metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
catena-Poly[[lithium-μ2-(dihydrogen pyrazine-2,3,5,6-tetracarboxylato)-κ6O2,N1,O6;O3,N4,O5-lithium-di-μ-aqua-κ4O:O] 2.5-hydrate]
aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl
(Received 29 April 2014; accepted 21 May 2014; online 24 May 2014)
The title coordination polymer, {[Li2(C8H2N2O8)(H2O)2]·2.5H2O}n, is built up from molecular ribbons propagating in the c-axis direction of the orthorhombic unit cell; the ligand bridges two Li+ ions using both its N,O,O′-bonding sites and adjacent Li+ ions are bridged by pairs of water molecules. The coordination geometry of the metal ion is distorted trigonal bipyramidal, with the ligand O atoms in the axial sites. Two of the carboxylate groups of the ligand remain protonated and form short symmetric O—H⋯O hydrogen bonds. In the crystal, the ribbons interact via a network of O—H⋯O hydrogen bonds in which coordinating water molecules act as donors and carboxylate O atoms within adjacent ribbons act as acceptors, giving rise to a three-dimensional framework. O—H⋯N interactions are also observed. The asymmetric unit contains quarter of the ligand and the complete ligand has 2/m symmetry; the Li+ ion lies on a special position with m.. site symmetry. Both bridging water molecules have m2m site symmetry and both lattice water molecules have m.. site symmetry; one of the latter was modelled with a site occupancy of 0.25.
Related literature
For the structures of related lithium complexes with pyrazine-2,3,5,6-tetracarboxylate and water ligands, see: Starosta & Leciejewicz (2010
, 2014
).
Experimental
Data collection
Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011 ) Tmin = 0.701, Tmax = 1.000 7496 measured reflections 1151 independent reflections 997 reflections with I > 2σ(I) Rint = 0.029
|
Li1—O1 | 2.1538 (13) | Li1—O3 | 1.982 (4) | Li1—O4 | 1.976 (4) | Li1—N1 | 2.116 (3) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O6—H62⋯N1 | 0.87 (2) | 2.28 (11) | 2.886 (12) | 127 (12) | O5—H5⋯O1i | 0.85 (2) | 1.95 (2) | 2.7711 (13) | 163 (2) | O3—H3⋯O5ii | 0.82 (4) | 1.92 (4) | 2.730 (2) | 173 (4) | O4—H4⋯O5iii | 0.90 (3) | 1.83 (3) | 2.726 (2) | 179 (3) | O2—H2⋯O2iv | 1.21 (1) | 1.21 (1) | 2.409 (3) | 175 (1) | Symmetry codes: (i) ; (ii) x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, -y, -z+1. | |
Data collection: CrysAlis PRO (Agilent, 2011
); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: SHELXTL (Sheldrick, 2008
); software used to prepare material for publication: SHELXTL.
Supporting information
An aqueous solution containing 2 mmol of lithium nitrate and a small excess over 1 mmol of pyrazine-2,3,5,6-tetracarboxylic acid dihydrate was heated under reflux with stirring at ca 330 K for 10 h. After cooling to room temperature the solution was left to evaporate. Three days later well formed colorless blocks of the title compound were found, which were washed with cold methanol and dried in the air.
Water and carcoxylate H atoms were found in the Fourier map and refined isotropically.
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
catena-Poly[[lithium-µ
2-(dihydrogen pyrazine-2,3,5,6-tetracarboxylato)-
κ6O2,
N1,
O6;
O3,
N4,
O5-lithium-di-µ-aqua-
κ4O:
O] 2.5-hydrate]
top Crystal data top [Li(C8H2N2O8)(H2O)2]·2.5H2O | F(000) = 716 |
Mr = 349.06 | Dx = 1.556 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 3296 reflections |
a = 12.0554 (3) Å | θ = 3.8–31.9° |
b = 6.39040 (17) Å | µ = 0.15 mm−1 |
c = 19.3383 (4) Å | T = 293 K |
V = 1489.80 (6) Å3 | Block, colourless |
Z = 4 | 0.24 × 0.20 × 0.05 mm |
Data collection top Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer | 1151 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 997 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 16.0131 pixels mm-1 | θmax = 30.0°, θmin = 3.4° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −8→8 |
Tmin = 0.701, Tmax = 1.000 | l = −27→27 |
7496 measured reflections | |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0592P)2 + 0.9014P] where P = (Fo2 + 2Fc2)/3 |
1151 reflections | (Δ/σ)max < 0.001 |
85 parameters | Δρmax = 0.25 e Å−3 |
3 restraints | Δρmin = −0.29 e Å−3 |
Crystal data top [Li(C8H2N2O8)(H2O)2]·2.5H2O | V = 1489.80 (6) Å3 |
Mr = 349.06 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 12.0554 (3) Å | µ = 0.15 mm−1 |
b = 6.39040 (17) Å | T = 293 K |
c = 19.3383 (4) Å | 0.24 × 0.20 × 0.05 mm |
Data collection top Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer | 1151 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 997 reflections with I > 2σ(I) |
Tmin = 0.701, Tmax = 1.000 | Rint = 0.029 |
7496 measured reflections | |
Refinement top R[F2 > 2σ(F2)] = 0.042 | 3 restraints |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.25 e Å−3 |
1151 reflections | Δρmin = −0.29 e Å−3 |
85 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
O1 | 0.67161 (8) | 0.07053 (19) | 0.35355 (5) | 0.0435 (3) | |
O4 | 0.5000 | −0.1345 (3) | 0.2500 | 0.0388 (4) | |
O2 | 0.79263 (8) | 0.04117 (18) | 0.43921 (5) | 0.0413 (3) | |
O5 | 0.33035 (11) | 0.4166 (2) | 0.7500 | 0.0379 (3) | |
O3 | 0.5000 | 0.3004 (4) | 0.2500 | 0.0533 (6) | |
N1 | 0.5000 | 0.0321 (2) | 0.43101 (7) | 0.0270 (3) | |
C2 | 0.59630 (8) | 0.01679 (18) | 0.46407 (6) | 0.0259 (3) | |
C7 | 0.69421 (10) | 0.0441 (2) | 0.41465 (6) | 0.0310 (3) | |
Li1 | 0.5000 | 0.0823 (7) | 0.32284 (17) | 0.0463 (8) | |
H4 | 0.555 (2) | −0.229 (5) | 0.2500 | 0.070 (9)* | |
H3 | 0.445 (3) | 0.377 (7) | 0.2500 | 0.097 (13)* | |
H5 | 0.2920 (19) | 0.432 (3) | 0.7135 (10) | 0.068 (7)* | |
H2 | 0.797 (3) | 0.0000 | 0.5000 | 0.097 (12)* | |
O6 | 0.5000 | 0.4486 (17) | 0.3733 (5) | 0.077 (2) | 0.25 |
H61 | 0.5000 | 0.578 (7) | 0.386 (7) | 0.115* | 0.25 |
H62 | 0.5000 | 0.39 (2) | 0.413 (4) | 0.115* | 0.25 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0302 (5) | 0.0732 (8) | 0.0270 (5) | −0.0022 (4) | 0.0051 (3) | 0.0037 (4) |
O4 | 0.0299 (9) | 0.0406 (10) | 0.0459 (11) | 0.000 | 0.000 | 0.000 |
O2 | 0.0207 (4) | 0.0659 (7) | 0.0374 (5) | −0.0024 (4) | 0.0029 (3) | 0.0018 (4) |
O5 | 0.0240 (6) | 0.0562 (9) | 0.0334 (7) | 0.0024 (6) | 0.000 | 0.000 |
O3 | 0.0336 (11) | 0.0356 (11) | 0.0908 (18) | 0.000 | 0.000 | 0.000 |
N1 | 0.0207 (6) | 0.0370 (7) | 0.0232 (6) | 0.000 | 0.000 | −0.0010 (5) |
C2 | 0.0198 (5) | 0.0335 (6) | 0.0244 (5) | −0.0005 (4) | 0.0010 (4) | −0.0025 (4) |
C7 | 0.0226 (5) | 0.0410 (7) | 0.0295 (6) | −0.0015 (4) | 0.0048 (4) | −0.0021 (5) |
Li1 | 0.0421 (18) | 0.070 (2) | 0.0271 (15) | 0.000 | 0.000 | 0.0075 (15) |
O6 | 0.049 (4) | 0.101 (7) | 0.081 (5) | 0.000 | 0.000 | −0.020 (5) |
Geometric parameters (Å, º) top O1—C7 | 1.2242 (16) | O3—Li1ii | 1.982 (4) |
Li1—O1 | 2.1538 (13) | O3—H3 | 0.82 (4) |
Li1—O1i | 2.1538 (13) | N1—C2 | 1.3289 (12) |
Li1—O3 | 1.982 (4) | N1—C2i | 1.3289 (12) |
Li1—O4 | 1.976 (4) | C2—C2iii | 1.406 (2) |
Li1—N1 | 2.116 (3) | C2—C7 | 1.5287 (15) |
O4—Li1ii | 1.976 (4) | Li1—O6 | 2.536 (11) |
O4—H4 | 0.90 (3) | Li1—Li1ii | 2.817 (7) |
O2—C7 | 1.2780 (15) | O6—H61 | 0.86 (2) |
O2—H2 | 1.2057 (19) | O6—H62 | 0.87 (2) |
O5—H5 | 0.85 (2) | | |
| | | |
C7—O1—Li1 | 119.00 (12) | O3—Li1—O1 | 102.74 (10) |
Li1ii—O4—Li1 | 91.0 (2) | N1—Li1—O1 | 73.87 (9) |
Li1ii—O4—H4 | 118.2 (11) | O4—Li1—O1i | 99.91 (12) |
Li1—O4—H4 | 118.2 (11) | O3—Li1—O1i | 102.74 (10) |
C7—O2—H2 | 113.8 (18) | N1—Li1—O1i | 73.87 (9) |
Li1—O3—Li1ii | 90.6 (3) | O1—Li1—O1i | 147.72 (17) |
Li1—O3—H3 | 114.8 (18) | O4—Li1—O6 | 157.2 (3) |
Li1ii—O3—H3 | 114.8 (18) | O3—Li1—O6 | 67.9 (3) |
C2—N1—C2i | 121.76 (13) | N1—Li1—O6 | 76.1 (3) |
C2—N1—Li1 | 119.12 (7) | O1—Li1—O6 | 85.76 (13) |
C2i—N1—Li1 | 119.12 (7) | O1i—Li1—O6 | 85.76 (13) |
N1—C2—C2iii | 119.12 (7) | O4—Li1—Li1ii | 44.52 (11) |
N1—C2—C7 | 111.44 (10) | O3—Li1—Li1ii | 44.70 (13) |
C2iii—C2—C7 | 129.43 (6) | N1—Li1—Li1ii | 171.28 (12) |
O1—C7—O2 | 124.56 (11) | O1—Li1—Li1ii | 106.01 (9) |
O1—C7—C2 | 116.56 (11) | O1i—Li1—Li1ii | 106.01 (9) |
O2—C7—C2 | 118.87 (11) | O6—Li1—Li1ii | 112.6 (3) |
O4—Li1—O3 | 89.22 (15) | Li1—O6—H61 | 174 (10) |
O4—Li1—N1 | 126.8 (2) | Li1—O6—H62 | 85 (10) |
O3—Li1—N1 | 144.0 (2) | H61—O6—H62 | 101 (3) |
O4—Li1—O1 | 99.91 (12) | | |
| | | |
C2i—N1—C2—C2iii | 0.1 (3) | Li1ii—O3—Li1—O6 | 180.000 (2) |
Li1—N1—C2—C2iii | −179.94 (18) | C2—N1—Li1—O4 | 90.02 (13) |
C2i—N1—C2—C7 | −178.85 (10) | C2i—N1—Li1—O4 | −90.02 (13) |
Li1—N1—C2—C7 | 1.1 (2) | C2—N1—Li1—O3 | −89.98 (13) |
Li1—O1—C7—O2 | −177.66 (16) | C2i—N1—Li1—O3 | 89.98 (13) |
Li1—O1—C7—C2 | 1.3 (2) | C2—N1—Li1—O1 | −0.42 (18) |
N1—C2—C7—O1 | −1.57 (17) | C2i—N1—Li1—O1 | 179.54 (12) |
C2iii—C2—C7—O1 | 179.61 (16) | C2—N1—Li1—O1i | −179.55 (12) |
N1—C2—C7—O2 | 177.46 (12) | C2i—N1—Li1—O1i | 0.42 (18) |
C2iii—C2—C7—O2 | −1.4 (2) | C2—N1—Li1—O6 | −89.98 (13) |
Li1ii—O4—Li1—O3 | 0.0 | C2i—N1—Li1—O6 | 89.98 (13) |
Li1ii—O4—Li1—N1 | 180.0 | C2—N1—Li1—Li1ii | 90.02 (13) |
Li1ii—O4—Li1—O1 | −102.80 (12) | C2i—N1—Li1—Li1ii | −90.02 (13) |
Li1ii—O4—Li1—O1i | 102.80 (12) | C7—O1—Li1—O4 | −126.14 (15) |
Li1ii—O4—Li1—O6 | 0.000 (4) | C7—O1—Li1—O3 | 142.40 (14) |
Li1ii—O3—Li1—O4 | 0.0 | C7—O1—Li1—N1 | −0.56 (19) |
Li1ii—O3—Li1—N1 | 180.0 | C7—O1—Li1—O1i | 1.0 (5) |
Li1ii—O3—Li1—O1 | 99.99 (14) | C7—O1—Li1—O6 | 76.2 (3) |
Li1ii—O3—Li1—O1i | −99.99 (14) | C7—O1—Li1—Li1ii | −171.48 (10) |
Symmetry codes: (i) −x+1, y, z; (ii) x, y, −z+1/2; (iii) x, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···N1 | 0.87 (2) | 2.28 (11) | 2.886 (12) | 127 (12) |
O5—H5···O1iv | 0.85 (2) | 1.95 (2) | 2.7711 (13) | 163 (2) |
O3—H3···O5v | 0.82 (4) | 1.92 (4) | 2.730 (2) | 173 (4) |
O4—H4···O5vi | 0.90 (3) | 1.83 (3) | 2.726 (2) | 179 (3) |
O2—H2···O2iii | 1.21 (1) | 1.21 (1) | 2.409 (3) | 175 (1) |
Symmetry codes: (iii) x, −y, −z+1; (iv) x−1/2, −y+1/2, −z+1; (v) x, −y+1, −z+1; (vi) −x+1, −y, −z+1. |
Selected bond lengths (Å) topLi1—O1 | 2.1538 (13) | Li1—O4 | 1.976 (4) |
Li1—O3 | 1.982 (4) | Li1—N1 | 2.116 (3) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O6—H62···N1 | 0.87 (2) | 2.28 (11) | 2.886 (12) | 127 (12) |
O5—H5···O1i | 0.85 (2) | 1.95 (2) | 2.7711 (13) | 163 (2) |
O3—H3···O5ii | 0.82 (4) | 1.92 (4) | 2.730 (2) | 173 (4) |
O4—H4···O5iii | 0.90 (3) | 1.83 (3) | 2.726 (2) | 179 (3) |
O2—H2···O2iv | 1.206 (3) | 1.206 (3) | 2.409 (3) | 175.3 (5) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) x, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x, −y, −z+1. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2014). Acta Cryst. E70, m172. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
The structure of the title compound is composed of molecular ribbons propagating in the crystal [001] direction. The structural unit of a ribbon is built of a centro-symmetric ligand molecule which bridges two Li ions using its both N,O,O bonding sites. Two water molecules chelated simultaneously to Li ions belonging to adjacent structural units, bridge them into a molecular ribbon [Fig.1]. The coordination environment of a Li ion is distorted trigonal bipyramidal. Its equatorial plane is composed of coplanar Li1, N1,O3,O4 atoms; O1 and O1i are at the apices. The Li—O and Li—N bond distances are usual (Table 2). Within a ligand two carboxylate groups remain protonated to maintain charge balance and form short, intramolecular symmetric hydrogen bonds of 2.409 (1) Å (Table 3). The ligand ring is almost planar (r.m.s. is 0.0003 (1) Å; the carboxylate C17/O1/O12 group makes with it a dihedral angle of 2.6 (1)°. Bond distances and bond angles within the hetero-ring do not differ from those reported in the structures of two other Li complexes with the title ligand (Starosta & Leciejewicz, 2010, 2014). The Fourier map shows two solvation water molecules (O5 and O6), both at special positions. The refinemt reveals a disorder of the O6 aqua molecule with 0.25 positional occupancy i.e. two molecules at random in a unit cell. This molecule locates coplanarly with the N1, O3, O4 and Li1 atoms at a distance of 2.538 (2) Å from the latter. The ribbons are held together by a system of hydrogen bonds in which coordinated and solvation water molecules act as donors and carboxylate O atoms as acceptors giving rise to a three-dimensional framework. The structures of two other Li complexes with the title ligand have been recently reported. The structural unit of the title polymer is closely related to that one observed in the structure of the first compound which cosists of discrete dimeric molecules built of two aqua-coordinated Li ions bridged by the ligand molecule via both its N,O,O bonding sites (Starosta & Leciejewicz, 2014). The structure of the second complex is built of anions each consisting of an aqua coordinated Li ion cheleted to a doubly deprotonated ligand molecule and of aqua coordinated Li cations (Starosta & Leciejewicz, 2010).