metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m202-m203

Bis(1-methyl­piperazine-1,4-diium) di-μ-bromido-bis­­[tetra­bromido­bis­muthate(III)] dihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCentre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: essidmanel@voila.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 April 2014; accepted 30 April 2014; online 10 May 2014)

In the title hydrated salt, (C5H14N2)2[Bi2Br10]·2H2O, the com­plete [Bi2Br10]4− biocta­hedron is generated by crystallographic inversion symmetry. The diprotonated piperazine ring adopts a chair conformation, with the methyl group occupying an equatorial position. In the crystal, the tetra­anions and water mol­ecules are linked by O—H⋯Br and O—H⋯(Br,Br) hydrogen bonds to generate [100] chains. The chains are crosslinked by N—H⋯Br, N—H⋯O and C—H⋯Br hydrogen bonds originating from the piperazinediium dications, thereby forming a three-dimensional network.

Related literature

For another deca­bromido­dibismuthate(III) compound, see: Li et al. (2006[Li, F., Yin, H.-D., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1387-m1389.]). For related methyl­piperazin-1,4-diium salts, see: Dutkiewicz et al. (2011[Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390-o391.]); Essid et al. (2014[Essid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326-o327.]). For related piperazine derivatives, see: Marouani et al. (2010[Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.]); Essid et al. (2010[Essid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244-o2245.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)2[Bi2Br10]·2H2O

  • Mr = 1457.46

  • Monoclinic, P 21 /c

  • a = 7.9263 (3) Å

  • b = 19.0424 (7) Å

  • c = 12.5861 (4) Å

  • β = 125.770 (2)°

  • V = 1541.35 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 24.38 mm−1

  • T = 150 K

  • 0.15 × 0.12 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.071, Tmax = 0.182

  • 23912 measured reflections

  • 3525 independent reflections

  • 3262 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.09

  • 3525 reflections

  • 136 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.52 e Å−3

Table 1
Selected bond lengths (Å)

Bi—Br3 2.7441 (5)
Bi—Br4 2.7714 (5)
Bi—Br5 2.7730 (5)
Bi—Br2 2.8784 (5)
Bi—Br1 2.9746 (5)
Bi—Br1i 3.0056 (5)
Symmetry code: (i) -x, -y-1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br5 0.91 2.66 3.396 (4) 138
N1—H1⋯Br2 0.91 2.85 3.486 (4) 128
N2—H2C⋯O 0.90 1.91 2.793 (6) 167
N2—H2D⋯Br2ii 0.90 2.60 3.371 (4) 143
O—H2⋯Br5iii 0.94 (1) 2.91 (7) 3.522 (4) 123 (6)
O—H2⋯Br1iii 0.94 (1) 2.84 (7) 3.531 (4) 131 (7)
O—H3⋯Br3iv 0.95 (1) 2.59 (2) 3.501 (4) 162 (6)
C2—H2B⋯Br2v 0.97 2.80 3.649 (5) 147
Symmetry codes: (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

As a part of our study of crystal packing containing piperazine derivatives (Marouani et al., 2010; Essid et al., 2010; Essid et al., 2014), we report here the preparation and the structural investigation of a new compound, (C5H14N2)2Bi2Br10·2H2O, (I)

The crystal structure of the title compound (I) is built up of two 1-methylpiperazinium dications, two water molecules and decabromodibismuthate tetraanions; the latter have two octahedra sharing a common edge and occupy special positions with a centre of symmetry at the centre of the Bi2Br2 ring. Its geometrical configuration is depicted in figure 1. The half of this formula constitutes the asymmetric unit in the atomic arrangement. In the title compound (I) the [Bi2Br10]4- bioctahedra anions are connected through O–H···Br hydrogen bonds (via water molecules) and form infinite unidimensional chains of composition [Bi2Br10(H2O)2]n4n- parallel to the a axis (Fig.2). These chains are themselves interconnected by means of N–H···Br, N–H···O and C–H···Br bonds originating from the [C5H14N2]2+ entities, forming a three-dimensional network (Fig. 3). The coordination octahedral of the bismuth atoms are formed by six bromine atoms, as shown in Fig. 1. The Bi–Br distances listed in Table 1 vary from 2.7441 (5) to 3.0056 (5) Å with mean value of 2.8579 Å. The Br–Bi–Br angles range from 85.170 (15)° to 99.774 (14)° and from 170.436 (15)° to 173.695 (15)°, indicating that the BiBr6 octahedron is distorted. These values are in agreement with those commonly observed in other organic decabromodibismuthate(III) compound (Li et al., 2006). Geometrical parameters of the methylpiperazin-1,4-dium dications are found to be in agreement with those reported in related methylpiperazin-1,4-diium salts (Dutkiewicz et al., 2011; Essid et al., 2014). The cyclic amine adopts a chair conformation with the methyl group occupying an equatorial position, with puckering parameters: Q = 0.573 (5) Å, θ = 0.8 (5)° and ϕ = 116 (4)° and atoms N1 and N2 deviating by -0.314 and 0.322 Å from the least-squares plane defined by the remaining atoms in the ring. The cations are linked onto the anionic chains, by forming H-bonds with the bromine and oxygen atoms with donor-acceptor distances in the range 2.793 (6)–3.649 (5) Å (Table 2).

Related literature top

For another decabromidodibismuthate(III) compound, see: Li et al. (2006). For related methylpiperazin-1,4-diium salts, see: Dutkiewicz et al. (2011); Essid et al. (2010, 2014). For a related piperazine derivative, see: Marouani et al. (2010). [Revised Rel. lit. OK?]

Experimental top

Bismuth(III) nitrate and 1-(methyl) piperazine were dissolved in a concentrated HBr solution in the presence of ethanol (40 ml) and water (20 ml) in a stoichiometric ratio. Colourless prisms of the title compound were obtained by slow evaporation of this solution at room temperature.

Refinement top

The hydrogen atoms bonded to oxygen atoms were located from a difference map and were allowed to refine using restraints [O—H = 0.95 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)]. The rest of the H atoms were treated as riding, with C—H = 0.96 Å (methyl), or C—H = 0.97 Å (methylene), or N—H = 0.91 Å (NH), or N—H = 0.90 Å (NH2) with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with displacement ellipsoids drawn at the 50% probability level. Symmetry code: i: -x, -y, -z.
[Figure 2] Fig. 2. Projection of the corrugated inorganic chains along the c axis.
[Figure 3] Fig. 3. Projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted.
Bis(1-methylpiperazine-1,4-diium) di-µ-bromido-bis[tetrabromidobismuthate(III)] dihydrate top
Crystal data top
(C5H14N2)2[Bi2Br10]·2H2OF(000) = 1304
Mr = 1457.46Dx = 3.140 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9944 reflections
a = 7.9263 (3) Åθ = 2.8–27.5°
b = 19.0424 (7) ŵ = 24.38 mm1
c = 12.5861 (4) ÅT = 150 K
β = 125.770 (2)°Prism, colourless
V = 1541.35 (9) Å30.15 × 0.12 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
3262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1010
Tmin = 0.071, Tmax = 0.182k = 2224
23912 measured reflectionsl = 1312
3525 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0151P)2 + 6.909P]
where P = (Fo2 + 2Fc2)/3
3525 reflections(Δ/σ)max = 0.041
136 parametersΔρmax = 1.23 e Å3
3 restraintsΔρmin = 1.52 e Å3
Crystal data top
(C5H14N2)2[Bi2Br10]·2H2OV = 1541.35 (9) Å3
Mr = 1457.46Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.9263 (3) ŵ = 24.38 mm1
b = 19.0424 (7) ÅT = 150 K
c = 12.5861 (4) Å0.15 × 0.12 × 0.07 mm
β = 125.770 (2)°
Data collection top
Bruker APEXII
diffractometer
3525 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3262 reflections with I > 2σ(I)
Tmin = 0.071, Tmax = 0.182Rint = 0.051
23912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0233 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.23 e Å3
3525 reflectionsΔρmin = 1.52 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi0.10118 (2)0.407806 (8)0.622821 (15)0.01138 (6)
Br10.27752 (7)0.49972 (2)0.51922 (4)0.01697 (10)
Br20.00499 (8)0.31232 (3)0.41496 (5)0.02036 (11)
Br30.12297 (8)0.32553 (3)0.67787 (5)0.02123 (11)
Br40.25521 (8)0.49702 (3)0.83467 (5)0.02381 (12)
Br50.46641 (7)0.33162 (2)0.77789 (5)0.02014 (11)
O0.2175 (6)0.02902 (19)0.6937 (4)0.0248 (8)
N10.3077 (6)0.1749 (2)0.6194 (4)0.0145 (8)
H10.27600.22010.62490.017*
C10.4166 (8)0.1760 (3)0.5543 (5)0.0235 (11)
H1A0.32340.19330.46650.035*
H1B0.53610.20610.60250.035*
H1C0.46000.12920.55220.035*
C20.4472 (7)0.1466 (3)0.7560 (4)0.0167 (9)
H2A0.48850.09900.75340.020*
H2B0.57180.17510.80640.020*
C30.3371 (8)0.1467 (3)0.8219 (5)0.0195 (10)
H3A0.30680.19460.83170.023*
H3B0.42690.12610.90850.023*
N20.1400 (6)0.1059 (2)0.7427 (4)0.0168 (8)
H2C0.16930.06070.73870.020*
H2D0.07460.10730.78180.020*
C40.0000 (7)0.1347 (3)0.6073 (5)0.0184 (10)
H4A0.12540.10650.55700.022*
H4B0.03970.18240.61090.022*
C50.1080 (7)0.1344 (2)0.5413 (5)0.0177 (10)
H5A0.01740.15500.45480.021*
H5B0.13680.08630.53100.021*
H20.360 (4)0.035 (4)0.730 (7)0.08 (3)*
H30.203 (10)0.062 (3)0.745 (6)0.05 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi0.00972 (9)0.01144 (9)0.01281 (9)0.00006 (6)0.00649 (7)0.00024 (6)
Br10.0124 (2)0.0197 (2)0.0184 (2)0.00040 (17)0.0087 (2)0.00129 (17)
Br20.0198 (3)0.0218 (2)0.0206 (2)0.00041 (19)0.0125 (2)0.00260 (18)
Br30.0254 (3)0.0199 (2)0.0242 (2)0.00474 (19)0.0178 (2)0.00034 (18)
Br40.0202 (3)0.0235 (3)0.0190 (2)0.00190 (19)0.0065 (2)0.00602 (19)
Br50.0143 (2)0.0189 (2)0.0224 (2)0.00246 (18)0.0080 (2)0.00086 (18)
O0.0156 (18)0.0231 (19)0.028 (2)0.0021 (15)0.0085 (16)0.0002 (15)
N10.016 (2)0.0114 (18)0.018 (2)0.0006 (15)0.0112 (17)0.0011 (15)
C10.026 (3)0.026 (3)0.029 (3)0.001 (2)0.022 (2)0.000 (2)
C20.010 (2)0.021 (2)0.015 (2)0.0014 (18)0.0052 (19)0.0039 (18)
C30.019 (2)0.024 (3)0.016 (2)0.001 (2)0.010 (2)0.0007 (19)
N20.018 (2)0.017 (2)0.018 (2)0.0023 (16)0.0122 (18)0.0001 (16)
C40.013 (2)0.021 (2)0.019 (2)0.0005 (19)0.008 (2)0.0023 (19)
C50.016 (2)0.016 (2)0.013 (2)0.0031 (18)0.0036 (19)0.0008 (17)
Geometric parameters (Å, º) top
Bi—Br32.7441 (5)C1—H1C0.9600
Bi—Br42.7714 (5)C2—C31.515 (7)
Bi—Br52.7730 (5)C2—H2A0.9700
Bi—Br22.8784 (5)C2—H2B0.9700
Bi—Br12.9746 (5)C3—N21.489 (6)
Bi—Br1i3.0056 (5)C3—H3A0.9700
Br1—Bii3.0056 (5)C3—H3B0.9700
O—H20.943 (10)N2—C41.492 (6)
O—H30.945 (10)N2—H2C0.9000
N1—C11.497 (6)N2—H2D0.9000
N1—C21.500 (6)C4—C51.501 (7)
N1—C51.500 (6)C4—H4A0.9700
N1—H10.9100C4—H4B0.9700
C1—H1A0.9600C5—H5A0.9700
C1—H1B0.9600C5—H5B0.9700
Br3—Bi—Br495.349 (16)N1—C2—H2A109.5
Br3—Bi—Br595.001 (16)C3—C2—H2A109.5
Br4—Bi—Br587.249 (15)N1—C2—H2B109.5
Br3—Bi—Br288.872 (15)C3—C2—H2B109.5
Br4—Bi—Br2172.766 (16)H2A—C2—H2B108.1
Br5—Bi—Br286.531 (15)N2—C3—C2110.3 (4)
Br3—Bi—Br1170.436 (15)N2—C3—H3A109.6
Br4—Bi—Br190.312 (15)C2—C3—H3A109.6
Br5—Bi—Br192.961 (15)N2—C3—H3B109.6
Br2—Bi—Br186.326 (14)C2—C3—H3B109.6
Br3—Bi—Br1i85.170 (15)H3A—C3—H3B108.1
Br4—Bi—Br1i86.460 (14)C3—N2—C4111.2 (4)
Br5—Bi—Br1i173.695 (15)C3—N2—H2C109.4
Br2—Bi—Br1i99.774 (14)C4—N2—H2C109.4
Br1—Bi—Br1i87.498 (13)C3—N2—H2D109.4
Bi—Br1—Bii92.502 (13)C4—N2—H2D109.4
H2—O—H3100 (2)H2C—N2—H2D108.0
C1—N1—C2111.0 (4)N2—C4—C5110.3 (4)
C1—N1—C5111.9 (4)N2—C4—H4A109.6
C2—N1—C5110.8 (3)C5—C4—H4A109.6
C1—N1—H1107.7N2—C4—H4B109.6
C2—N1—H1107.7C5—C4—H4B109.6
C5—N1—H1107.7H4A—C4—H4B108.1
N1—C1—H1A109.5N1—C5—C4111.1 (4)
N1—C1—H1B109.5N1—C5—H5A109.4
H1A—C1—H1B109.5C4—C5—H5A109.4
N1—C1—H1C109.5N1—C5—H5B109.4
H1A—C1—H1C109.5C4—C5—H5B109.4
H1B—C1—H1C109.5H5A—C5—H5B108.0
N1—C2—C3110.7 (4)
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br50.912.663.396 (4)138
N1—H1···Br20.912.853.486 (4)128
N2—H2C···O0.901.912.793 (6)167
N2—H2D···Br2ii0.902.603.371 (4)143
O—H2···Br5iii0.94 (1)2.91 (7)3.522 (4)123 (6)
O—H2···Br1iii0.94 (1)2.84 (7)3.531 (4)131 (7)
O—H3···Br3iv0.95 (1)2.59 (2)3.501 (4)162 (6)
C2—H2B···Br2v0.972.803.649 (5)147
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+3/2; (v) x+1, y1/2, z+1/2.
Selected geometric parameters (Å, º) top
Bi—Br32.7441 (5)Bi—Br22.8784 (5)
Bi—Br42.7714 (5)Bi—Br12.9746 (5)
Bi—Br52.7730 (5)Bi—Br1i3.0056 (5)
Bi—Br1—Bii92.502 (13)
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br50.912.663.396 (4)138
N1—H1···Br20.912.853.486 (4)128
N2—H2C···O0.901.912.793 (6)167
N2—H2D···Br2ii0.902.603.371 (4)143
O—H2···Br5iii0.943 (10)2.91 (7)3.522 (4)123 (6)
O—H2···Br1iii0.943 (10)2.84 (7)3.531 (4)131 (7)
O—H3···Br3iv0.945 (10)2.59 (2)3.501 (4)162 (6)
C2—H2B···Br2v0.972.803.649 (5)147
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1/2, z+3/2; (v) x+1, y1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o390–o391.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEssid, M., Marouani, H. & Rzaigui, M. (2014). Acta Cryst. E70, o326–o327.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEssid, M., Marouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2244–o2245.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, F., Yin, H.-D., Zhai, J. & Wang, D.-Q. (2006). Acta Cryst. E62, m1387–m1389.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarouani, H., Rzaigui, M. & Al-Deyab, S. S. (2010). Acta Cryst. E66, o2613.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m202-m203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds