metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m209-m210

{Dimeth­yl [(phenyl­sulfon­yl)amido­]phosphato-κ2O,O′}bis­­(tri­phenylphosphane-κP)copper(I)

aTaras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
*Correspondence e-mail: ovmoroz@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 April 2014; accepted 5 May 2014; online 17 May 2014)

In the title complex, [Cu(C8H11NO5PS)(C18H15P)2], the CuI ion is coordinated by two tri­phenyl­phosphane mol­ecules and two O atoms of the chelating dimeth­yl(phenyl­sulfon­yl)amido­phosphate anion, generating a squashed CuO2P2 tetrahedron. In the six-membered chelate ring, the Cu, P and O atoms are almost coplanar (r.m.s. deviation = 0.024 Å), with the N and S atoms displaced in the same direction, by 0.708 (5) and 0.429 (2) Å, respectively.

Related literature

For the synthesis of sulfonyl­amide derivatives, see: Kirsanov (1965[Kirsanov, A. V. (1965). In Fosfazosoedineniya (Phosphazo Compounds). Kiev: Naukova Dumka.]); Moroz et al. (2012[Moroz, O. V., Trush, V. A., Znovjyak, K. O., Konovalova, I. S., Omelchenko, I. V., Sliva, T. Yu., Shishkin, O. V. & Amirkhanov, V. M. (2012). J. Mol. Struct. 1017, 109-114.]). For details of the pharmacological and biological properties of sulfonyl­amide derivatives, see: Kishino & Saito (1979[Kishino, S. & Saito, S. (1979). US Patent No. 4 161524.]); Xu & Angell (2000[Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16-23.]). For CuI-containing complexes with tri­phenyl­phosphane, see: Barron et al. (1987[Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. 5, 1099-1106.]); Yang et al. (2001[Yang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585-590.]); Zabirov et al. (2003[Zabirov, N. G., Verat, A. Yu., Sokolov, F. D., Babashkina, M. G., Krivolapov, D. B. & Brusko, V. V. (2003). Mendeleev Commun. 13, 163-164.]). For details of potential applications of CuI-containing complexes, see: Nagashima et al. (1993[Nagashima, H., Ozaki, N., Ishii, M., Seki, K., Washiyama, M. & Itoh, K. (1993). J. Org. Chem. 58, 464-470.]); Nondek et al. (1987[Nondek, L., Hun, L. G., Wichterlova, B. & Krupicka, S. (1987). J. Mol. Catal. 42, 51-55.]); Tarkhanova et al. (2001[Tarkhanova, I. G., Smirnov, V. V. & Rostovshchikova, T. N. (2001). Kinet. Katal. 42, 216-222.]); Zazybin et al. (2006[Zazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Mol. Catal. A Chem. 253, 234-238.]); Verat et al. (2006[Verat, A. Y., Sokolov, F. D., Zabirov, N. G., Babashkina, M. G., Krivolapov, D. B., Brusko, V. V. & Litvinov, I. A. (2006). Inorg. Chim. Acta, 359, 475-483.]). For coord­ination compounds of 3d metals with sulfonylamidophosphate ligands, see: Moroz et al. (2009[Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331-1335.]); Trush et al. (2011[Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2011). Acta Cryst. E67, m369-m370.]). For the coordination mode of structural analogs of β-diketones, see: Gawryszewska et al. (2011[Gawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. A Chem. 217, 1-9.]); Yizhak et al. (2013[Yizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Yu., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). Polyhedron, 62, 293-299.]); Kariaka et al. (2013[Kariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143.]); Amirkhanov et al. (2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, pp. 199-248. New York: NOVA Publishers.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H11NO5PS)(C18H15P)2]

  • Mr = 852.29

  • Monoclinic, P 21 /c

  • a = 12.8657 (12) Å

  • b = 26.281 (3) Å

  • c = 13.971 (3) Å

  • β = 121.875 (10)°

  • V = 4011.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.74, Tmax = 0.90

  • 27134 measured reflections

  • 9293 independent reflections

  • 4739 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.120

  • S = 1.04

  • 9293 reflections

  • 438 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 2.065 (3)
Cu1—O1 2.263 (3)
Cu1—P2 2.2345 (15)
Cu1—P3 2.2381 (14)

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Introduction top

Coordination chemistry of structural analogs of β-diketones has been widely studied during last 30 years. Among them, sulfonyl phospho­ramides (SAPh) bearing a S(O)2NHP(O) structural fragment and different substituents at sulfur and phospho­rus atoms were first synthesized by Kirsanov (Kirsanov, 1965). These compounds are extensively used in medicine as bactericidal agents (Xu & Angell, 2000) and in agriculture as pesticides (Kishino & Saito, 1979). Recently, coordination compounds of lanthanides and 3d metals with SAPhs behaving as bidentate O,O-donor chelating ligands have been reported (Moroz, et al., 2009; Moroz, et al., 2012; Trush, et al., 2011). As our contribution to the study of coordination compounds of 3d metals based on SAPh, we synthesized and structurally characterized a copper(I)-containing complex [Cu(L)(PPh3)2] (I) {where, HL is di­methyl­(phenyl­sulfonyl)­amido­phosphate (C6H5S(O)2NHP(O)(OCH3)2) and PPh3 is tri­phenyl­phosphane}. Complexes of CuI have useful luminescent properties, they can be used in microelectronics and as catalysts of homolytic C–Hal (Hal = Cl, Br) bond cleavage in polyhaloalkanes (Nagashima, et al., 1993; Nondek, et al., 1987; Tarkhanova, et al., 2001; Zazybin, et al., 2006). Tri­phenyl­phosphane molecule was used to prevent cluster formation during complexation reaction.

The molecular structure of I is shown in Figure1. Van der Waals contacts exist between molecules of I in the crystal structure. The coordination environment of the Cu ion is a distorted tetra­hedron (2+2). The values for the bond angles around the central atom are in the range from 88.9 (1)° to 129.94 (6)°. The coordination polyhedron consists of two phospho­rus atoms from PPh3 molecules and two oxygen atoms from the phospho­ryl and the sulfonyl groups of L-, which is coordinated in bidentate chelate mode forming with central ion a six-membered chelate ring. The later coordination mode is typical for the deprotonated structural analogs of β-diketones, SAPh and CAPh (carbacyl­amido­phosphates) (Gawryszewska, et al., 2011; Yizhak, et al., 2013; Kariaka, et al., 2013; Amirkhanov, et al., 2014). It has already been observed for [Cu(PPh3)nL1] based on N-acyl­amido­phosphinate ligands (Verat, et al., 2006) and for (PPh3)3CuI (Barron, et al., 1987) that the number of the coordinated PPh3 molecules to the central ion has the main influence on the Cu–P bond lengths. As in the present compound the CuI atom coordinates two PPh3, the Cu–P distances of 2.234 (1), 2.238 (1)Å are in good agreement with the values observed for the complexes containing two PPh3 ligands (Yang, et al., 2001; Zabirov, et al., 2003; Verat, et al., 2006).

The Cu–O(S) and Cu–O(P) bond lengths (2.263 (3) and 2.066 (3)Å, respectively) (Table1) are similar to the reported values for the complexes of 3d-metals with HL (Moroz, et al., 2009; Trush, et al., 2011). The amide nitro­gen atom of the ligand is deprotonated that leads to decreasing the S–N, N–P and increasing the P–O, S–O bond length values (Table1) compared with those for HL (Moroz, et al., 2009). Such changes may be related to the occurrence of the π-coupling in O—S—N—P—O fragment and are usual for SAPh ligands (Moroz, et al., 2009; Trush, et al., 2011). The value of the O(1)—Cu(1)—O(3) angle of 88.9 (1)° is typical for the coordination compounds with O- donor SAPh and CAPh ligands. The phospho­rus and sulfur atoms of I have distorted tetra­hedral configurations (Table1). Oxygen atoms of the phospho­ryl O(3) and the sulfonyl O(2) groups of the O—S—N—P—O structural fragment adopt an anti­clinal conformation (the dihedral angle between O(2)—S(1)—P(1) and O(3)—P(1)—S(1) planes is 106.3°). The six-membered Cu—O—P—N—S—O metallocycle has a distorted boat conformation with the deviations of N(1) and Cu(1) from the mean plane of 0.40Å and 0.26Å, respectively.

Experimental top

The synthesis of HL was carried out according to previously published procedure (Moroz, et al., 2009).

Compound I was prepared according to the following scheme:

4HL + 4Cu + 8PPh3 + O2 4[Cu(L)(PPh3)2] + 2H2O

Briefly, a heterogeneous mixture of copper powder (0.065g, 1mmol), tri­phenyl­phosphane (0.524g, 2mmol) and HL (0.287g, 1mmol) in 40mL of acetone was stirred for 4 days upon heating with a reflux condenser. Decreasing of the powder was observed simultaneously with gradual appearance of white precipitate. The later was filtered off, washed thoroughly with chilled iso­propanol, dried and dissolved in minimal amount of DMF to remove the residual copper powder. The resulting solution was left at ambient temperature for crystallization in air. The colorless crystals were collected by filtration after 2 days, washed with chilled iso­propanol and dried on filter. Yield: 0.64g (75%). The compound is soluble in methanol, aceto­nitrile, chloro­form, DMSO and DMF. Anal. calc. for C44H41NO5P3SCu: C61.81, H4.71, N1.61, S3.54%; found: C62.00, H4.85, N1.64, S3.76%; IR (KBr, cm-1): 1225, 1250 (s, SO2) and 1180 (s, PO); 1H NMR (400 MHz, CDCl3): 3.28 (d, 6H, CH3, 3JP–H = 12Hz), 7.09 (m, Hβ, 2H, C6H5(L-)), 7.27 (m, Hβ, 12H, C6H5(PPh3)), 7.33 (s, Hγ, 1H, C6H5(L-)), 7.39 (m, Hα+γ, 18H, C6H5(PPh3)) 7.62 (m, Hα, 2H, C6H5(L-)) ppm. 31P NMR (162.1 MHz, CDCl3): 0.8 (g, 3JP–H = 12Hz, L-), -4.3 (s, PPh3) ppm.

Refinement top

The H atoms were attached to carbon atoms geometrically. The H atoms were refined with riding constraints (C—H in the range 0.93–0.98Å, and Uiso(H) lie in the range 1.2-1.5 times Ueq of the parent atom). Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis of sulfonylamide derivatives, see: Kirsanov (1965); Moroz et al. (2012). For details of the pharmacological and biological properties of sulfonylamide derivatives, see: Kishino & Saito (1979); Xu & Angell (2000). For CuI-containing complexes with triphenylphosphane, see: Barron et al. (1987); Yang et al. (2001); Zabirov et al. (2003). For details of potential applications of CuI-containing complexes, see: Nagashima et al. (1993); Nondek et al. (1987); Tarkhanova et al. (2001); Zazybin et al. (2006); Verat et al. (2006). For coordination compounds of 3d metals with SAPh ligands, see: Moroz et al. (2009); Trush et al. (2011). For the coordination mode of structural analogs of β-diketones, see: Gawryszewska et al. (2011); Yizhak et al. (2013); Kariaka et al. (2013); Amirkhanov et al. (2014).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Structural representation of I with atom numbering scheme and 50% probability thermal ellipsoid. The H atoms are omitted for clarity.
{Dimethyl [(phenylsulfonyl)amido]phosphato-κ2O,O'}bis(triphenylphosphane-κP)copper(I) top
Crystal data top
[Cu(C8H11NO5PS)(C18H15P)2]F(000) = 1768
Mr = 852.29Dx = 1.411 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8657 (12) ÅCell parameters from 27134 reflections
b = 26.281 (3) Åθ = 2.9–28.5°
c = 13.971 (3) ŵ = 0.76 mm1
β = 121.875 (10)°T = 100 K
V = 4011.6 (11) Å3Needle, colourless
Z = 40.40 × 0.30 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
9293 independent reflections
Radiation source: sealed X-ray tube4739 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.137
ϕ scans and ω scans with κ offsetθmax = 28.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1616
Tmin = 0.74, Tmax = 0.90k = 3334
27134 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
9293 reflectionsΔρmax = 0.48 e Å3
438 parametersΔρmin = 0.56 e Å3
Crystal data top
[Cu(C8H11NO5PS)(C18H15P)2]V = 4011.6 (11) Å3
Mr = 852.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8657 (12) ŵ = 0.76 mm1
b = 26.281 (3) ÅT = 100 K
c = 13.971 (3) Å0.40 × 0.30 × 0.10 mm
β = 121.875 (10)°
Data collection top
Nonius KappaCCD
diffractometer
9293 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4739 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.90Rint = 0.137
27134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
9293 reflectionsΔρmin = 0.56 e Å3
438 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7620 (4)0.16461 (19)1.0173 (4)0.0134 (12)
C20.7765 (5)0.15558 (19)0.9275 (4)0.0195 (13)
H680.70940.14790.85660.023*
C30.8930 (5)0.1582 (2)0.9452 (5)0.0257 (14)
H1020.90340.15310.88480.031*
C40.9933 (5)0.1682 (2)1.0499 (5)0.0260 (14)
H1061.07070.16981.06020.031*
C50.9789 (5)0.1758 (2)1.1401 (5)0.0323 (16)
H191.04680.18221.21150.039*
C60.8614 (5)0.1740 (2)1.1237 (5)0.0277 (15)
H570.85090.17901.18400.033*
C70.3285 (5)0.2987 (2)0.8180 (5)0.0375 (17)
H74A0.26520.27490.77080.056*
H74B0.30020.33270.79280.056*
H74C0.34930.29480.89450.056*
C80.6702 (5)0.2749 (2)0.8269 (5)0.0303 (15)
H7A0.64230.30790.83300.045*
H7B0.70840.27740.78380.045*
H7C0.72830.26220.90080.045*
C90.2961 (5)0.06859 (19)0.5000 (4)0.0203 (5)
C100.1706 (5)0.06746 (19)0.4622 (4)0.0203 (5)
H250.14690.07010.51440.024*
C110.0819 (5)0.06245 (18)0.3490 (4)0.0203 (5)
H210.00030.06120.32600.024*
C120.1160 (5)0.05931 (19)0.2692 (4)0.0203 (5)
H160.05670.05600.19300.024*
C130.2384 (5)0.06113 (19)0.3045 (4)0.0203 (5)
H150.26130.05990.25150.024*
C140.3274 (5)0.06484 (19)0.4179 (4)0.0203 (5)
H350.40950.06480.44030.024*
C150.4477 (4)0.00831 (18)0.6988 (4)0.0132 (12)
C160.4271 (4)0.03269 (19)0.6270 (4)0.0147 (12)
H200.39270.02680.55040.018*
C170.4570 (5)0.0819 (2)0.6678 (5)0.0189 (13)
H60.44370.10880.61920.023*
C180.5070 (5)0.0910 (2)0.7817 (5)0.0215 (14)
H560.52640.12410.80930.026*
C190.5283 (5)0.0510 (2)0.8547 (5)0.0242 (14)
H80.56280.05730.93110.029*
C200.4987 (5)0.0024 (2)0.8145 (5)0.0236 (14)
H310.51230.02410.86400.028*
C210.5434 (5)0.09651 (19)0.6489 (4)0.0141 (12)
C220.6453 (5)0.0664 (2)0.6779 (4)0.0184 (13)
H600.64930.03330.70320.022*
C230.7411 (5)0.0854 (2)0.6694 (4)0.0229 (14)
H290.80850.06500.68880.027*
C240.7358 (5)0.1347 (2)0.6320 (4)0.0243 (14)
H540.79880.14720.62450.029*
C250.6370 (5)0.1655 (2)0.6057 (4)0.0191 (13)
H700.63460.19880.58220.023*
C260.5425 (5)0.14690 (19)0.6142 (4)0.0191 (13)
H670.47670.16800.59660.023*
C270.1898 (4)0.0599 (2)0.8496 (4)0.0177 (13)
C280.1400 (5)0.0630 (2)0.9169 (4)0.0232 (14)
H1050.10780.09380.92240.028*
C290.1375 (5)0.0207 (2)0.9761 (5)0.0324 (16)
H10.10210.02291.01930.039*
C300.1891 (5)0.0249 (2)0.9696 (5)0.0332 (16)
H450.19010.05311.01040.040*
C310.2386 (5)0.0284 (2)0.9029 (5)0.0285 (15)
H720.27100.05910.89750.034*
C320.2400 (5)0.01393 (19)0.8440 (4)0.0209 (14)
H380.27480.01150.80030.025*
C330.0584 (4)0.11361 (19)0.6394 (4)0.0143 (12)
C340.0297 (5)0.1559 (2)0.5668 (4)0.0191 (13)
H610.07920.18470.59230.023*
C350.0716 (5)0.1547 (2)0.4583 (5)0.0251 (15)
H1070.09120.18320.41240.030*
C360.1443 (5)0.1115 (2)0.4168 (5)0.0275 (15)
H470.21060.11040.34290.033*
C370.1168 (5)0.0703 (2)0.4865 (5)0.0275 (15)
H660.16590.04150.45940.033*
C380.0173 (5)0.0709 (2)0.5966 (4)0.0194 (13)
H620.00080.04250.64230.023*
C390.1906 (5)0.1685 (2)0.8525 (5)0.0235 (6)
C400.0861 (5)0.19774 (19)0.8175 (5)0.0235 (6)
H130.01320.18990.75100.028*
C410.0923 (5)0.2386 (2)0.8830 (4)0.0235 (6)
H280.02300.25850.85890.028*
C420.1968 (5)0.2504 (2)0.9812 (5)0.0235 (6)
H650.19840.27771.02420.028*
C430.3019 (5)0.2214 (2)1.0173 (5)0.0235 (6)
H140.37420.22911.08450.028*
C440.2972 (5)0.1810 (2)0.9521 (4)0.0235 (6)
H750.36730.16170.97570.028*
Cu10.36062 (6)0.12135 (2)0.75302 (5)0.01638 (18)
N10.5554 (4)0.21783 (15)0.9479 (3)0.0169 (10)
O10.5448 (3)0.12269 (13)0.9166 (3)0.0198 (9)
O20.6296 (3)0.15752 (13)1.1063 (3)0.0246 (9)
O30.3780 (3)0.19846 (12)0.7364 (3)0.0173 (9)
O40.4335 (3)0.28906 (12)0.8119 (3)0.0268 (10)
O50.5671 (3)0.24042 (13)0.7711 (3)0.0227 (9)
P10.48025 (13)0.23250 (5)0.81736 (13)0.0190 (4)
P20.41040 (12)0.07398 (5)0.65026 (12)0.0153 (3)
P30.20168 (12)0.11467 (5)0.77600 (12)0.0162 (3)
S10.61185 (12)0.16414 (5)0.99649 (12)0.0183 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.008 (3)0.014 (3)0.015 (3)0.000 (2)0.004 (3)0.003 (2)
C20.022 (4)0.019 (3)0.018 (3)0.001 (3)0.011 (3)0.001 (3)
C30.034 (4)0.026 (3)0.026 (4)0.003 (3)0.022 (3)0.001 (3)
C40.015 (3)0.032 (4)0.027 (4)0.002 (3)0.008 (3)0.001 (3)
C50.021 (4)0.045 (4)0.023 (4)0.007 (3)0.006 (3)0.013 (3)
C60.022 (4)0.042 (4)0.021 (4)0.000 (3)0.013 (3)0.002 (3)
C70.029 (4)0.025 (4)0.067 (5)0.002 (3)0.031 (4)0.005 (3)
C80.025 (4)0.027 (4)0.041 (4)0.007 (3)0.020 (3)0.008 (3)
C90.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C100.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C110.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C120.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C130.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C140.0184 (14)0.0199 (12)0.0188 (14)0.0008 (11)0.0072 (12)0.0007 (11)
C150.011 (3)0.010 (3)0.022 (3)0.000 (2)0.011 (3)0.004 (2)
C160.012 (3)0.020 (3)0.014 (3)0.002 (2)0.008 (3)0.002 (3)
C170.018 (3)0.018 (3)0.027 (4)0.005 (3)0.016 (3)0.006 (3)
C180.020 (3)0.019 (3)0.028 (4)0.004 (3)0.015 (3)0.002 (3)
C190.019 (3)0.029 (4)0.013 (3)0.002 (3)0.000 (3)0.002 (3)
C200.025 (4)0.021 (3)0.017 (3)0.002 (3)0.005 (3)0.003 (3)
C210.012 (3)0.018 (3)0.010 (3)0.004 (2)0.005 (3)0.008 (2)
C220.019 (3)0.015 (3)0.026 (4)0.001 (3)0.016 (3)0.003 (3)
C230.016 (3)0.024 (3)0.028 (4)0.001 (3)0.011 (3)0.006 (3)
C240.027 (4)0.030 (4)0.022 (3)0.013 (3)0.017 (3)0.007 (3)
C250.023 (4)0.021 (3)0.018 (3)0.010 (3)0.015 (3)0.005 (3)
C260.020 (3)0.015 (3)0.021 (3)0.004 (3)0.010 (3)0.003 (3)
C270.011 (3)0.021 (3)0.017 (3)0.004 (3)0.005 (3)0.000 (3)
C280.020 (3)0.024 (3)0.025 (4)0.002 (3)0.011 (3)0.006 (3)
C290.028 (4)0.037 (4)0.031 (4)0.014 (3)0.014 (3)0.001 (3)
C300.033 (4)0.024 (4)0.025 (4)0.007 (3)0.004 (3)0.015 (3)
C310.023 (4)0.021 (4)0.033 (4)0.003 (3)0.009 (3)0.000 (3)
C320.013 (3)0.017 (3)0.017 (3)0.001 (3)0.002 (3)0.004 (3)
C330.013 (3)0.015 (3)0.018 (3)0.000 (2)0.011 (3)0.002 (3)
C340.010 (3)0.027 (3)0.025 (4)0.003 (3)0.012 (3)0.002 (3)
C350.019 (4)0.032 (4)0.029 (4)0.006 (3)0.015 (3)0.007 (3)
C360.011 (3)0.045 (4)0.023 (4)0.002 (3)0.007 (3)0.003 (3)
C370.023 (4)0.026 (4)0.035 (4)0.002 (3)0.016 (3)0.006 (3)
C380.013 (3)0.024 (3)0.019 (3)0.000 (3)0.008 (3)0.000 (3)
C390.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
C400.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
C410.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
C420.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
C430.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
C440.0276 (15)0.0243 (14)0.0243 (15)0.0026 (12)0.0176 (13)0.0019 (11)
Cu10.0157 (4)0.0148 (4)0.0206 (4)0.0015 (3)0.0109 (3)0.0025 (3)
N10.025 (3)0.009 (2)0.017 (3)0.002 (2)0.012 (2)0.004 (2)
O10.016 (2)0.016 (2)0.021 (2)0.0027 (18)0.0045 (18)0.0015 (18)
O20.027 (2)0.030 (2)0.019 (2)0.0022 (19)0.014 (2)0.0023 (19)
O30.014 (2)0.012 (2)0.024 (2)0.0024 (17)0.0090 (19)0.0023 (17)
O40.024 (2)0.012 (2)0.041 (3)0.0049 (18)0.016 (2)0.0027 (19)
O50.021 (2)0.022 (2)0.028 (2)0.0081 (18)0.015 (2)0.0018 (19)
P10.0175 (9)0.0135 (8)0.0252 (9)0.0002 (7)0.0108 (8)0.0006 (7)
P20.0143 (8)0.0137 (8)0.0186 (9)0.0004 (6)0.0093 (7)0.0005 (7)
P30.0144 (8)0.0150 (8)0.0211 (8)0.0007 (7)0.0106 (7)0.0002 (7)
S10.0198 (9)0.0175 (8)0.0189 (8)0.0015 (7)0.0110 (7)0.0002 (7)
Geometric parameters (Å, º) top
C1—C61.378 (7)C24—H540.9300
C1—C21.384 (6)C25—C261.373 (6)
C1—S11.795 (5)C25—H700.9300
C2—C31.386 (7)C26—H670.9300
C2—H680.9300C27—C281.392 (6)
C3—C41.371 (7)C27—C321.392 (7)
C3—H1020.9300C27—P31.821 (5)
C4—C51.381 (7)C28—C291.396 (7)
C4—H1060.9300C28—H1050.9300
C5—C61.405 (7)C29—C301.396 (7)
C5—H190.9300C29—H10.9300
C6—H570.9300C30—C311.382 (7)
C7—O41.419 (5)C30—H450.9300
C7—H74A0.9600C31—C321.390 (7)
C7—H74B0.9600C31—H720.9300
C7—H74C0.9600C32—H380.9300
C8—O51.448 (5)C33—C381.397 (6)
C8—H7A0.9600C33—C341.416 (6)
C8—H7B0.9600C33—P31.824 (5)
C8—H7C0.9600C34—C351.382 (7)
C9—C141.406 (6)C34—H610.9300
C9—C101.409 (6)C35—C361.390 (7)
C9—P21.824 (5)C35—H1070.9300
C10—C111.383 (6)C36—C371.370 (7)
C10—H250.9300C36—H470.9300
C11—C121.400 (6)C37—C381.387 (7)
C11—H210.9300C37—H660.9300
C12—C131.380 (6)C38—H620.9300
C12—H160.9300C39—C441.382 (7)
C13—C141.384 (6)C39—C401.394 (7)
C13—H150.9300C39—P31.823 (5)
C14—H350.9300C40—C411.386 (7)
C15—C161.399 (6)C40—H130.9300
C15—C201.415 (7)C41—C421.355 (7)
C15—P21.824 (5)C41—H280.9300
C16—C171.385 (6)C42—C431.394 (6)
C16—H200.9300C42—H650.9300
C17—C181.386 (7)C43—C441.380 (7)
C17—H60.9300C43—H140.9300
C18—C191.388 (7)C44—H750.9300
C18—H560.9300Cu1—O32.065 (3)
C19—C201.366 (7)Cu1—O12.263 (3)
C19—H80.9300Cu1—P22.2345 (15)
C20—H310.9300Cu1—P32.2381 (14)
C21—C221.395 (6)N1—S11.568 (4)
C21—C261.409 (6)N1—P11.596 (4)
C21—P21.820 (5)O1—S11.470 (3)
C22—C231.391 (6)O2—S11.438 (3)
C22—H600.9300O3—P11.496 (3)
C23—C241.386 (7)O4—P11.590 (3)
C23—H290.9300O5—P11.572 (3)
C24—C251.382 (7)
C6—C1—C2121.0 (5)C27—C28—C29121.1 (5)
C6—C1—S1118.9 (4)C27—C28—H105119.5
C2—C1—S1120.1 (4)C29—C28—H105119.5
C1—C2—C3118.8 (5)C28—C29—C30119.0 (5)
C1—C2—H68120.6C28—C29—H1120.5
C3—C2—H68120.6C30—C29—H1120.5
C4—C3—C2121.2 (5)C31—C30—C29120.3 (5)
C4—C3—H102119.4C31—C30—H45119.8
C2—C3—H102119.4C29—C30—H45119.8
C3—C4—C5119.9 (5)C30—C31—C32120.1 (5)
C3—C4—H106120.1C30—C31—H72120.0
C5—C4—H106120.1C32—C31—H72120.0
C4—C5—C6119.8 (6)C31—C32—C27120.7 (5)
C4—C5—H19120.1C31—C32—H38119.7
C6—C5—H19120.1C27—C32—H38119.7
C1—C6—C5119.2 (5)C38—C33—C34117.7 (5)
C1—C6—H57120.4C38—C33—P3123.5 (4)
C5—C6—H57120.4C34—C33—P3118.3 (4)
O4—C7—H74A109.5C35—C34—C33120.4 (5)
O4—C7—H74B109.5C35—C34—H61119.8
H74A—C7—H74B109.5C33—C34—H61119.8
O4—C7—H74C109.5C34—C35—C36120.8 (5)
H74A—C7—H74C109.5C34—C35—H107119.6
H74B—C7—H74C109.5C36—C35—H107119.6
O5—C8—H7A109.5C37—C36—C35119.0 (5)
O5—C8—H7B109.5C37—C36—H47120.5
H7A—C8—H7B109.5C35—C36—H47120.5
O5—C8—H7C109.5C36—C37—C38121.3 (5)
H7A—C8—H7C109.5C36—C37—H66119.3
H7B—C8—H7C109.5C38—C37—H66119.3
C14—C9—C10117.3 (5)C37—C38—C33120.6 (5)
C14—C9—P2122.7 (4)C37—C38—H62119.7
C10—C9—P2120.1 (4)C33—C38—H62119.7
C11—C10—C9121.3 (5)C44—C39—C40118.9 (5)
C11—C10—H25119.3C44—C39—P3115.5 (4)
C9—C10—H25119.3C40—C39—P3125.6 (4)
C10—C11—C12120.0 (5)C41—C40—C39119.2 (5)
C10—C11—H21120.0C41—C40—H13120.4
C12—C11—H21120.0C39—C40—H13120.4
C13—C12—C11119.5 (5)C42—C41—C40121.7 (5)
C13—C12—H16120.3C42—C41—H28119.1
C11—C12—H16120.3C40—C41—H28119.1
C12—C13—C14120.6 (5)C41—C42—C43119.7 (5)
C12—C13—H15119.7C41—C42—H65120.1
C14—C13—H15119.7C43—C42—H65120.1
C13—C14—C9121.3 (5)C44—C43—C42119.0 (5)
C13—C14—H35119.4C44—C43—H14120.5
C9—C14—H35119.4C42—C43—H14120.5
C16—C15—C20117.6 (5)C43—C44—C39121.5 (5)
C16—C15—P2123.3 (4)C43—C44—H75119.3
C20—C15—P2119.0 (4)C39—C44—H75119.3
C17—C16—C15121.2 (5)O3—Cu1—P2112.93 (9)
C17—C16—H20119.4O3—Cu1—P3104.75 (9)
C15—C16—H20119.4P2—Cu1—P3129.95 (6)
C16—C17—C18119.6 (5)O3—Cu1—O188.88 (13)
C16—C17—H6120.2P2—Cu1—O198.93 (9)
C18—C17—H6120.2P3—Cu1—O1113.89 (9)
C17—C18—C19120.3 (5)S1—N1—P1125.1 (3)
C17—C18—H56119.9S1—O1—Cu1131.3 (2)
C19—C18—H56119.9P1—O3—Cu1127.3 (2)
C20—C19—C18120.2 (5)C7—O4—P1120.7 (3)
C20—C19—H8119.9C8—O5—P1120.7 (3)
C18—C19—H8119.9O3—P1—O5107.5 (2)
C19—C20—C15121.1 (5)O3—P1—O4111.3 (2)
C19—C20—H31119.5O5—P1—O4100.9 (2)
C15—C20—H31119.5O3—P1—N1118.7 (2)
C22—C21—C26117.9 (5)O5—P1—N1111.6 (2)
C22—C21—P2123.9 (4)O4—P1—N1105.4 (2)
C26—C21—P2118.2 (4)C21—P2—C15104.3 (2)
C23—C22—C21120.7 (5)C21—P2—C9101.8 (2)
C23—C22—H60119.6C15—P2—C9104.4 (2)
C21—C22—H60119.6C21—P2—Cu1114.54 (16)
C24—C23—C22119.9 (5)C15—P2—Cu1113.38 (17)
C24—C23—H29120.1C9—P2—Cu1116.87 (17)
C22—C23—H29120.1C27—P3—C39103.1 (2)
C25—C24—C23120.2 (5)C27—P3—C33103.8 (2)
C25—C24—H54119.9C39—P3—C33106.1 (2)
C23—C24—H54119.9C27—P3—Cu1119.89 (17)
C26—C25—C24120.1 (5)C39—P3—Cu1112.55 (18)
C26—C25—H70120.0C33—P3—Cu1110.26 (16)
C24—C25—H70120.0O2—S1—O1114.8 (2)
C25—C26—C21121.2 (5)O2—S1—N1110.3 (2)
C25—C26—H67119.4O1—S1—N1112.7 (2)
C21—C26—H67119.4O2—S1—C1106.1 (2)
C28—C27—C32118.8 (5)O1—S1—C1106.2 (2)
C28—C27—P3122.7 (4)N1—S1—C1106.1 (2)
C32—C27—P3118.3 (4)
C6—C1—C2—C32.7 (8)Cu1—O3—P1—N127.4 (3)
S1—C1—C2—C3177.4 (4)C8—O5—P1—O3175.3 (3)
C1—C2—C3—C41.8 (8)C8—O5—P1—O458.6 (4)
C2—C3—C4—C50.0 (8)C8—O5—P1—N153.0 (4)
C3—C4—C5—C60.8 (9)C7—O4—P1—O349.6 (4)
C2—C1—C6—C51.9 (8)C7—O4—P1—O5163.5 (4)
S1—C1—C6—C5178.2 (4)C7—O4—P1—N180.3 (4)
C4—C5—C6—C10.1 (8)S1—N1—P1—O349.7 (4)
C14—C9—C10—C110.5 (7)S1—N1—P1—O576.2 (3)
P2—C9—C10—C11178.8 (4)S1—N1—P1—O4175.1 (3)
C9—C10—C11—C121.2 (8)C22—C21—P2—C151.3 (5)
C10—C11—C12—C130.1 (8)C26—C21—P2—C15179.7 (4)
C11—C12—C13—C141.5 (8)C22—C21—P2—C9107.1 (4)
C12—C13—C14—C92.2 (8)C26—C21—P2—C971.4 (4)
C10—C9—C14—C131.2 (8)C22—C21—P2—Cu1125.8 (4)
P2—C9—C14—C13179.6 (4)C26—C21—P2—Cu155.7 (4)
C20—C15—C16—C170.8 (7)C16—C15—P2—C2185.1 (4)
P2—C15—C16—C17180.0 (4)C20—C15—P2—C2195.7 (4)
C15—C16—C17—C180.7 (7)C16—C15—P2—C921.4 (5)
C16—C17—C18—C190.7 (7)C20—C15—P2—C9157.8 (4)
C17—C18—C19—C200.8 (8)C16—C15—P2—Cu1149.7 (4)
C18—C19—C20—C150.9 (8)C20—C15—P2—Cu129.5 (4)
C16—C15—C20—C190.9 (8)C14—C9—P2—C2120.4 (5)
P2—C15—C20—C19179.9 (4)C10—C9—P2—C21160.3 (4)
C26—C21—C22—C231.8 (7)C14—C9—P2—C1587.9 (5)
P2—C21—C22—C23176.6 (4)C10—C9—P2—C1591.3 (4)
C21—C22—C23—C240.1 (8)C14—C9—P2—Cu1146.0 (4)
C22—C23—C24—C251.5 (8)C10—C9—P2—Cu134.8 (5)
C23—C24—C25—C261.4 (8)C28—C27—P3—C3920.0 (5)
C24—C25—C26—C210.3 (8)C32—C27—P3—C39155.7 (4)
C22—C21—C26—C251.9 (7)C28—C27—P3—C3390.5 (5)
P2—C21—C26—C25176.6 (4)C32—C27—P3—C3393.8 (4)
C32—C27—C28—C291.4 (8)C28—C27—P3—Cu1146.0 (4)
P3—C27—C28—C29177.0 (4)C32—C27—P3—Cu129.7 (5)
C27—C28—C29—C301.7 (8)C44—C39—P3—C2780.6 (4)
C28—C29—C30—C311.8 (8)C40—C39—P3—C27100.9 (5)
C29—C30—C31—C321.6 (8)C44—C39—P3—C33170.6 (4)
C30—C31—C32—C271.2 (8)C40—C39—P3—C337.9 (5)
C28—C27—C32—C311.1 (8)C44—C39—P3—Cu150.0 (4)
P3—C27—C32—C31176.9 (4)C40—C39—P3—Cu1128.5 (4)
C38—C33—C34—C351.3 (7)C38—C33—P3—C2717.6 (5)
P3—C33—C34—C35173.5 (4)C34—C33—P3—C27170.6 (4)
C33—C34—C35—C362.5 (7)C38—C33—P3—C39125.8 (4)
C34—C35—C36—C372.2 (8)C34—C33—P3—C3962.4 (4)
C35—C36—C37—C380.8 (8)C38—C33—P3—Cu1112.0 (4)
C36—C37—C38—C330.3 (8)C34—C33—P3—Cu159.7 (4)
C34—C33—C38—C370.1 (7)Cu1—O1—S1—O2115.2 (3)
P3—C33—C38—C37171.7 (4)Cu1—O1—S1—N112.2 (3)
C44—C39—C40—C410.4 (7)Cu1—O1—S1—C1127.9 (3)
P3—C39—C40—C41178.1 (4)P1—N1—S1—O2157.4 (3)
C39—C40—C41—C421.1 (8)P1—N1—S1—O127.6 (4)
C40—C41—C42—C431.0 (8)P1—N1—S1—C188.2 (3)
C41—C42—C43—C440.2 (8)C6—C1—S1—O218.7 (5)
C42—C43—C44—C390.5 (8)C2—C1—S1—O2161.2 (4)
C40—C39—C44—C430.4 (8)C6—C1—S1—O1141.2 (4)
P3—C39—C44—C43179.0 (4)C2—C1—S1—O138.7 (5)
Cu1—O3—P1—O5100.4 (2)C6—C1—S1—N198.7 (4)
Cu1—O3—P1—O4150.0 (2)C2—C1—S1—N181.5 (5)
Selected bond lengths (Å) top
Cu1—O32.065 (3)Cu1—P22.2345 (15)
Cu1—O12.263 (3)Cu1—P32.2381 (14)
 

Acknowledgements

The authors are grateful to Dr Y. S. Moroz for kind assistance in solving and refining the structure.

References

First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, pp. 199–248. New York: NOVA Publishers.  Google Scholar
First citationBarron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. 5, 1099–1106.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. A Chem. 217, 1–9.  Web of Science CSD CrossRef CAS Google Scholar
First citationKariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143.  CSD CrossRef IUCr Journals Google Scholar
First citationKirsanov, A. V. (1965). In Fosfazosoedineniya (Phosphazo Compounds). Kiev: Naukova Dumka.  Google Scholar
First citationKishino, S. & Saito, S. (1979). US Patent No. 4 161524.  Google Scholar
First citationMoroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, O. V., Trush, V. A., Znovjyak, K. O., Konovalova, I. S., Omelchenko, I. V., Sliva, T. Yu., Shishkin, O. V. & Amirkhanov, V. M. (2012). J. Mol. Struct. 1017, 109–114.  Web of Science CSD CrossRef CAS Google Scholar
First citationNagashima, H., Ozaki, N., Ishii, M., Seki, K., Washiyama, M. & Itoh, K. (1993). J. Org. Chem. 58, 464–470.  CrossRef CAS Web of Science Google Scholar
First citationNondek, L., Hun, L. G., Wichterlova, B. & Krupicka, S. (1987). J. Mol. Catal. 42, 51–55.  CrossRef CAS Web of Science Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarkhanova, I. G., Smirnov, V. V. & Rostovshchikova, T. N. (2001). Kinet. Katal. 42, 216–222.  Web of Science CrossRef Google Scholar
First citationTrush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2011). Acta Cryst. E67, m369–m370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVerat, A. Y., Sokolov, F. D., Zabirov, N. G., Babashkina, M. G., Krivolapov, D. B., Brusko, V. V. & Litvinov, I. A. (2006). Inorg. Chim. Acta, 359, 475–483.  Web of Science CrossRef CAS Google Scholar
First citationXu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.  Web of Science CrossRef CAS Google Scholar
First citationYang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585–590.  Web of Science CSD CrossRef CAS Google Scholar
First citationYizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Yu., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). Polyhedron, 62, 293–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationZabirov, N. G., Verat, A. Yu., Sokolov, F. D., Babashkina, M. G., Krivolapov, D. B. & Brusko, V. V. (2003). Mendeleev Commun. 13, 163–164.  Web of Science CSD CrossRef Google Scholar
First citationZazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Mol. Catal. A Chem. 253, 234–238.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m209-m210
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds