metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m234-m235

catena-Poly[[lithium-μ2-(di­hydrogen pyrazine-2,3,5,6-tetra­carboxyl­ato)-κ6O2,N1,O6;O3,N4,O5-lithium-di-μ-aqua-κ4O:O] 2.5-hydrate]

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 29 April 2014; accepted 21 May 2014; online 24 May 2014)

The title coordination polymer, {[Li2(C8H2N2O8)(H2O)2]·2.5H2O}n, is built up from mol­ecular ribbons propagating in the c-axis direction of the ortho­rhom­bic unit cell; the ligand bridges two Li+ ions using both its N,O,O′-bonding sites and adjacent Li+ ions are bridged by pairs of water mol­ecules. The coordination geometry of the metal ion is distorted trigonal bipyramidal, with the ligand O atoms in the axial sites. Two of the carboxyl­ate groups of the ligand remain protonated and form short symmetric O—H⋯O hydrogen bonds. In the crystal, the ribbons inter­act via a network of O—H⋯O hydrogen bonds in which coordinating water mol­ecules act as donors and carboxyl­ate O atoms within adjacent ribbons act as acceptors, giving rise to a three-dimensional framework. O—H⋯N inter­actions are also observed. The asymmetric unit contains quarter of the ligand and the complete ligand has 2/m symmetry; the Li+ ion lies on a special position with m.. site symmetry. Both bridging water mol­ecules have m2m site symmetry and both lattice water mol­ecules have m.. site symmetry; one of the latter was modelled with a site occupancy of 0.25.

Related literature

For the structures of related lithium complexes with pyrazine-2,3,5,6-tetra­carboxyl­ate and water ligands, see: Starosta & Leciejewicz (2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561-m1562.], 2014[Starosta, W. & Leciejewicz, J. (2014). Acta Cryst. E70, m172.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C8H2N2O8)(H2O)2]·2.5H2O

  • Mr = 174.53

  • Orthorhombic, C m c m

  • a = 12.0554 (3) Å

  • b = 6.39040 (17) Å

  • c = 19.3383 (4) Å

  • V = 1489.80 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 567 K

  • 0.24 × 0.20 × 0.05 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.701, Tmax = 1.000

  • 7496 measured reflections

  • 1151 independent reflections

  • 997 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.07

  • 1151 reflections

  • 85 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O1 2.1538 (13)
Li1—O3 1.982 (4)
Li1—O4 1.976 (4)
Li1—N1 2.116 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H62⋯N1 0.87 (2) 2.28 (11) 2.886 (12) 127 (12)
O5—H5⋯O1i 0.85 (2) 1.95 (2) 2.7711 (13) 163 (2)
O3—H3⋯O5ii 0.82 (4) 1.92 (4) 2.730 (2) 173 (4)
O4—H4⋯O5iii 0.90 (3) 1.83 (3) 2.726 (2) 179 (3)
O2—H2⋯O2iv 1.21 (1) 1.21 (1) 2.409 (3) 175 (1)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound is composed of molecular ribbons propagating in the crystal [001] direction. The structural unit of a ribbon is built of a centro-symmetric ligand molecule which bridges two Li ions using its both N,O,O bonding sites. Two water molecules chelated simultaneously to Li ions belonging to adjacent structural units, bridge them into a molecular ribbon [Fig.1]. The coordination environment of a Li ion is distorted trigonal bipyramidal. Its equatorial plane is composed of coplanar Li1, N1,O3,O4 atoms; O1 and O1i are at the apices. The Li—O and Li—N bond distances are usual (Table 2). Within a ligand two carboxylate groups remain protonated to maintain charge balance and form short, intramolecular symmetric hydrogen bonds of 2.409 (1) Å (Table 3). The ligand ring is almost planar (r.m.s. is 0.0003 (1) Å; the carboxylate C17/O1/O12 group makes with it a dihedral angle of 2.6 (1)°. Bond distances and bond angles within the hetero-ring do not differ from those reported in the structures of two other Li complexes with the title ligand (Starosta & Leciejewicz, 2010, 2014). The Fourier map shows two solvation water molecules (O5 and O6), both at special positions. The refinemt reveals a disorder of the O6 aqua molecule with 0.25 positional occupancy i.e. two molecules at random in a unit cell. This molecule locates coplanarly with the N1, O3, O4 and Li1 atoms at a distance of 2.538 (2) Å from the latter. The ribbons are held together by a system of hydrogen bonds in which coordinated and solvation water molecules act as donors and carboxylate O atoms as acceptors giving rise to a three-dimensional framework. The structures of two other Li complexes with the title ligand have been recently reported. The structural unit of the title polymer is closely related to that one observed in the structure of the first compound which cosists of discrete dimeric molecules built of two aqua-coordinated Li ions bridged by the ligand molecule via both its N,O,O bonding sites (Starosta & Leciejewicz, 2014). The structure of the second complex is built of anions each consisting of an aqua coordinated Li ion cheleted to a doubly deprotonated ligand molecule and of aqua coordinated Li cations (Starosta & Leciejewicz, 2010).

Related literature top

For the structures of related lithium complexes with pyrazine-2,3,5,6-tetracarboxylate and water ligands, see: Starosta & Leciejewicz (2010, 2014).

Experimental top

An aqueous solution containing 2 mmol of lithium nitrate and a small excess over 1 mmol of pyrazine-2,3,5,6-tetracarboxylic acid dihydrate was heated under reflux with stirring at ca 330 K for 10 h. After cooling to room temperature the solution was left to evaporate. Three days later well formed colorless blocks of the title compound were found, which were washed with cold methanol and dried in the air.

Refinement top

Water and carcoxylate H atoms were found in the Fourier map and refined isotropically.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of a [001] chain in the title compound with 50% probability displacement ellipsoids. Symmetry code: i x, y, -z + 1; ii -x + 1, y, z; iii x, -y, -z + 1.
[Figure 2] Fig. 2. The alignment of the ribbons viewed along the crystal a direction.
catena-Poly[[lithium-µ2-(dihydrogen pyrazine-2,3,5,6-tetracarboxylato)-κ6O2,N1,O6;O3,N4,O5-lithium-di-µ-aqua-κ4O:O] 2.5-hydrate] top
Crystal data top
[Li(C8H2N2O8)(H2O)2]·2.5H2OF(000) = 716
Mr = 349.06Dx = 1.556 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 3296 reflections
a = 12.0554 (3) Åθ = 3.8–31.9°
b = 6.39040 (17) ŵ = 0.15 mm1
c = 19.3383 (4) ÅT = 293 K
V = 1489.80 (6) Å3Block, colourless
Z = 40.24 × 0.20 × 0.05 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1151 independent reflections
Radiation source: SuperNova (Mo) X-ray Source997 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 16.0131 pixels mm-1θmax = 30.0°, θmin = 3.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 88
Tmin = 0.701, Tmax = 1.000l = 2727
7496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.9014P]
where P = (Fo2 + 2Fc2)/3
1151 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Li(C8H2N2O8)(H2O)2]·2.5H2OV = 1489.80 (6) Å3
Mr = 349.06Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 12.0554 (3) ŵ = 0.15 mm1
b = 6.39040 (17) ÅT = 293 K
c = 19.3383 (4) Å0.24 × 0.20 × 0.05 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
1151 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
997 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.029
7496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
1151 reflectionsΔρmin = 0.29 e Å3
85 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.67161 (8)0.07053 (19)0.35355 (5)0.0435 (3)
O40.50000.1345 (3)0.25000.0388 (4)
O20.79263 (8)0.04117 (18)0.43921 (5)0.0413 (3)
O50.33035 (11)0.4166 (2)0.75000.0379 (3)
O30.50000.3004 (4)0.25000.0533 (6)
N10.50000.0321 (2)0.43101 (7)0.0270 (3)
C20.59630 (8)0.01679 (18)0.46407 (6)0.0259 (3)
C70.69421 (10)0.0441 (2)0.41465 (6)0.0310 (3)
Li10.50000.0823 (7)0.32284 (17)0.0463 (8)
H40.555 (2)0.229 (5)0.25000.070 (9)*
H30.445 (3)0.377 (7)0.25000.097 (13)*
H50.2920 (19)0.432 (3)0.7135 (10)0.068 (7)*
H20.797 (3)0.00000.50000.097 (12)*
O60.50000.4486 (17)0.3733 (5)0.077 (2)0.25
H610.50000.578 (7)0.386 (7)0.115*0.25
H620.50000.39 (2)0.413 (4)0.115*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (5)0.0732 (8)0.0270 (5)0.0022 (4)0.0051 (3)0.0037 (4)
O40.0299 (9)0.0406 (10)0.0459 (11)0.0000.0000.000
O20.0207 (4)0.0659 (7)0.0374 (5)0.0024 (4)0.0029 (3)0.0018 (4)
O50.0240 (6)0.0562 (9)0.0334 (7)0.0024 (6)0.0000.000
O30.0336 (11)0.0356 (11)0.0908 (18)0.0000.0000.000
N10.0207 (6)0.0370 (7)0.0232 (6)0.0000.0000.0010 (5)
C20.0198 (5)0.0335 (6)0.0244 (5)0.0005 (4)0.0010 (4)0.0025 (4)
C70.0226 (5)0.0410 (7)0.0295 (6)0.0015 (4)0.0048 (4)0.0021 (5)
Li10.0421 (18)0.070 (2)0.0271 (15)0.0000.0000.0075 (15)
O60.049 (4)0.101 (7)0.081 (5)0.0000.0000.020 (5)
Geometric parameters (Å, º) top
O1—C71.2242 (16)O3—Li1ii1.982 (4)
Li1—O12.1538 (13)O3—H30.82 (4)
Li1—O1i2.1538 (13)N1—C21.3289 (12)
Li1—O31.982 (4)N1—C2i1.3289 (12)
Li1—O41.976 (4)C2—C2iii1.406 (2)
Li1—N12.116 (3)C2—C71.5287 (15)
O4—Li1ii1.976 (4)Li1—O62.536 (11)
O4—H40.90 (3)Li1—Li1ii2.817 (7)
O2—C71.2780 (15)O6—H610.86 (2)
O2—H21.2057 (19)O6—H620.87 (2)
O5—H50.85 (2)
C7—O1—Li1119.00 (12)O3—Li1—O1102.74 (10)
Li1ii—O4—Li191.0 (2)N1—Li1—O173.87 (9)
Li1ii—O4—H4118.2 (11)O4—Li1—O1i99.91 (12)
Li1—O4—H4118.2 (11)O3—Li1—O1i102.74 (10)
C7—O2—H2113.8 (18)N1—Li1—O1i73.87 (9)
Li1—O3—Li1ii90.6 (3)O1—Li1—O1i147.72 (17)
Li1—O3—H3114.8 (18)O4—Li1—O6157.2 (3)
Li1ii—O3—H3114.8 (18)O3—Li1—O667.9 (3)
C2—N1—C2i121.76 (13)N1—Li1—O676.1 (3)
C2—N1—Li1119.12 (7)O1—Li1—O685.76 (13)
C2i—N1—Li1119.12 (7)O1i—Li1—O685.76 (13)
N1—C2—C2iii119.12 (7)O4—Li1—Li1ii44.52 (11)
N1—C2—C7111.44 (10)O3—Li1—Li1ii44.70 (13)
C2iii—C2—C7129.43 (6)N1—Li1—Li1ii171.28 (12)
O1—C7—O2124.56 (11)O1—Li1—Li1ii106.01 (9)
O1—C7—C2116.56 (11)O1i—Li1—Li1ii106.01 (9)
O2—C7—C2118.87 (11)O6—Li1—Li1ii112.6 (3)
O4—Li1—O389.22 (15)Li1—O6—H61174 (10)
O4—Li1—N1126.8 (2)Li1—O6—H6285 (10)
O3—Li1—N1144.0 (2)H61—O6—H62101 (3)
O4—Li1—O199.91 (12)
C2i—N1—C2—C2iii0.1 (3)Li1ii—O3—Li1—O6180.000 (2)
Li1—N1—C2—C2iii179.94 (18)C2—N1—Li1—O490.02 (13)
C2i—N1—C2—C7178.85 (10)C2i—N1—Li1—O490.02 (13)
Li1—N1—C2—C71.1 (2)C2—N1—Li1—O389.98 (13)
Li1—O1—C7—O2177.66 (16)C2i—N1—Li1—O389.98 (13)
Li1—O1—C7—C21.3 (2)C2—N1—Li1—O10.42 (18)
N1—C2—C7—O11.57 (17)C2i—N1—Li1—O1179.54 (12)
C2iii—C2—C7—O1179.61 (16)C2—N1—Li1—O1i179.55 (12)
N1—C2—C7—O2177.46 (12)C2i—N1—Li1—O1i0.42 (18)
C2iii—C2—C7—O21.4 (2)C2—N1—Li1—O689.98 (13)
Li1ii—O4—Li1—O30.0C2i—N1—Li1—O689.98 (13)
Li1ii—O4—Li1—N1180.0C2—N1—Li1—Li1ii90.02 (13)
Li1ii—O4—Li1—O1102.80 (12)C2i—N1—Li1—Li1ii90.02 (13)
Li1ii—O4—Li1—O1i102.80 (12)C7—O1—Li1—O4126.14 (15)
Li1ii—O4—Li1—O60.000 (4)C7—O1—Li1—O3142.40 (14)
Li1ii—O3—Li1—O40.0C7—O1—Li1—N10.56 (19)
Li1ii—O3—Li1—N1180.0C7—O1—Li1—O1i1.0 (5)
Li1ii—O3—Li1—O199.99 (14)C7—O1—Li1—O676.2 (3)
Li1ii—O3—Li1—O1i99.99 (14)C7—O1—Li1—Li1ii171.48 (10)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1/2; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···N10.87 (2)2.28 (11)2.886 (12)127 (12)
O5—H5···O1iv0.85 (2)1.95 (2)2.7711 (13)163 (2)
O3—H3···O5v0.82 (4)1.92 (4)2.730 (2)173 (4)
O4—H4···O5vi0.90 (3)1.83 (3)2.726 (2)179 (3)
O2—H2···O2iii1.21 (1)1.21 (1)2.409 (3)175 (1)
Symmetry codes: (iii) x, y, z+1; (iv) x1/2, y+1/2, z+1; (v) x, y+1, z+1; (vi) x+1, y, z+1.
Selected bond lengths (Å) top
Li1—O12.1538 (13)Li1—O41.976 (4)
Li1—O31.982 (4)Li1—N12.116 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H62···N10.87 (2)2.28 (11)2.886 (12)127 (12)
O5—H5···O1i0.85 (2)1.95 (2)2.7711 (13)163 (2)
O3—H3···O5ii0.82 (4)1.92 (4)2.730 (2)173 (4)
O4—H4···O5iii0.90 (3)1.83 (3)2.726 (2)179 (3)
O2—H2···O2iv1.206 (3)1.206 (3)2.409 (3)175.3 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m1561–m1562.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2014). Acta Cryst. E70, m172.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m234-m235
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds