N13—C14—C1533.7 (3)
C6—C7—C8—C90.0 (4)C12—N13—C14—C19148.0 (2)
C7—C8—C9—C101.1 (4)C19—C14—C15—C160.9 (4)
C6—C5—C10—C90.7 (3)N13—C14—C15—C16179.2 (2)
C4—C5—C10—C9178.5 (2)C14—C15—C16—C170.1 (4)
C6—C5—C10—C11180.0 (2)C15—C16—C17—C180.9 (4)
C4—C5—C10—C110.8 (3)C16—C17—C18—C190.6 (4)
C8—C9—C10—C50.7 (3)C17—C18—C19—C140.4 (4)
C8—C9—C10—C11178.6 (2)C17—C18—C19—C20179.4 (3)
O1—C2—C11—C120.2 (4)C15—C14—C19—C181.2 (3)
C3—C2—C11—C12179.0 (2)N13—C14—C19—C18179.5 (2)
O1—C2—C11—C10179.9 (2)C15—C14—C19—C20179.9 (2)
C3—C2—C11—C100.6 (3)N13—C14—C19—C201.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O10.881.852.546 (3)134
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O10.881.852.546 (3)134
 

Acknowledgements

The authors would like to thank Professor Thierry Roisnel for the X-ray diffraction measurements.

References

First citationAlbayrak, Ç., Koşar, B., Demir, S., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeneva, V., Manolova, Y., Lubenov, L., Kuteva, V., Kamounah, F. S., Nikolova, R., Shivachev, B. & Antonov, L. (2013). J. Mol. Struct. 1036, 267–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartınez, F. R., Avalos, M., Babiano, R., Cintas, P., Jime'nez, J. L., Light, M. E. & Palacios, J. C. (2011). Org. Biomol. Chem. 9, 8268–8275.  Web of Science PubMed Google Scholar
First citationPetek, H., Albayrak, C., Ocak-Iskeleli, N., Ağar, E. & Şenel, I. (2007). J. Chem. Crystallogr. 37, 285–290.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds