metal-organic compounds
Bis(1-methylpiperazine-1,4-diium) di-μ-bromido-bis[tetrabromidobismuthate(III)] dihydrate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: essidmanel@voila.fr
In the title hydrated salt, (C5H14N2)2[Bi2Br10]·2H2O, the complete [Bi2Br10]4− bioctahedron is generated by crystallographic inversion symmetry. The diprotonated piperazine ring adopts a chair conformation, with the methyl group occupying an equatorial position. In the crystal, the tetraanions and water molecules are linked by O—H⋯Br and O—H⋯(Br,Br) hydrogen bonds to generate [100] chains. The chains are crosslinked by N—H⋯Br, N—H⋯O and C—H⋯Br hydrogen bonds originating from the piperazinediium dications, thereby forming a three-dimensional network.
CCDC reference: 1000442
Related literature
For another decabromidodibismuthate(III) compound, see: Li et al. (2006). For related methylpiperazin-1,4-diium salts, see: Dutkiewicz et al. (2011); Essid et al. (2014). For related piperazine derivatives, see: Marouani et al. (2010); Essid et al. (2010).
Experimental
Crystal data
|
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).
Supporting information
CCDC reference: 1000442
10.1107/S1600536814009805/hb7225sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009805/hb7225Isup2.hkl
Bismuth(III) nitrate and 1-(methyl) piperazine were dissolved in a concentrated HBr solution in the presence of ethanol (40 ml) and water (20 ml) in a stoichiometric ratio. Colourless prisms of the title compound were obtained by slow evaporation of this solution at room temperature.
The hydrogen atoms bonded to oxygen atoms were located from a difference map and were allowed to refine using restraints [O—H = 0.95 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)]. The rest of the H atoms were treated as riding, with C—H = 0.96 Å (methyl), or C—H = 0.97 Å (methylene), or N—H = 0.91 Å (NH), or N—H = 0.90 Å (NH2) with Uiso(H) = 1.2Ueq(C or N).
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 50% probability level. Symmetry code: i: -x, -y, -z. | |
Fig. 2. Projection of the corrugated inorganic chains along the c axis. | |
Fig. 3. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted. |
(C5H14N2)2[Bi2Br10]·2H2O | F(000) = 1304 |
Mr = 1457.46 | Dx = 3.140 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9944 reflections |
a = 7.9263 (3) Å | θ = 2.8–27.5° |
b = 19.0424 (7) Å | µ = 24.38 mm−1 |
c = 12.5861 (4) Å | T = 150 K |
β = 125.770 (2)° | Prism, colourless |
V = 1541.35 (9) Å3 | 0.15 × 0.12 × 0.07 mm |
Z = 2 |
Bruker APEXII diffractometer | 3262 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −10→10 |
Tmin = 0.071, Tmax = 0.182 | k = −22→24 |
23912 measured reflections | l = −13→12 |
3525 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0151P)2 + 6.909P] where P = (Fo2 + 2Fc2)/3 |
3525 reflections | (Δ/σ)max = 0.041 |
136 parameters | Δρmax = 1.23 e Å−3 |
3 restraints | Δρmin = −1.52 e Å−3 |
(C5H14N2)2[Bi2Br10]·2H2O | V = 1541.35 (9) Å3 |
Mr = 1457.46 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9263 (3) Å | µ = 24.38 mm−1 |
b = 19.0424 (7) Å | T = 150 K |
c = 12.5861 (4) Å | 0.15 × 0.12 × 0.07 mm |
β = 125.770 (2)° |
Bruker APEXII diffractometer | 3525 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 3262 reflections with I > 2σ(I) |
Tmin = 0.071, Tmax = 0.182 | Rint = 0.051 |
23912 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 3 restraints |
wR(F2) = 0.056 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 1.23 e Å−3 |
3525 reflections | Δρmin = −1.52 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi | 0.10118 (2) | −0.407806 (8) | 0.622821 (15) | 0.01138 (6) | |
Br1 | 0.27752 (7) | −0.49972 (2) | 0.51922 (4) | 0.01697 (10) | |
Br2 | −0.00499 (8) | −0.31232 (3) | 0.41496 (5) | 0.02036 (11) | |
Br3 | −0.12297 (8) | −0.32553 (3) | 0.67787 (5) | 0.02123 (11) | |
Br4 | 0.25521 (8) | −0.49702 (3) | 0.83467 (5) | 0.02381 (12) | |
Br5 | 0.46641 (7) | −0.33162 (2) | 0.77789 (5) | 0.02014 (11) | |
O | 0.2175 (6) | 0.02902 (19) | 0.6937 (4) | 0.0248 (8) | |
N1 | 0.3077 (6) | −0.1749 (2) | 0.6194 (4) | 0.0145 (8) | |
H1 | 0.2760 | −0.2201 | 0.6249 | 0.017* | |
C1 | 0.4166 (8) | −0.1760 (3) | 0.5543 (5) | 0.0235 (11) | |
H1A | 0.3234 | −0.1933 | 0.4665 | 0.035* | |
H1B | 0.5361 | −0.2061 | 0.6025 | 0.035* | |
H1C | 0.4600 | −0.1292 | 0.5522 | 0.035* | |
C2 | 0.4472 (7) | −0.1466 (3) | 0.7560 (4) | 0.0167 (9) | |
H2A | 0.4885 | −0.0990 | 0.7534 | 0.020* | |
H2B | 0.5718 | −0.1751 | 0.8064 | 0.020* | |
C3 | 0.3371 (8) | −0.1467 (3) | 0.8219 (5) | 0.0195 (10) | |
H3A | 0.3068 | −0.1946 | 0.8317 | 0.023* | |
H3B | 0.4269 | −0.1261 | 0.9085 | 0.023* | |
N2 | 0.1400 (6) | −0.1059 (2) | 0.7427 (4) | 0.0168 (8) | |
H2C | 0.1693 | −0.0607 | 0.7387 | 0.020* | |
H2D | 0.0746 | −0.1073 | 0.7818 | 0.020* | |
C4 | 0.0000 (7) | −0.1347 (3) | 0.6073 (5) | 0.0184 (10) | |
H4A | −0.1254 | −0.1065 | 0.5570 | 0.022* | |
H4B | −0.0397 | −0.1824 | 0.6109 | 0.022* | |
C5 | 0.1080 (7) | −0.1344 (2) | 0.5413 (5) | 0.0177 (10) | |
H5A | 0.0174 | −0.1550 | 0.4548 | 0.021* | |
H5B | 0.1368 | −0.0863 | 0.5310 | 0.021* | |
H2 | 0.360 (4) | 0.035 (4) | 0.730 (7) | 0.08 (3)* | |
H3 | 0.203 (10) | 0.062 (3) | 0.745 (6) | 0.05 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi | 0.00972 (9) | 0.01144 (9) | 0.01281 (9) | −0.00006 (6) | 0.00649 (7) | −0.00024 (6) |
Br1 | 0.0124 (2) | 0.0197 (2) | 0.0184 (2) | 0.00040 (17) | 0.0087 (2) | −0.00129 (17) |
Br2 | 0.0198 (3) | 0.0218 (2) | 0.0206 (2) | 0.00041 (19) | 0.0125 (2) | 0.00260 (18) |
Br3 | 0.0254 (3) | 0.0199 (2) | 0.0242 (2) | 0.00474 (19) | 0.0178 (2) | −0.00034 (18) |
Br4 | 0.0202 (3) | 0.0235 (3) | 0.0190 (2) | −0.00190 (19) | 0.0065 (2) | 0.00602 (19) |
Br5 | 0.0143 (2) | 0.0189 (2) | 0.0224 (2) | −0.00246 (18) | 0.0080 (2) | −0.00086 (18) |
O | 0.0156 (18) | 0.0231 (19) | 0.028 (2) | −0.0021 (15) | 0.0085 (16) | 0.0002 (15) |
N1 | 0.016 (2) | 0.0114 (18) | 0.018 (2) | −0.0006 (15) | 0.0112 (17) | −0.0011 (15) |
C1 | 0.026 (3) | 0.026 (3) | 0.029 (3) | −0.001 (2) | 0.022 (2) | 0.000 (2) |
C2 | 0.010 (2) | 0.021 (2) | 0.015 (2) | −0.0014 (18) | 0.0052 (19) | −0.0039 (18) |
C3 | 0.019 (2) | 0.024 (3) | 0.016 (2) | 0.001 (2) | 0.010 (2) | 0.0007 (19) |
N2 | 0.018 (2) | 0.017 (2) | 0.018 (2) | 0.0023 (16) | 0.0122 (18) | −0.0001 (16) |
C4 | 0.013 (2) | 0.021 (2) | 0.019 (2) | 0.0005 (19) | 0.008 (2) | −0.0023 (19) |
C5 | 0.016 (2) | 0.016 (2) | 0.013 (2) | 0.0031 (18) | 0.0036 (19) | 0.0008 (17) |
Bi—Br3 | 2.7441 (5) | C1—H1C | 0.9600 |
Bi—Br4 | 2.7714 (5) | C2—C3 | 1.515 (7) |
Bi—Br5 | 2.7730 (5) | C2—H2A | 0.9700 |
Bi—Br2 | 2.8784 (5) | C2—H2B | 0.9700 |
Bi—Br1 | 2.9746 (5) | C3—N2 | 1.489 (6) |
Bi—Br1i | 3.0056 (5) | C3—H3A | 0.9700 |
Br1—Bii | 3.0056 (5) | C3—H3B | 0.9700 |
O—H2 | 0.943 (10) | N2—C4 | 1.492 (6) |
O—H3 | 0.945 (10) | N2—H2C | 0.9000 |
N1—C1 | 1.497 (6) | N2—H2D | 0.9000 |
N1—C2 | 1.500 (6) | C4—C5 | 1.501 (7) |
N1—C5 | 1.500 (6) | C4—H4A | 0.9700 |
N1—H1 | 0.9100 | C4—H4B | 0.9700 |
C1—H1A | 0.9600 | C5—H5A | 0.9700 |
C1—H1B | 0.9600 | C5—H5B | 0.9700 |
Br3—Bi—Br4 | 95.349 (16) | N1—C2—H2A | 109.5 |
Br3—Bi—Br5 | 95.001 (16) | C3—C2—H2A | 109.5 |
Br4—Bi—Br5 | 87.249 (15) | N1—C2—H2B | 109.5 |
Br3—Bi—Br2 | 88.872 (15) | C3—C2—H2B | 109.5 |
Br4—Bi—Br2 | 172.766 (16) | H2A—C2—H2B | 108.1 |
Br5—Bi—Br2 | 86.531 (15) | N2—C3—C2 | 110.3 (4) |
Br3—Bi—Br1 | 170.436 (15) | N2—C3—H3A | 109.6 |
Br4—Bi—Br1 | 90.312 (15) | C2—C3—H3A | 109.6 |
Br5—Bi—Br1 | 92.961 (15) | N2—C3—H3B | 109.6 |
Br2—Bi—Br1 | 86.326 (14) | C2—C3—H3B | 109.6 |
Br3—Bi—Br1i | 85.170 (15) | H3A—C3—H3B | 108.1 |
Br4—Bi—Br1i | 86.460 (14) | C3—N2—C4 | 111.2 (4) |
Br5—Bi—Br1i | 173.695 (15) | C3—N2—H2C | 109.4 |
Br2—Bi—Br1i | 99.774 (14) | C4—N2—H2C | 109.4 |
Br1—Bi—Br1i | 87.498 (13) | C3—N2—H2D | 109.4 |
Bi—Br1—Bii | 92.502 (13) | C4—N2—H2D | 109.4 |
H2—O—H3 | 100 (2) | H2C—N2—H2D | 108.0 |
C1—N1—C2 | 111.0 (4) | N2—C4—C5 | 110.3 (4) |
C1—N1—C5 | 111.9 (4) | N2—C4—H4A | 109.6 |
C2—N1—C5 | 110.8 (3) | C5—C4—H4A | 109.6 |
C1—N1—H1 | 107.7 | N2—C4—H4B | 109.6 |
C2—N1—H1 | 107.7 | C5—C4—H4B | 109.6 |
C5—N1—H1 | 107.7 | H4A—C4—H4B | 108.1 |
N1—C1—H1A | 109.5 | N1—C5—C4 | 111.1 (4) |
N1—C1—H1B | 109.5 | N1—C5—H5A | 109.4 |
H1A—C1—H1B | 109.5 | C4—C5—H5A | 109.4 |
N1—C1—H1C | 109.5 | N1—C5—H5B | 109.4 |
H1A—C1—H1C | 109.5 | C4—C5—H5B | 109.4 |
H1B—C1—H1C | 109.5 | H5A—C5—H5B | 108.0 |
N1—C2—C3 | 110.7 (4) |
Symmetry code: (i) −x, −y−1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br5 | 0.91 | 2.66 | 3.396 (4) | 138 |
N1—H1···Br2 | 0.91 | 2.85 | 3.486 (4) | 128 |
N2—H2C···O | 0.90 | 1.91 | 2.793 (6) | 167 |
N2—H2D···Br2ii | 0.90 | 2.60 | 3.371 (4) | 143 |
O—H2···Br5iii | 0.94 (1) | 2.91 (7) | 3.522 (4) | 123 (6) |
O—H2···Br1iii | 0.94 (1) | 2.84 (7) | 3.531 (4) | 131 (7) |
O—H3···Br3iv | 0.95 (1) | 2.59 (2) | 3.501 (4) | 162 (6) |
C2—H2B···Br2v | 0.97 | 2.80 | 3.649 (5) | 147 |
Symmetry codes: (ii) x, −y−1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2; (v) x+1, −y−1/2, z+1/2. |
Bi—Br3 | 2.7441 (5) | Bi—Br2 | 2.8784 (5) |
Bi—Br4 | 2.7714 (5) | Bi—Br1 | 2.9746 (5) |
Bi—Br5 | 2.7730 (5) | Bi—Br1i | 3.0056 (5) |
Bi—Br1—Bii | 92.502 (13) |
Symmetry code: (i) −x, −y−1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br5 | 0.91 | 2.66 | 3.396 (4) | 138 |
N1—H1···Br2 | 0.91 | 2.85 | 3.486 (4) | 128 |
N2—H2C···O | 0.90 | 1.91 | 2.793 (6) | 167 |
N2—H2D···Br2ii | 0.90 | 2.60 | 3.371 (4) | 143 |
O—H2···Br5iii | 0.943 (10) | 2.91 (7) | 3.522 (4) | 123 (6) |
O—H2···Br1iii | 0.943 (10) | 2.84 (7) | 3.531 (4) | 131 (7) |
O—H3···Br3iv | 0.945 (10) | 2.59 (2) | 3.501 (4) | 162 (6) |
C2—H2B···Br2v | 0.97 | 2.80 | 3.649 (5) | 147 |
Symmetry codes: (ii) x, −y−1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2; (v) x+1, −y−1/2, z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany. Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Essid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326–o327. CSD CrossRef CAS IUCr Journals Google Scholar
Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Li, F., Yin, H.-D., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1387–m1389. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our study of crystal packing containing piperazine derivatives (Marouani et al., 2010; Essid et al., 2010; Essid et al., 2014), we report here the preparation and the structural investigation of a new compound, (C5H14N2)2Bi2Br10·2H2O, (I)
The crystal structure of the title compound (I) is built up of two 1-methylpiperazinium dications, two water molecules and decabromodibismuthate tetraanions; the latter have two octahedra sharing a common edge and occupy special positions with a centre of symmetry at the centre of the Bi2Br2 ring. Its geometrical configuration is depicted in figure 1. The half of this formula constitutes the asymmetric unit in the atomic arrangement. In the title compound (I) the [Bi2Br10]4- bioctahedra anions are connected through O–H···Br hydrogen bonds (via water molecules) and form infinite unidimensional chains of composition [Bi2Br10(H2O)2]n4n- parallel to the a axis (Fig.2). These chains are themselves interconnected by means of N–H···Br, N–H···O and C–H···Br bonds originating from the [C5H14N2]2+ entities, forming a three-dimensional network (Fig. 3). The coordination octahedral of the bismuth atoms are formed by six bromine atoms, as shown in Fig. 1. The Bi–Br distances listed in Table 1 vary from 2.7441 (5) to 3.0056 (5) Å with mean value of 2.8579 Å. The Br–Bi–Br angles range from 85.170 (15)° to 99.774 (14)° and from 170.436 (15)° to 173.695 (15)°, indicating that the BiBr6 octahedron is distorted. These values are in agreement with those commonly observed in other organic decabromodibismuthate(III) compound (Li et al., 2006). Geometrical parameters of the methylpiperazin-1,4-dium dications are found to be in agreement with those reported in related methylpiperazin-1,4-diium salts (Dutkiewicz et al., 2011; Essid et al., 2014). The cyclic amine adopts a chair conformation with the methyl group occupying an equatorial position, with puckering parameters: Q = 0.573 (5) Å, θ = 0.8 (5)° and ϕ = 116 (4)° and atoms N1 and N2 deviating by -0.314 and 0.322 Å from the least-squares plane defined by the remaining atoms in the ring. The cations are linked onto the anionic chains, by forming H-bonds with the bromine and oxygen atoms with donor-acceptor distances in the range 2.793 (6)–3.649 (5) Å (Table 2).