organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-Bromo-2-(tri­fluoro­meth­­oxy)phen­yl]-3-methyl-1H-1,2,4-triazole

aDepartment of Chemistry, Sahyadri Science College (Autonomous), Shimoga 577 203, Karnataka, India, bDepartment of Studies and Research in Chemistry, School of Basic Sciences, Rani Channamma University, Belagavi 591 156, Karnataka, India, cDepartment of Studies in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, and dPG Department of Chemistry, Jain University, Bangalore 560 019, Karnataka, India
*Correspondence e-mail: basavarajpadmashali@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 April 2014; accepted 5 May 2014; online 10 May 2014)

In the title compound, C10H7BrF3N3O, the dihedral angle between the benzene and triazole rings is 23.17 (12)° and the C atom of the –CF3 group deviates from its attached ring plane by 1.147 (3) Å. In the crystal, mol­ecules are linked by C—H⋯N inter­actions, generating C(7) chains running along [010].

Related literature

For the anti­bacterial activity of 1,2,4-triazoles, see: Gabriela et al. (2009[Gabriela, L. A., Stefania, F. B., Almajan, E., Draghici, C. & Saramet, G. (2009). Eur. J. Med. Chem. 44, 3083-3089.]); Palekar et al. (2009[Palekar, V. S., Damle, A. J. & Shukla, S. R. (2009). Eur. J. Med. Chem. 44, 5112-5116.]). For their anti­viral activity, see: Upmanyu et al. (2006[Upmanyu, N., Garg, G., Dolly, A., Gupta, B. N. & Mishra, P. (2006). Pharmainfo, 4, 3.]). For anti­microbial agents, see: Badr & Barwa (2011[Badr, S. M. I. & Barwa, R. M. (2011). Bioorg. Med. Chem. 19, 4506-4512.]), and for anti­mycotic activity such as voriconazole, see: Haber (2001[Haber, J. (2001). Cas. Lek. Cesk. 140, 596-604.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7BrF3N3O

  • Mr = 322.10

  • Monoclinic, P 21 /n

  • a = 5.2389 (3) Å

  • b = 16.1548 (8) Å

  • c = 14.0315 (7) Å

  • β = 92.673 (3)°

  • V = 1186.24 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.50 mm−1

  • T = 293 K

  • 0.33 × 0.21 × 0.14 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.419, Tmax = 0.613

  • 37092 measured reflections

  • 3499 independent reflections

  • 2373 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.135

  • S = 0.99

  • 3499 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.93 2.59 3.511 (3) 169
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

1,2,4-triazole containing ring system have been incorporated into a wide variety of therapeutically inter­esting drug candidates including anti-inflammatory, CNS stimulants sedatives, anti­bacterial (Gabriela et al., 2009, Palekar et al., 2009), anti­viral (Upmanyu et al., 2006), anti­microbial agents (Badr et al., 2011) and anti­mycotic activity such as fluconazole, intra­conazole and voriconazole (Haber et al., 2001). The search for new agent is one of the most challenging tasks to a medicinal chemist. The synthesis of high nitro­gen containing heterocyclic systems has been attracting increasing inter­est over the past decade because of their utility in various applications. In recent years, the chemistry of triazoles and their fused heterocyclic derivatives has received considerable attention owing to their synthetic and effective biological importance. The presence of three nitro­gen hetero-atoms in five membered ring system defines an inter­esting class of compounds. Keeping this in mind, we synthesized the title compound to study its crystal structure.

Experimental top

Synthesis and crystallization top

To a stirred solution of 4-bromo-1-iodo-2-(tri­fluoro­meth­oxy)­benzene (1 g, 2.73mmol) in N,N-Di­methyl Formamide (10 mL), was added potassium carbonate ( 0.41g , 3.0 mmol), followed by 3-methyl-1H-1,2,4-triazole (0.23g 2.73 mmol). The mixture was stirred at room temperature for 30 minutes. Completion of the reaction was monitored by TLC. The reaction mixture was poured to 100g of crushed ice and the separated solid was filtered off and dried under vaccum.

Single crystals of the title compound were obtained from hexane-ethyl acetate (1:1 v/v) solvent system.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Results and discussion top

In the title compound, C10H7BrF3N3O, the dihedral angle between the two planes defined by the benzene ring and the triazole ring is 23.17 (12)°. In the crystal structure, the molecules are linked to one another through C2—H2···N3 inter­actions generating zig zag C(7) chains running along [010].

Related literature top

For the antibacterial activity of 1,2,4-triazoles, see: Gabriela et al. (2009); Palekar et al. (2009). For their antiviral activity, see: Upmanyu et al. (2006). For antimicrobial agents, see: Badr & Barwa (2011), and for antimycotic activity such as voriconazole, see: Haber (2001).

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. The isotropic displacement parameters for all H atoms were set to 1.2–1.5 times Ueq (Carbon).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Linking of molecules in the crystal structure through C—H···N interactions into C(7) chains.
1-[4-Bromo-2-(trifluoromethoxy)phenyl]-3-methyl-1H-1,2,4-triazole top
Crystal data top
C10H7BrF3N3OPrism
Mr = 322.10Dx = 1.804 Mg m3
Monoclinic, P21/nMelting point: 453 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.2389 (3) ÅCell parameters from 25 reflections
b = 16.1548 (8) Åθ = 1.9–30.1°
c = 14.0315 (7) ŵ = 3.50 mm1
β = 92.673 (3)°T = 293 K
V = 1186.24 (11) Å3Prism, colourless
Z = 40.33 × 0.21 × 0.14 mm
F(000) = 632
Data collection top
Bruker APEXII CCD
diffractometer
3499 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.419, Tmax = 0.613k = 2222
37092 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0871P)2 + 0.1014P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3499 reflectionsΔρmax = 0.41 e Å3
165 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (16)
Crystal data top
C10H7BrF3N3OV = 1186.24 (11) Å3
Mr = 322.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2389 (3) ŵ = 3.50 mm1
b = 16.1548 (8) ÅT = 293 K
c = 14.0315 (7) Å0.33 × 0.21 × 0.14 mm
β = 92.673 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3499 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2373 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 0.613Rint = 0.051
37092 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.99Δρmax = 0.41 e Å3
3499 reflectionsΔρmin = 0.68 e Å3
165 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1456 (5)0.66662 (15)0.14761 (15)0.0523 (5)
C20.0451 (4)0.63544 (14)0.20903 (15)0.0524 (5)
H20.13920.67030.25000.063*
C30.0922 (4)0.55182 (13)0.20808 (14)0.0453 (4)
C40.0376 (4)0.49886 (12)0.14480 (14)0.0427 (4)
C50.2245 (4)0.53249 (14)0.08273 (16)0.0524 (5)
H50.31220.49820.03920.063*
C60.2820 (5)0.61578 (15)0.08462 (17)0.0559 (5)
H60.41070.63740.04410.067*
N10.0066 (3)0.41252 (11)0.14056 (12)0.0446 (4)
C70.2131 (4)0.36565 (15)0.16360 (18)0.0541 (5)
H70.36620.38590.19050.065*
C80.0743 (4)0.28860 (13)0.10549 (17)0.0508 (5)
C90.2132 (6)0.21249 (15)0.0729 (3)0.0708 (8)
H9A0.39240.22440.06460.106*
H9B0.18740.16970.11980.106*
H9C0.14940.19440.01340.106*
C100.2286 (6)0.50572 (18)0.36008 (19)0.0688 (7)
N20.1818 (3)0.36208 (11)0.10201 (14)0.0492 (4)
N30.1693 (4)0.28792 (12)0.14296 (18)0.0582 (5)
O10.2873 (3)0.51928 (11)0.26983 (13)0.0592 (4)
F10.0294 (6)0.45837 (17)0.36571 (16)0.1342 (11)
F20.4236 (6)0.46877 (15)0.40292 (16)0.1310 (10)
F30.1867 (5)0.57307 (12)0.40782 (12)0.0998 (6)
Br10.22139 (7)0.780974 (16)0.14867 (2)0.07657 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0645 (12)0.0470 (11)0.0453 (11)0.0065 (9)0.0010 (9)0.0023 (8)
C20.0605 (12)0.0480 (11)0.0478 (11)0.0036 (9)0.0062 (9)0.0017 (8)
C30.0458 (10)0.0467 (10)0.0425 (10)0.0017 (8)0.0066 (8)0.0012 (8)
C40.0415 (9)0.0416 (10)0.0447 (10)0.0022 (7)0.0012 (7)0.0007 (8)
C50.0536 (11)0.0507 (11)0.0514 (12)0.0059 (9)0.0128 (9)0.0030 (9)
C60.0634 (13)0.0511 (12)0.0520 (12)0.0118 (10)0.0099 (10)0.0037 (9)
N10.0415 (8)0.0438 (9)0.0479 (9)0.0036 (6)0.0040 (6)0.0028 (7)
C70.0411 (10)0.0539 (12)0.0664 (14)0.0093 (9)0.0077 (9)0.0052 (10)
C80.0507 (11)0.0471 (12)0.0547 (12)0.0030 (8)0.0024 (9)0.0046 (9)
C90.0684 (16)0.0487 (14)0.095 (2)0.0032 (10)0.0046 (14)0.0127 (12)
C100.0948 (19)0.0510 (13)0.0577 (15)0.0047 (12)0.0265 (13)0.0011 (10)
N20.0410 (8)0.0462 (9)0.0598 (10)0.0013 (7)0.0046 (7)0.0023 (8)
N30.0511 (10)0.0518 (11)0.0713 (14)0.0114 (8)0.0016 (9)0.0039 (8)
O10.0567 (8)0.0600 (9)0.0589 (9)0.0055 (7)0.0205 (7)0.0029 (7)
F10.181 (2)0.139 (2)0.0812 (14)0.080 (2)0.0096 (15)0.0274 (13)
F20.177 (2)0.1229 (19)0.0866 (14)0.0713 (17)0.0627 (15)0.0062 (13)
F30.1628 (19)0.0694 (11)0.0658 (10)0.0264 (12)0.0112 (11)0.0113 (8)
Br10.1162 (3)0.04531 (19)0.0671 (2)0.01567 (12)0.00788 (17)0.00117 (10)
Geometric parameters (Å, º) top
C1—C61.381 (3)N1—N21.372 (2)
C1—C21.383 (3)C7—N31.307 (3)
C1—Br11.890 (2)C7—H70.9300
C2—C31.373 (3)C8—N21.314 (3)
C2—H20.9300C8—N31.358 (3)
C3—C41.388 (3)C8—C91.490 (3)
C3—O11.410 (2)C9—H9A0.9600
C4—C51.390 (3)C9—H9B0.9600
C4—N11.416 (3)C9—H9C0.9600
C5—C61.379 (3)C10—F11.299 (4)
C5—H50.9300C10—F21.306 (3)
C6—H60.9300C10—F31.302 (3)
N1—C71.347 (3)C10—O11.335 (3)
C6—C1—C2121.3 (2)N3—C7—N1110.9 (2)
C6—C1—Br1118.93 (17)N3—C7—H7124.6
C2—C1—Br1119.80 (17)N1—C7—H7124.6
C3—C2—C1118.5 (2)N2—C8—N3114.54 (19)
C3—C2—H2120.8N2—C8—C9122.1 (2)
C1—C2—H2120.8N3—C8—C9123.3 (2)
C2—C3—C4121.97 (18)C8—C9—H9A109.5
C2—C3—O1119.08 (18)C8—C9—H9B109.5
C4—C3—O1118.86 (18)H9A—C9—H9B109.5
C5—C4—C3118.01 (19)C8—C9—H9C109.5
C5—C4—N1118.07 (18)H9A—C9—H9C109.5
C3—C4—N1123.91 (18)H9B—C9—H9C109.5
C4—C5—C6121.1 (2)F1—C10—F2108.4 (3)
C4—C5—H5119.4F1—C10—F3107.8 (3)
C6—C5—H5119.4F2—C10—F3107.0 (2)
C1—C6—C5119.0 (2)F1—C10—O1112.0 (2)
C1—C6—H6120.5F2—C10—O1107.6 (3)
C5—C6—H6120.5F3—C10—O1113.8 (2)
C7—N1—N2108.42 (17)C8—N2—N1102.87 (16)
C7—N1—C4132.43 (18)C7—N3—C8103.32 (18)
N2—N1—C4119.06 (16)C10—O1—C3116.85 (18)
C6—C1—C2—C31.7 (3)C3—C4—N1—N2157.37 (19)
Br1—C1—C2—C3178.63 (17)N2—N1—C7—N30.5 (3)
C1—C2—C3—C42.8 (3)C4—N1—C7—N3176.8 (2)
C1—C2—C3—O1179.54 (19)N3—C8—N2—N10.3 (3)
C2—C3—C4—C51.6 (3)C9—C8—N2—N1178.3 (2)
O1—C3—C4—C5178.29 (19)C7—N1—N2—C80.4 (2)
C2—C3—C4—N1179.3 (2)C4—N1—N2—C8177.29 (19)
O1—C3—C4—N12.6 (3)N1—C7—N3—C80.3 (3)
C3—C4—C5—C60.8 (3)N2—C8—N3—C70.0 (3)
N1—C4—C5—C6178.4 (2)C9—C8—N3—C7178.5 (3)
C2—C1—C6—C50.6 (4)F1—C10—O1—C355.1 (3)
Br1—C1—C6—C5179.06 (18)F2—C10—O1—C3174.1 (2)
C4—C5—C6—C11.9 (4)F3—C10—O1—C367.6 (3)
C5—C4—N1—C7154.2 (2)C2—C3—O1—C1081.4 (3)
C3—C4—N1—C726.6 (3)C4—C3—O1—C10101.8 (2)
C5—C4—N1—N221.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.593.511 (3)169
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3i0.932.593.511 (3)169
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationBadr, S. M. I. & Barwa, R. M. (2011). Bioorg. Med. Chem. 19, 4506–4512.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGabriela, L. A., Stefania, F. B., Almajan, E., Draghici, C. & Saramet, G. (2009). Eur. J. Med. Chem. 44, 3083–3089.  Web of Science PubMed Google Scholar
First citationHaber, J. (2001). Cas. Lek. Cesk. 140, 596–604.  PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalekar, V. S., Damle, A. J. & Shukla, S. R. (2009). Eur. J. Med. Chem. 44, 5112–5116.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpmanyu, N., Garg, G., Dolly, A., Gupta, B. N. & Mishra, P. (2006). Pharmainfo, 4, 3.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds