metal-organic compounds
{Dimethyl [(phenylsulfonyl)amido]phosphato-κ2O,O′}bis(triphenylphosphane-κP)copper(I)
aTaras Shevchenko National University of Kyiv, Department of Chemistry, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
*Correspondence e-mail: ovmoroz@yahoo.com
In the title complex, [Cu(C8H11NO5PS)(C18H15P)2], the CuI ion is coordinated by two triphenylphosphane molecules and two O atoms of the chelating dimethyl(phenylsulfonyl)amidophosphate anion, generating a squashed CuO2P2 tetrahedron. In the six-membered chelate ring, the Cu, P and O atoms are almost coplanar (r.m.s. deviation = 0.024 Å), with the N and S atoms displaced in the same direction, by 0.708 (5) and 0.429 (2) Å, respectively.
CCDC reference: 1000731
Related literature
For the synthesis of sulfonylamide derivatives, see: Kirsanov (1965); Moroz et al. (2012). For details of the pharmacological and biological properties of sulfonylamide derivatives, see: Kishino & Saito (1979); Xu & Angell (2000). For CuI-containing complexes with triphenylphosphane, see: Barron et al. (1987); Yang et al. (2001); Zabirov et al. (2003). For details of potential applications of CuI-containing complexes, see: Nagashima et al. (1993); Nondek et al. (1987); Tarkhanova et al. (2001); Zazybin et al. (2006); Verat et al. (2006). For coordination compounds of 3d metals with sulfonylamidophosphate ligands, see: Moroz et al. (2009); Trush et al. (2011). For the coordination mode of structural analogs of β-diketones, see: Gawryszewska et al. (2011); Yizhak et al. (2013); Kariaka et al. (2013); Amirkhanov et al. (2014).
Experimental
Crystal data
|
|
Data collection: COLLECT (Nonius, 1999); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1000731
10.1107/S1600536814010095/hb7222sup1.cif
contains datablocks I, cusp. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814010095/hb7222Isup2.hkl
Coordination chemistry of structural analogs of β-diketones has been widely studied during last 30 years. Among them, sulfonyl phosphoramides (SAPh) bearing a S(O)2NHP(O) structural fragment and different substituents at sulfur and phosphorus atoms were first synthesized by Kirsanov (Kirsanov, 1965). These compounds are extensively used in medicine as bactericidal agents (Xu & Angell, 2000) and in agriculture as pesticides (Kishino & Saito, 1979). Recently, coordination compounds of lanthanides and 3d metals with SAPhs behaving as bidentate O,O-donor chelating ligands have been reported (Moroz, et al., 2009; Moroz, et al., 2012; Trush, et al., 2011). As our contribution to the study of coordination compounds of 3d metals based on SAPh, we synthesized and structurally characterized a copper(I)-containing complex [Cu(L)(PPh3)2] (I) {where, HL is dimethyl(phenylsulfonyl)amidophosphate (C6H5S(O)2NHP(O)(OCH3)2) and PPh3 is triphenylphosphane}. Complexes of CuI have useful luminescent properties, they can be used in microelectronics and as catalysts of homolytic C–Hal (Hal = Cl, Br) bond cleavage in polyhaloalkanes (Nagashima, et al., 1993; Nondek, et al., 1987; Tarkhanova, et al., 2001; Zazybin, et al., 2006). Triphenylphosphane molecule was used to prevent cluster formation during complexation reaction.
The molecular structure of I is shown in Figure1. Van der Waals contacts exist between molecules of I in the β-diketones, SAPh and CAPh (carbacylamidophosphates) (Gawryszewska, et al., 2011; Yizhak, et al., 2013; Kariaka, et al., 2013; Amirkhanov, et al., 2014). It has already been observed for [Cu(PPh3)nL1] based on N-acylamidophosphinate ligands (Verat, et al., 2006) and for (PPh3)3CuI (Barron, et al., 1987) that the number of the coordinated PPh3 molecules to the central ion has the main influence on the Cu–P bond lengths. As in the present compound the CuI atom coordinates two PPh3, the Cu–P distances of 2.234 (1), 2.238 (1)Å are in good agreement with the values observed for the complexes containing two PPh3 ligands (Yang, et al., 2001; Zabirov, et al., 2003; Verat, et al., 2006).
The coordination environment of the Cu ion is a distorted tetrahedron (2+2). The values for the bond angles around the central atom are in the range from 88.9 (1)° to 129.94 (6)°. The consists of two phosphorus atoms from PPh3 molecules and two oxygen atoms from the phosphoryl and the sulfonyl groups of L-, which is coordinated in bidentate chelate mode forming with central ion a six-membered chelate ring. The later coordination mode is typical for the deprotonated structural analogs ofThe Cu–O(S) and Cu–O(P) bond lengths (2.263 (3) and 2.066 (3)Å, respectively) (Table1) are similar to the reported values for the complexes of 3d-metals with HL (Moroz, et al., 2009; Trush, et al., 2011). The amide nitrogen atom of the ligand is deprotonated that leads to decreasing the S–N, N–P and increasing the P–O, S–O bond length values (Table1) compared with those for HL (Moroz, et al., 2009). Such changes may be related to the occurrence of the π-coupling in O—S—N—P—O fragment and are usual for SAPh ligands (Moroz, et al., 2009; Trush, et al., 2011). The value of the O(1)—Cu(1)—O(3) angle of 88.9 (1)° is typical for the coordination compounds with O- donor SAPh and CAPh ligands. The phosphorus and sulfur atoms of I have distorted tetrahedral configurations (Table1). Oxygen atoms of the phosphoryl O(3) and the sulfonyl O(2) groups of the O—S—N—P—O structural fragment adopt an anticlinal conformation (the dihedral angle between O(2)—S(1)—P(1) and O(3)—P(1)—S(1) planes is 106.3°). The six-membered Cu—O—P—N—S—O metallocycle has a distorted boat conformation with the deviations of N(1) and Cu(1) from the mean plane of 0.40Å and 0.26Å, respectively.
The synthesis of HL was carried out according to previously published procedure (Moroz, et al., 2009).
Compound I was prepared according to the following scheme:
4HL + 4Cu + 8PPh3 + O2 → 4[Cu(L)(PPh3)2] + 2H2O
Briefly, a heterogeneous mixture of copper powder (0.065g, 1mmol), triphenylphosphane (0.524g, 2mmol) and HL (0.287g, 1mmol) in 40mL of acetone was stirred for 4 days upon heating with a reflux condenser. Decreasing of the powder was observed simultaneously with gradual appearance of white precipitate. The later was filtered off, washed thoroughly with chilled isopropanol, dried and dissolved in minimal amount of DMF to remove the residual copper powder. The resulting solution was left at ambient temperature for crystallization in air. The colorless crystals were collected by filtration after 2 days, washed with chilled isopropanol and dried on filter. Yield: 0.64g (75%). The compound is soluble in methanol, acetonitrile, chloroform, DMSO and DMF. Anal. calc. for C44H41NO5P3SCu: C61.81, H4.71, N1.61, S3.54%; found: C62.00, H4.85, N1.64, S3.76%; IR (KBr, cm-1): 1225, 1250 (s, SO2) and 1180 (s, PO); 1H NMR (400 MHz, CDCl3): 3.28 (d, 6H, CH3, 3JP–H = 12Hz), 7.09 (m, Hβ, 2H, C6H5(L-)), 7.27 (m, Hβ, 12H, C6H5(PPh3)), 7.33 (s, Hγ, 1H, C6H5(L-)), 7.39 (m, Hα+γ, 18H, C6H5(PPh3)) 7.62 (m, Hα, 2H, C6H5(L-)) ppm. 31P NMR (162.1 MHz, CDCl3): 0.8 (g, 3JP–H = 12Hz, L-), -4.3 (s, PPh3) ppm.
Data collection: COLLECT (Nonius, 1999); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Structural representation of I with atom numbering scheme and 50% probability thermal ellipsoid. The H atoms are omitted for clarity. |
[Cu(C8H11NO5PS)(C18H15P)2] | F(000) = 1768 |
Mr = 852.29 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8657 (12) Å | Cell parameters from 27134 reflections |
b = 26.281 (3) Å | θ = 2.9–28.5° |
c = 13.971 (3) Å | µ = 0.76 mm−1 |
β = 121.875 (10)° | T = 100 K |
V = 4011.6 (11) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.30 × 0.10 mm |
Nonius KappaCCD diffractometer | 9293 independent reflections |
Radiation source: sealed X-ray tube | 4739 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.137 |
ϕ scans and ω scans with κ offset | θmax = 28.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −16→16 |
Tmin = 0.74, Tmax = 0.90 | k = −33→34 |
27134 measured reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.086 | H-atom parameters constrained |
wR(F2) = 0.120 | w = 1/[σ2(Fo2) + (0.0188P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
9293 reflections | Δρmax = 0.48 e Å−3 |
438 parameters | Δρmin = −0.56 e Å−3 |
[Cu(C8H11NO5PS)(C18H15P)2] | V = 4011.6 (11) Å3 |
Mr = 852.29 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.8657 (12) Å | µ = 0.76 mm−1 |
b = 26.281 (3) Å | T = 100 K |
c = 13.971 (3) Å | 0.40 × 0.30 × 0.10 mm |
β = 121.875 (10)° |
Nonius KappaCCD diffractometer | 9293 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 4739 reflections with I > 2σ(I) |
Tmin = 0.74, Tmax = 0.90 | Rint = 0.137 |
27134 measured reflections |
R[F2 > 2σ(F2)] = 0.086 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.48 e Å−3 |
9293 reflections | Δρmin = −0.56 e Å−3 |
438 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7620 (4) | 0.16461 (19) | 1.0173 (4) | 0.0134 (12) | |
C2 | 0.7765 (5) | 0.15558 (19) | 0.9275 (4) | 0.0195 (13) | |
H68 | 0.7094 | 0.1479 | 0.8566 | 0.023* | |
C3 | 0.8930 (5) | 0.1582 (2) | 0.9452 (5) | 0.0257 (14) | |
H102 | 0.9034 | 0.1531 | 0.8848 | 0.031* | |
C4 | 0.9933 (5) | 0.1682 (2) | 1.0499 (5) | 0.0260 (14) | |
H106 | 1.0707 | 0.1698 | 1.0602 | 0.031* | |
C5 | 0.9789 (5) | 0.1758 (2) | 1.1401 (5) | 0.0323 (16) | |
H19 | 1.0468 | 0.1822 | 1.2115 | 0.039* | |
C6 | 0.8614 (5) | 0.1740 (2) | 1.1237 (5) | 0.0277 (15) | |
H57 | 0.8509 | 0.1790 | 1.1840 | 0.033* | |
C7 | 0.3285 (5) | 0.2987 (2) | 0.8180 (5) | 0.0375 (17) | |
H74A | 0.2652 | 0.2749 | 0.7708 | 0.056* | |
H74B | 0.3002 | 0.3327 | 0.7928 | 0.056* | |
H74C | 0.3493 | 0.2948 | 0.8945 | 0.056* | |
C8 | 0.6702 (5) | 0.2749 (2) | 0.8269 (5) | 0.0303 (15) | |
H7A | 0.6423 | 0.3079 | 0.8330 | 0.045* | |
H7B | 0.7084 | 0.2774 | 0.7838 | 0.045* | |
H7C | 0.7283 | 0.2622 | 0.9008 | 0.045* | |
C9 | 0.2961 (5) | 0.06859 (19) | 0.5000 (4) | 0.0203 (5) | |
C10 | 0.1706 (5) | 0.06746 (19) | 0.4622 (4) | 0.0203 (5) | |
H25 | 0.1469 | 0.0701 | 0.5144 | 0.024* | |
C11 | 0.0819 (5) | 0.06245 (18) | 0.3490 (4) | 0.0203 (5) | |
H21 | −0.0003 | 0.0612 | 0.3260 | 0.024* | |
C12 | 0.1160 (5) | 0.05931 (19) | 0.2692 (4) | 0.0203 (5) | |
H16 | 0.0567 | 0.0560 | 0.1930 | 0.024* | |
C13 | 0.2384 (5) | 0.06113 (19) | 0.3045 (4) | 0.0203 (5) | |
H15 | 0.2613 | 0.0599 | 0.2515 | 0.024* | |
C14 | 0.3274 (5) | 0.06484 (19) | 0.4179 (4) | 0.0203 (5) | |
H35 | 0.4095 | 0.0648 | 0.4403 | 0.024* | |
C15 | 0.4477 (4) | 0.00831 (18) | 0.6988 (4) | 0.0132 (12) | |
C16 | 0.4271 (4) | −0.03269 (19) | 0.6270 (4) | 0.0147 (12) | |
H20 | 0.3927 | −0.0268 | 0.5504 | 0.018* | |
C17 | 0.4570 (5) | −0.0819 (2) | 0.6678 (5) | 0.0189 (13) | |
H6 | 0.4437 | −0.1088 | 0.6192 | 0.023* | |
C18 | 0.5070 (5) | −0.0910 (2) | 0.7817 (5) | 0.0215 (14) | |
H56 | 0.5264 | −0.1241 | 0.8093 | 0.026* | |
C19 | 0.5283 (5) | −0.0510 (2) | 0.8547 (5) | 0.0242 (14) | |
H8 | 0.5628 | −0.0573 | 0.9311 | 0.029* | |
C20 | 0.4987 (5) | −0.0024 (2) | 0.8145 (5) | 0.0236 (14) | |
H31 | 0.5123 | 0.0241 | 0.8640 | 0.028* | |
C21 | 0.5434 (5) | 0.09651 (19) | 0.6489 (4) | 0.0141 (12) | |
C22 | 0.6453 (5) | 0.0664 (2) | 0.6779 (4) | 0.0184 (13) | |
H60 | 0.6493 | 0.0333 | 0.7032 | 0.022* | |
C23 | 0.7411 (5) | 0.0854 (2) | 0.6694 (4) | 0.0229 (14) | |
H29 | 0.8085 | 0.0650 | 0.6888 | 0.027* | |
C24 | 0.7358 (5) | 0.1347 (2) | 0.6320 (4) | 0.0243 (14) | |
H54 | 0.7988 | 0.1472 | 0.6245 | 0.029* | |
C25 | 0.6370 (5) | 0.1655 (2) | 0.6057 (4) | 0.0191 (13) | |
H70 | 0.6346 | 0.1988 | 0.5822 | 0.023* | |
C26 | 0.5425 (5) | 0.14690 (19) | 0.6142 (4) | 0.0191 (13) | |
H67 | 0.4767 | 0.1680 | 0.5966 | 0.023* | |
C27 | 0.1898 (4) | 0.0599 (2) | 0.8496 (4) | 0.0177 (13) | |
C28 | 0.1400 (5) | 0.0630 (2) | 0.9169 (4) | 0.0232 (14) | |
H105 | 0.1078 | 0.0938 | 0.9224 | 0.028* | |
C29 | 0.1375 (5) | 0.0207 (2) | 0.9761 (5) | 0.0324 (16) | |
H1 | 0.1021 | 0.0229 | 1.0193 | 0.039* | |
C30 | 0.1891 (5) | −0.0249 (2) | 0.9696 (5) | 0.0332 (16) | |
H45 | 0.1901 | −0.0531 | 1.0104 | 0.040* | |
C31 | 0.2386 (5) | −0.0284 (2) | 0.9029 (5) | 0.0285 (15) | |
H72 | 0.2710 | −0.0591 | 0.8975 | 0.034* | |
C32 | 0.2400 (5) | 0.01393 (19) | 0.8440 (4) | 0.0209 (14) | |
H38 | 0.2748 | 0.0115 | 0.8003 | 0.025* | |
C33 | 0.0584 (4) | 0.11361 (19) | 0.6394 (4) | 0.0143 (12) | |
C34 | 0.0297 (5) | 0.1559 (2) | 0.5668 (4) | 0.0191 (13) | |
H61 | 0.0792 | 0.1847 | 0.5923 | 0.023* | |
C35 | −0.0716 (5) | 0.1547 (2) | 0.4583 (5) | 0.0251 (15) | |
H107 | −0.0912 | 0.1832 | 0.4124 | 0.030* | |
C36 | −0.1443 (5) | 0.1115 (2) | 0.4168 (5) | 0.0275 (15) | |
H47 | −0.2106 | 0.1104 | 0.3429 | 0.033* | |
C37 | −0.1168 (5) | 0.0703 (2) | 0.4865 (5) | 0.0275 (15) | |
H66 | −0.1659 | 0.0415 | 0.4594 | 0.033* | |
C38 | −0.0173 (5) | 0.0709 (2) | 0.5966 (4) | 0.0194 (13) | |
H62 | −0.0008 | 0.0425 | 0.6423 | 0.023* | |
C39 | 0.1906 (5) | 0.1685 (2) | 0.8525 (5) | 0.0235 (6) | |
C40 | 0.0861 (5) | 0.19774 (19) | 0.8175 (5) | 0.0235 (6) | |
H13 | 0.0132 | 0.1899 | 0.7510 | 0.028* | |
C41 | 0.0923 (5) | 0.2386 (2) | 0.8830 (4) | 0.0235 (6) | |
H28 | 0.0230 | 0.2585 | 0.8589 | 0.028* | |
C42 | 0.1968 (5) | 0.2504 (2) | 0.9812 (5) | 0.0235 (6) | |
H65 | 0.1984 | 0.2777 | 1.0242 | 0.028* | |
C43 | 0.3019 (5) | 0.2214 (2) | 1.0173 (5) | 0.0235 (6) | |
H14 | 0.3742 | 0.2291 | 1.0845 | 0.028* | |
C44 | 0.2972 (5) | 0.1810 (2) | 0.9521 (4) | 0.0235 (6) | |
H75 | 0.3673 | 0.1617 | 0.9757 | 0.028* | |
Cu1 | 0.36062 (6) | 0.12135 (2) | 0.75302 (5) | 0.01638 (18) | |
N1 | 0.5554 (4) | 0.21783 (15) | 0.9479 (3) | 0.0169 (10) | |
O1 | 0.5448 (3) | 0.12269 (13) | 0.9166 (3) | 0.0198 (9) | |
O2 | 0.6296 (3) | 0.15752 (13) | 1.1063 (3) | 0.0246 (9) | |
O3 | 0.3780 (3) | 0.19846 (12) | 0.7364 (3) | 0.0173 (9) | |
O4 | 0.4335 (3) | 0.28906 (12) | 0.8119 (3) | 0.0268 (10) | |
O5 | 0.5671 (3) | 0.24042 (13) | 0.7711 (3) | 0.0227 (9) | |
P1 | 0.48025 (13) | 0.23250 (5) | 0.81736 (13) | 0.0190 (4) | |
P2 | 0.41040 (12) | 0.07398 (5) | 0.65026 (12) | 0.0153 (3) | |
P3 | 0.20168 (12) | 0.11467 (5) | 0.77600 (12) | 0.0162 (3) | |
S1 | 0.61185 (12) | 0.16414 (5) | 0.99649 (12) | 0.0183 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.008 (3) | 0.014 (3) | 0.015 (3) | 0.000 (2) | 0.004 (3) | 0.003 (2) |
C2 | 0.022 (4) | 0.019 (3) | 0.018 (3) | −0.001 (3) | 0.011 (3) | −0.001 (3) |
C3 | 0.034 (4) | 0.026 (3) | 0.026 (4) | 0.003 (3) | 0.022 (3) | 0.001 (3) |
C4 | 0.015 (3) | 0.032 (4) | 0.027 (4) | 0.002 (3) | 0.008 (3) | 0.001 (3) |
C5 | 0.021 (4) | 0.045 (4) | 0.023 (4) | −0.007 (3) | 0.006 (3) | −0.013 (3) |
C6 | 0.022 (4) | 0.042 (4) | 0.021 (4) | 0.000 (3) | 0.013 (3) | −0.002 (3) |
C7 | 0.029 (4) | 0.025 (4) | 0.067 (5) | 0.002 (3) | 0.031 (4) | −0.005 (3) |
C8 | 0.025 (4) | 0.027 (4) | 0.041 (4) | −0.007 (3) | 0.020 (3) | 0.008 (3) |
C9 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C10 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C11 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C12 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C13 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C14 | 0.0184 (14) | 0.0199 (12) | 0.0188 (14) | 0.0008 (11) | 0.0072 (12) | −0.0007 (11) |
C15 | 0.011 (3) | 0.010 (3) | 0.022 (3) | 0.000 (2) | 0.011 (3) | −0.004 (2) |
C16 | 0.012 (3) | 0.020 (3) | 0.014 (3) | −0.002 (2) | 0.008 (3) | 0.002 (3) |
C17 | 0.018 (3) | 0.018 (3) | 0.027 (4) | −0.005 (3) | 0.016 (3) | −0.006 (3) |
C18 | 0.020 (3) | 0.019 (3) | 0.028 (4) | 0.004 (3) | 0.015 (3) | 0.002 (3) |
C19 | 0.019 (3) | 0.029 (4) | 0.013 (3) | 0.002 (3) | 0.000 (3) | 0.002 (3) |
C20 | 0.025 (4) | 0.021 (3) | 0.017 (3) | 0.002 (3) | 0.005 (3) | −0.003 (3) |
C21 | 0.012 (3) | 0.018 (3) | 0.010 (3) | −0.004 (2) | 0.005 (3) | −0.008 (2) |
C22 | 0.019 (3) | 0.015 (3) | 0.026 (4) | −0.001 (3) | 0.016 (3) | −0.003 (3) |
C23 | 0.016 (3) | 0.024 (3) | 0.028 (4) | 0.001 (3) | 0.011 (3) | −0.006 (3) |
C24 | 0.027 (4) | 0.030 (4) | 0.022 (3) | −0.013 (3) | 0.017 (3) | −0.007 (3) |
C25 | 0.023 (4) | 0.021 (3) | 0.018 (3) | −0.010 (3) | 0.015 (3) | −0.005 (3) |
C26 | 0.020 (3) | 0.015 (3) | 0.021 (3) | −0.004 (3) | 0.010 (3) | −0.003 (3) |
C27 | 0.011 (3) | 0.021 (3) | 0.017 (3) | −0.004 (3) | 0.005 (3) | 0.000 (3) |
C28 | 0.020 (3) | 0.024 (3) | 0.025 (4) | −0.002 (3) | 0.011 (3) | 0.006 (3) |
C29 | 0.028 (4) | 0.037 (4) | 0.031 (4) | −0.014 (3) | 0.014 (3) | −0.001 (3) |
C30 | 0.033 (4) | 0.024 (4) | 0.025 (4) | −0.007 (3) | 0.004 (3) | 0.015 (3) |
C31 | 0.023 (4) | 0.021 (4) | 0.033 (4) | −0.003 (3) | 0.009 (3) | 0.000 (3) |
C32 | 0.013 (3) | 0.017 (3) | 0.017 (3) | −0.001 (3) | −0.002 (3) | 0.004 (3) |
C33 | 0.013 (3) | 0.015 (3) | 0.018 (3) | 0.000 (2) | 0.011 (3) | −0.002 (3) |
C34 | 0.010 (3) | 0.027 (3) | 0.025 (4) | −0.003 (3) | 0.012 (3) | 0.002 (3) |
C35 | 0.019 (4) | 0.032 (4) | 0.029 (4) | 0.006 (3) | 0.015 (3) | 0.007 (3) |
C36 | 0.011 (3) | 0.045 (4) | 0.023 (4) | −0.002 (3) | 0.007 (3) | −0.003 (3) |
C37 | 0.023 (4) | 0.026 (4) | 0.035 (4) | −0.002 (3) | 0.016 (3) | −0.006 (3) |
C38 | 0.013 (3) | 0.024 (3) | 0.019 (3) | 0.000 (3) | 0.008 (3) | 0.000 (3) |
C39 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
C40 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
C41 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
C42 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
C43 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
C44 | 0.0276 (15) | 0.0243 (14) | 0.0243 (15) | 0.0026 (12) | 0.0176 (13) | −0.0019 (11) |
Cu1 | 0.0157 (4) | 0.0148 (4) | 0.0206 (4) | −0.0015 (3) | 0.0109 (3) | −0.0025 (3) |
N1 | 0.025 (3) | 0.009 (2) | 0.017 (3) | −0.002 (2) | 0.012 (2) | −0.004 (2) |
O1 | 0.016 (2) | 0.016 (2) | 0.021 (2) | −0.0027 (18) | 0.0045 (18) | −0.0015 (18) |
O2 | 0.027 (2) | 0.030 (2) | 0.019 (2) | −0.0022 (19) | 0.014 (2) | 0.0023 (19) |
O3 | 0.014 (2) | 0.012 (2) | 0.024 (2) | −0.0024 (17) | 0.0090 (19) | 0.0023 (17) |
O4 | 0.024 (2) | 0.012 (2) | 0.041 (3) | 0.0049 (18) | 0.016 (2) | 0.0027 (19) |
O5 | 0.021 (2) | 0.022 (2) | 0.028 (2) | −0.0081 (18) | 0.015 (2) | −0.0018 (19) |
P1 | 0.0175 (9) | 0.0135 (8) | 0.0252 (9) | −0.0002 (7) | 0.0108 (8) | 0.0006 (7) |
P2 | 0.0143 (8) | 0.0137 (8) | 0.0186 (9) | −0.0004 (6) | 0.0093 (7) | −0.0005 (7) |
P3 | 0.0144 (8) | 0.0150 (8) | 0.0211 (8) | −0.0007 (7) | 0.0106 (7) | −0.0002 (7) |
S1 | 0.0198 (9) | 0.0175 (8) | 0.0189 (8) | −0.0015 (7) | 0.0110 (7) | 0.0002 (7) |
C1—C6 | 1.378 (7) | C24—H54 | 0.9300 |
C1—C2 | 1.384 (6) | C25—C26 | 1.373 (6) |
C1—S1 | 1.795 (5) | C25—H70 | 0.9300 |
C2—C3 | 1.386 (7) | C26—H67 | 0.9300 |
C2—H68 | 0.9300 | C27—C28 | 1.392 (6) |
C3—C4 | 1.371 (7) | C27—C32 | 1.392 (7) |
C3—H102 | 0.9300 | C27—P3 | 1.821 (5) |
C4—C5 | 1.381 (7) | C28—C29 | 1.396 (7) |
C4—H106 | 0.9300 | C28—H105 | 0.9300 |
C5—C6 | 1.405 (7) | C29—C30 | 1.396 (7) |
C5—H19 | 0.9300 | C29—H1 | 0.9300 |
C6—H57 | 0.9300 | C30—C31 | 1.382 (7) |
C7—O4 | 1.419 (5) | C30—H45 | 0.9300 |
C7—H74A | 0.9600 | C31—C32 | 1.390 (7) |
C7—H74B | 0.9600 | C31—H72 | 0.9300 |
C7—H74C | 0.9600 | C32—H38 | 0.9300 |
C8—O5 | 1.448 (5) | C33—C38 | 1.397 (6) |
C8—H7A | 0.9600 | C33—C34 | 1.416 (6) |
C8—H7B | 0.9600 | C33—P3 | 1.824 (5) |
C8—H7C | 0.9600 | C34—C35 | 1.382 (7) |
C9—C14 | 1.406 (6) | C34—H61 | 0.9300 |
C9—C10 | 1.409 (6) | C35—C36 | 1.390 (7) |
C9—P2 | 1.824 (5) | C35—H107 | 0.9300 |
C10—C11 | 1.383 (6) | C36—C37 | 1.370 (7) |
C10—H25 | 0.9300 | C36—H47 | 0.9300 |
C11—C12 | 1.400 (6) | C37—C38 | 1.387 (7) |
C11—H21 | 0.9300 | C37—H66 | 0.9300 |
C12—C13 | 1.380 (6) | C38—H62 | 0.9300 |
C12—H16 | 0.9300 | C39—C44 | 1.382 (7) |
C13—C14 | 1.384 (6) | C39—C40 | 1.394 (7) |
C13—H15 | 0.9300 | C39—P3 | 1.823 (5) |
C14—H35 | 0.9300 | C40—C41 | 1.386 (7) |
C15—C16 | 1.399 (6) | C40—H13 | 0.9300 |
C15—C20 | 1.415 (7) | C41—C42 | 1.355 (7) |
C15—P2 | 1.824 (5) | C41—H28 | 0.9300 |
C16—C17 | 1.385 (6) | C42—C43 | 1.394 (6) |
C16—H20 | 0.9300 | C42—H65 | 0.9300 |
C17—C18 | 1.386 (7) | C43—C44 | 1.380 (7) |
C17—H6 | 0.9300 | C43—H14 | 0.9300 |
C18—C19 | 1.388 (7) | C44—H75 | 0.9300 |
C18—H56 | 0.9300 | Cu1—O3 | 2.065 (3) |
C19—C20 | 1.366 (7) | Cu1—O1 | 2.263 (3) |
C19—H8 | 0.9300 | Cu1—P2 | 2.2345 (15) |
C20—H31 | 0.9300 | Cu1—P3 | 2.2381 (14) |
C21—C22 | 1.395 (6) | N1—S1 | 1.568 (4) |
C21—C26 | 1.409 (6) | N1—P1 | 1.596 (4) |
C21—P2 | 1.820 (5) | O1—S1 | 1.470 (3) |
C22—C23 | 1.391 (6) | O2—S1 | 1.438 (3) |
C22—H60 | 0.9300 | O3—P1 | 1.496 (3) |
C23—C24 | 1.386 (7) | O4—P1 | 1.590 (3) |
C23—H29 | 0.9300 | O5—P1 | 1.572 (3) |
C24—C25 | 1.382 (7) | ||
C6—C1—C2 | 121.0 (5) | C27—C28—C29 | 121.1 (5) |
C6—C1—S1 | 118.9 (4) | C27—C28—H105 | 119.5 |
C2—C1—S1 | 120.1 (4) | C29—C28—H105 | 119.5 |
C1—C2—C3 | 118.8 (5) | C28—C29—C30 | 119.0 (5) |
C1—C2—H68 | 120.6 | C28—C29—H1 | 120.5 |
C3—C2—H68 | 120.6 | C30—C29—H1 | 120.5 |
C4—C3—C2 | 121.2 (5) | C31—C30—C29 | 120.3 (5) |
C4—C3—H102 | 119.4 | C31—C30—H45 | 119.8 |
C2—C3—H102 | 119.4 | C29—C30—H45 | 119.8 |
C3—C4—C5 | 119.9 (5) | C30—C31—C32 | 120.1 (5) |
C3—C4—H106 | 120.1 | C30—C31—H72 | 120.0 |
C5—C4—H106 | 120.1 | C32—C31—H72 | 120.0 |
C4—C5—C6 | 119.8 (6) | C31—C32—C27 | 120.7 (5) |
C4—C5—H19 | 120.1 | C31—C32—H38 | 119.7 |
C6—C5—H19 | 120.1 | C27—C32—H38 | 119.7 |
C1—C6—C5 | 119.2 (5) | C38—C33—C34 | 117.7 (5) |
C1—C6—H57 | 120.4 | C38—C33—P3 | 123.5 (4) |
C5—C6—H57 | 120.4 | C34—C33—P3 | 118.3 (4) |
O4—C7—H74A | 109.5 | C35—C34—C33 | 120.4 (5) |
O4—C7—H74B | 109.5 | C35—C34—H61 | 119.8 |
H74A—C7—H74B | 109.5 | C33—C34—H61 | 119.8 |
O4—C7—H74C | 109.5 | C34—C35—C36 | 120.8 (5) |
H74A—C7—H74C | 109.5 | C34—C35—H107 | 119.6 |
H74B—C7—H74C | 109.5 | C36—C35—H107 | 119.6 |
O5—C8—H7A | 109.5 | C37—C36—C35 | 119.0 (5) |
O5—C8—H7B | 109.5 | C37—C36—H47 | 120.5 |
H7A—C8—H7B | 109.5 | C35—C36—H47 | 120.5 |
O5—C8—H7C | 109.5 | C36—C37—C38 | 121.3 (5) |
H7A—C8—H7C | 109.5 | C36—C37—H66 | 119.3 |
H7B—C8—H7C | 109.5 | C38—C37—H66 | 119.3 |
C14—C9—C10 | 117.3 (5) | C37—C38—C33 | 120.6 (5) |
C14—C9—P2 | 122.7 (4) | C37—C38—H62 | 119.7 |
C10—C9—P2 | 120.1 (4) | C33—C38—H62 | 119.7 |
C11—C10—C9 | 121.3 (5) | C44—C39—C40 | 118.9 (5) |
C11—C10—H25 | 119.3 | C44—C39—P3 | 115.5 (4) |
C9—C10—H25 | 119.3 | C40—C39—P3 | 125.6 (4) |
C10—C11—C12 | 120.0 (5) | C41—C40—C39 | 119.2 (5) |
C10—C11—H21 | 120.0 | C41—C40—H13 | 120.4 |
C12—C11—H21 | 120.0 | C39—C40—H13 | 120.4 |
C13—C12—C11 | 119.5 (5) | C42—C41—C40 | 121.7 (5) |
C13—C12—H16 | 120.3 | C42—C41—H28 | 119.1 |
C11—C12—H16 | 120.3 | C40—C41—H28 | 119.1 |
C12—C13—C14 | 120.6 (5) | C41—C42—C43 | 119.7 (5) |
C12—C13—H15 | 119.7 | C41—C42—H65 | 120.1 |
C14—C13—H15 | 119.7 | C43—C42—H65 | 120.1 |
C13—C14—C9 | 121.3 (5) | C44—C43—C42 | 119.0 (5) |
C13—C14—H35 | 119.4 | C44—C43—H14 | 120.5 |
C9—C14—H35 | 119.4 | C42—C43—H14 | 120.5 |
C16—C15—C20 | 117.6 (5) | C43—C44—C39 | 121.5 (5) |
C16—C15—P2 | 123.3 (4) | C43—C44—H75 | 119.3 |
C20—C15—P2 | 119.0 (4) | C39—C44—H75 | 119.3 |
C17—C16—C15 | 121.2 (5) | O3—Cu1—P2 | 112.93 (9) |
C17—C16—H20 | 119.4 | O3—Cu1—P3 | 104.75 (9) |
C15—C16—H20 | 119.4 | P2—Cu1—P3 | 129.95 (6) |
C16—C17—C18 | 119.6 (5) | O3—Cu1—O1 | 88.88 (13) |
C16—C17—H6 | 120.2 | P2—Cu1—O1 | 98.93 (9) |
C18—C17—H6 | 120.2 | P3—Cu1—O1 | 113.89 (9) |
C17—C18—C19 | 120.3 (5) | S1—N1—P1 | 125.1 (3) |
C17—C18—H56 | 119.9 | S1—O1—Cu1 | 131.3 (2) |
C19—C18—H56 | 119.9 | P1—O3—Cu1 | 127.3 (2) |
C20—C19—C18 | 120.2 (5) | C7—O4—P1 | 120.7 (3) |
C20—C19—H8 | 119.9 | C8—O5—P1 | 120.7 (3) |
C18—C19—H8 | 119.9 | O3—P1—O5 | 107.5 (2) |
C19—C20—C15 | 121.1 (5) | O3—P1—O4 | 111.3 (2) |
C19—C20—H31 | 119.5 | O5—P1—O4 | 100.9 (2) |
C15—C20—H31 | 119.5 | O3—P1—N1 | 118.7 (2) |
C22—C21—C26 | 117.9 (5) | O5—P1—N1 | 111.6 (2) |
C22—C21—P2 | 123.9 (4) | O4—P1—N1 | 105.4 (2) |
C26—C21—P2 | 118.2 (4) | C21—P2—C15 | 104.3 (2) |
C23—C22—C21 | 120.7 (5) | C21—P2—C9 | 101.8 (2) |
C23—C22—H60 | 119.6 | C15—P2—C9 | 104.4 (2) |
C21—C22—H60 | 119.6 | C21—P2—Cu1 | 114.54 (16) |
C24—C23—C22 | 119.9 (5) | C15—P2—Cu1 | 113.38 (17) |
C24—C23—H29 | 120.1 | C9—P2—Cu1 | 116.87 (17) |
C22—C23—H29 | 120.1 | C27—P3—C39 | 103.1 (2) |
C25—C24—C23 | 120.2 (5) | C27—P3—C33 | 103.8 (2) |
C25—C24—H54 | 119.9 | C39—P3—C33 | 106.1 (2) |
C23—C24—H54 | 119.9 | C27—P3—Cu1 | 119.89 (17) |
C26—C25—C24 | 120.1 (5) | C39—P3—Cu1 | 112.55 (18) |
C26—C25—H70 | 120.0 | C33—P3—Cu1 | 110.26 (16) |
C24—C25—H70 | 120.0 | O2—S1—O1 | 114.8 (2) |
C25—C26—C21 | 121.2 (5) | O2—S1—N1 | 110.3 (2) |
C25—C26—H67 | 119.4 | O1—S1—N1 | 112.7 (2) |
C21—C26—H67 | 119.4 | O2—S1—C1 | 106.1 (2) |
C28—C27—C32 | 118.8 (5) | O1—S1—C1 | 106.2 (2) |
C28—C27—P3 | 122.7 (4) | N1—S1—C1 | 106.1 (2) |
C32—C27—P3 | 118.3 (4) | ||
C6—C1—C2—C3 | −2.7 (8) | Cu1—O3—P1—N1 | −27.4 (3) |
S1—C1—C2—C3 | 177.4 (4) | C8—O5—P1—O3 | 175.3 (3) |
C1—C2—C3—C4 | 1.8 (8) | C8—O5—P1—O4 | 58.6 (4) |
C2—C3—C4—C5 | 0.0 (8) | C8—O5—P1—N1 | −53.0 (4) |
C3—C4—C5—C6 | −0.8 (9) | C7—O4—P1—O3 | 49.6 (4) |
C2—C1—C6—C5 | 1.9 (8) | C7—O4—P1—O5 | 163.5 (4) |
S1—C1—C6—C5 | −178.2 (4) | C7—O4—P1—N1 | −80.3 (4) |
C4—C5—C6—C1 | −0.1 (8) | S1—N1—P1—O3 | 49.7 (4) |
C14—C9—C10—C11 | 0.5 (7) | S1—N1—P1—O5 | −76.2 (3) |
P2—C9—C10—C11 | −178.8 (4) | S1—N1—P1—O4 | 175.1 (3) |
C9—C10—C11—C12 | −1.2 (8) | C22—C21—P2—C15 | 1.3 (5) |
C10—C11—C12—C13 | 0.1 (8) | C26—C21—P2—C15 | 179.7 (4) |
C11—C12—C13—C14 | 1.5 (8) | C22—C21—P2—C9 | −107.1 (4) |
C12—C13—C14—C9 | −2.2 (8) | C26—C21—P2—C9 | 71.4 (4) |
C10—C9—C14—C13 | 1.2 (8) | C22—C21—P2—Cu1 | 125.8 (4) |
P2—C9—C14—C13 | −179.6 (4) | C26—C21—P2—Cu1 | −55.7 (4) |
C20—C15—C16—C17 | −0.8 (7) | C16—C15—P2—C21 | −85.1 (4) |
P2—C15—C16—C17 | 180.0 (4) | C20—C15—P2—C21 | 95.7 (4) |
C15—C16—C17—C18 | 0.7 (7) | C16—C15—P2—C9 | 21.4 (5) |
C16—C17—C18—C19 | −0.7 (7) | C20—C15—P2—C9 | −157.8 (4) |
C17—C18—C19—C20 | 0.8 (8) | C16—C15—P2—Cu1 | 149.7 (4) |
C18—C19—C20—C15 | −0.9 (8) | C20—C15—P2—Cu1 | −29.5 (4) |
C16—C15—C20—C19 | 0.9 (8) | C14—C9—P2—C21 | 20.4 (5) |
P2—C15—C20—C19 | −179.9 (4) | C10—C9—P2—C21 | −160.3 (4) |
C26—C21—C22—C23 | −1.8 (7) | C14—C9—P2—C15 | −87.9 (5) |
P2—C21—C22—C23 | 176.6 (4) | C10—C9—P2—C15 | 91.3 (4) |
C21—C22—C23—C24 | 0.1 (8) | C14—C9—P2—Cu1 | 146.0 (4) |
C22—C23—C24—C25 | 1.5 (8) | C10—C9—P2—Cu1 | −34.8 (5) |
C23—C24—C25—C26 | −1.4 (8) | C28—C27—P3—C39 | 20.0 (5) |
C24—C25—C26—C21 | −0.3 (8) | C32—C27—P3—C39 | −155.7 (4) |
C22—C21—C26—C25 | 1.9 (7) | C28—C27—P3—C33 | −90.5 (5) |
P2—C21—C26—C25 | −176.6 (4) | C32—C27—P3—C33 | 93.8 (4) |
C32—C27—C28—C29 | −1.4 (8) | C28—C27—P3—Cu1 | 146.0 (4) |
P3—C27—C28—C29 | −177.0 (4) | C32—C27—P3—Cu1 | −29.7 (5) |
C27—C28—C29—C30 | 1.7 (8) | C44—C39—P3—C27 | 80.6 (4) |
C28—C29—C30—C31 | −1.8 (8) | C40—C39—P3—C27 | −100.9 (5) |
C29—C30—C31—C32 | 1.6 (8) | C44—C39—P3—C33 | −170.6 (4) |
C30—C31—C32—C27 | −1.2 (8) | C40—C39—P3—C33 | 7.9 (5) |
C28—C27—C32—C31 | 1.1 (8) | C44—C39—P3—Cu1 | −50.0 (4) |
P3—C27—C32—C31 | 176.9 (4) | C40—C39—P3—Cu1 | 128.5 (4) |
C38—C33—C34—C35 | 1.3 (7) | C38—C33—P3—C27 | −17.6 (5) |
P3—C33—C34—C35 | 173.5 (4) | C34—C33—P3—C27 | 170.6 (4) |
C33—C34—C35—C36 | −2.5 (7) | C38—C33—P3—C39 | −125.8 (4) |
C34—C35—C36—C37 | 2.2 (8) | C34—C33—P3—C39 | 62.4 (4) |
C35—C36—C37—C38 | −0.8 (8) | C38—C33—P3—Cu1 | 112.0 (4) |
C36—C37—C38—C33 | −0.3 (8) | C34—C33—P3—Cu1 | −59.7 (4) |
C34—C33—C38—C37 | 0.1 (7) | Cu1—O1—S1—O2 | 115.2 (3) |
P3—C33—C38—C37 | −171.7 (4) | Cu1—O1—S1—N1 | −12.2 (3) |
C44—C39—C40—C41 | 0.4 (7) | Cu1—O1—S1—C1 | −127.9 (3) |
P3—C39—C40—C41 | −178.1 (4) | P1—N1—S1—O2 | −157.4 (3) |
C39—C40—C41—C42 | −1.1 (8) | P1—N1—S1—O1 | −27.6 (4) |
C40—C41—C42—C43 | 1.0 (8) | P1—N1—S1—C1 | 88.2 (3) |
C41—C42—C43—C44 | −0.2 (8) | C6—C1—S1—O2 | −18.7 (5) |
C42—C43—C44—C39 | −0.5 (8) | C2—C1—S1—O2 | 161.2 (4) |
C40—C39—C44—C43 | 0.4 (8) | C6—C1—S1—O1 | −141.2 (4) |
P3—C39—C44—C43 | 179.0 (4) | C2—C1—S1—O1 | 38.7 (5) |
Cu1—O3—P1—O5 | 100.4 (2) | C6—C1—S1—N1 | 98.7 (4) |
Cu1—O3—P1—O4 | −150.0 (2) | C2—C1—S1—N1 | −81.5 (5) |
Acknowledgements
The authors are grateful to Dr Y. S. Moroz for kind assistance in solving and refining the structure.
References
Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. B. (2014). Ligands. Synthesis, Characterization and Role in Biotechnology, pp. 199–248. New York: NOVA Publishers. Google Scholar
Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. 5, 1099–1106. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gawryszewska, P., Moroz, O. V., Trush, V. A., Kulesza, D. & Amirkhanov, V. M. (2011). J. Photochem. Photobiol. A Chem. 217, 1–9. Web of Science CSD CrossRef CAS Google Scholar
Kariaka, N. S., Trush, V. A., Medviediev, V. V., Sliva, T. Y. & Amirkhanov, V. M. (2013). Acta Cryst. E69, m143. CSD CrossRef IUCr Journals Google Scholar
Kirsanov, A. V. (1965). In Fosfazosoedineniya (Phosphazo Compounds). Kiev: Naukova Dumka. Google Scholar
Kishino, S. & Saito, S. (1979). US Patent No. 4 161524. Google Scholar
Moroz, O. V., Trush, V. A., Konovalova, I. S., Shishkin, O. V., Moroz, Y. S., Demeshko, S. & Amirkhanov, V. M. (2009). Polyhedron, 28, 1331–1335. Web of Science CSD CrossRef CAS Google Scholar
Moroz, O. V., Trush, V. A., Znovjyak, K. O., Konovalova, I. S., Omelchenko, I. V., Sliva, T. Yu., Shishkin, O. V. & Amirkhanov, V. M. (2012). J. Mol. Struct. 1017, 109–114. Web of Science CSD CrossRef CAS Google Scholar
Nagashima, H., Ozaki, N., Ishii, M., Seki, K., Washiyama, M. & Itoh, K. (1993). J. Org. Chem. 58, 464–470. CrossRef CAS Web of Science Google Scholar
Nondek, L., Hun, L. G., Wichterlova, B. & Krupicka, S. (1987). J. Mol. Catal. 42, 51–55. CrossRef CAS Web of Science Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tarkhanova, I. G., Smirnov, V. V. & Rostovshchikova, T. N. (2001). Kinet. Katal. 42, 216–222. Web of Science CrossRef Google Scholar
Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2011). Acta Cryst. E67, m369–m370. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Verat, A. Y., Sokolov, F. D., Zabirov, N. G., Babashkina, M. G., Krivolapov, D. B., Brusko, V. V. & Litvinov, I. A. (2006). Inorg. Chim. Acta, 359, 475–483. Web of Science CrossRef CAS Google Scholar
Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23. Web of Science CrossRef CAS Google Scholar
Yang, R.-N., Wang, D.-M., Liu, Y.-F. & Jin, D.-M. (2001). Polyhedron, 20, 585–590. Web of Science CSD CrossRef CAS Google Scholar
Yizhak, R. V., Znovjyak, K. O., Ovchynnikov, V. A., Sliva, T. Yu., Konovalova, I. S., Medviediev, V. V., Shishkin, O. V. & Amirkhanov, V. M. (2013). Polyhedron, 62, 293–299. Web of Science CSD CrossRef CAS Google Scholar
Zabirov, N. G., Verat, A. Yu., Sokolov, F. D., Babashkina, M. G., Krivolapov, D. B. & Brusko, V. V. (2003). Mendeleev Commun. 13, 163–164. Web of Science CSD CrossRef Google Scholar
Zazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Mol. Catal. A Chem. 253, 234–238. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.