organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl (E)-2,3-bis­­[(E)-(2-methyl-2-phenyl­hydrazin-1-yl­­idene)meth­yl]but-2-enedioate

aCollege of Life Science and Bio-engineering, Beijing University of Technology, Pingleyuan Street No. 100, Chaoyang District, Beijing 100124, People's Republic of China
*Correspondence e-mail: hongyan@bjut.edu.cn

(Received 4 May 2014; accepted 22 May 2014; online 31 May 2014)

The complete mol­ecule of the title compound, C24H28N4O4, is generated by crystallographic inversion symmetry. The ethyl side chain is disordered over two sets of sites in a 0.57 (4):0.43 (4) ratio. The dihedral angles between the methyl­idene group and the phenyl ring and ester side chain (major conformation) are 7.61 (8) and 86.95 (8)°, respectively. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming corrugated sheets lying parallel to (010).

Related literature

For background to this class of compound, see: Aumann et al. (1987[Aumann, R., Kuckert, E. & Heinen, H. (1987). Chem. Ber. 120, 1293-1296.]). For studies of related mol­ecules, see: Mandal & Basak (2009[Mandal, S. & Basak, A. (2009). Tetrahedron Lett. 50, 3641-3644.]); Woerlee et al. (1984[Woerlee, E., Bosma, R., Van Eijl, J. & Mol, J. (1984). Appl. Catal. 10, 219-229.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N4O4

  • Mr = 436.50

  • Orthorhombic, P b c a

  • a = 15.922 (3) Å

  • b = 8.0335 (16) Å

  • c = 18.655 (4) Å

  • V = 2386.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.983, Tmax = 0.993

  • 14849 measured reflections

  • 2093 independent reflections

  • 1925 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.099

  • S = 1.08

  • 2093 reflections

  • 168 parameters

  • 40 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.95 2.47 3.3749 (19) 160
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background to this class of compound, see: Aumann et al. (1987). For studies of related molecules, see: Mandal & Basak (2009); Woerlee et al. (1984).

Experimental top

Ethyl 3-ethoxy-2-nitroacrylate (10.6 mmol) and hydrazine (10.6 mmol) were stirred in ethanol, and the solution was heated briefly to boiling. A yellow solid was collected by filtration after the mixture was left to stand for 24 h. The product was recrystallized from dichloromethane and petroleum ether as red blocks in 31% yield (m.p. 160° C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot with displacement ellipsoids drawn at the 50% probability level.
Diethyl (E)-2,3-bis[(E)-(2-methyl-2-phenylhydrazin-1-ylidene)methyl]but-2-enedioate top
Crystal data top
C24H28N4O4Dx = 1.215 Mg m3
Mr = 436.50Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6374 reflections
a = 15.922 (3) Åθ = 2.2–27.9°
b = 8.0335 (16) ŵ = 0.08 mm1
c = 18.655 (4) ÅT = 113 K
V = 2386.2 (8) Å3Block, red
Z = 40.20 × 0.10 × 0.08 mm
F(000) = 928
Data collection top
Rigaku Saturn CCD
diffractometer
2093 independent reflections
Radiation source: rotating anode1925 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and ϕ scansh = 1518
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 99
Tmin = 0.983, Tmax = 0.993l = 2222
14849 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.373P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2093 reflectionsΔρmax = 0.18 e Å3
168 parametersΔρmin = 0.16 e Å3
40 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (4)
Crystal data top
C24H28N4O4V = 2386.2 (8) Å3
Mr = 436.50Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.922 (3) ŵ = 0.08 mm1
b = 8.0335 (16) ÅT = 113 K
c = 18.655 (4) Å0.20 × 0.10 × 0.08 mm
Data collection top
Rigaku Saturn CCD
diffractometer
2093 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1925 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.993Rint = 0.034
14849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03840 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.18 e Å3
2093 reflectionsΔρmin = 0.16 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.17130 (5)0.95435 (11)0.47833 (5)0.0331 (3)
O20.08700 (5)0.74716 (11)0.44282 (5)0.0363 (3)
N10.03970 (6)1.17222 (12)0.29214 (5)0.0269 (3)
N20.05365 (6)1.08830 (12)0.35347 (5)0.0240 (3)
C10.10279 (7)1.15535 (14)0.23935 (6)0.0258 (3)
C20.09073 (9)1.21349 (17)0.16961 (7)0.0365 (3)
H2A0.04041.27050.15740.044*
C30.15209 (11)1.18797 (19)0.11824 (7)0.0468 (4)
H3A0.14381.22980.07110.056*
C40.22471 (10)1.1034 (2)0.13400 (8)0.0484 (4)
H4A0.26581.08450.09800.058*
C50.23704 (9)1.04608 (18)0.20314 (7)0.0416 (4)
H5A0.28700.98720.21450.050*
C60.17769 (8)1.07337 (16)0.25580 (7)0.0315 (3)
H6A0.18781.03630.30340.038*
C70.03664 (8)1.26664 (17)0.28254 (7)0.0373 (3)
H7A0.04081.35150.32010.056*
H7B0.08511.19170.28550.056*
H7C0.03581.32080.23550.056*
C80.00195 (7)1.09756 (14)0.40658 (6)0.0243 (3)
H8A0.04731.16400.40440.029*
C90.02301 (7)1.00148 (13)0.46959 (6)0.0229 (3)
C100.10276 (7)0.90180 (14)0.46439 (6)0.0235 (3)
C110.1581 (6)0.6302 (13)0.4421 (8)0.0421 (19)0.57 (4)
H11A0.18360.62180.49040.051*0.57 (4)
H11B0.20170.66790.40790.051*0.57 (4)
C120.1231 (7)0.4658 (13)0.4194 (9)0.052 (2)0.57 (4)
H12A0.16890.38540.41400.078*0.57 (4)
H12B0.09380.47840.37350.078*0.57 (4)
H12C0.08350.42580.45580.078*0.57 (4)
C11'0.1622 (7)0.6478 (17)0.4289 (12)0.045 (3)0.43 (4)
H11C0.19260.62580.47430.054*0.43 (4)
H11D0.20030.70770.39590.054*0.43 (4)
C12'0.1334 (9)0.4862 (17)0.3956 (10)0.048 (2)0.43 (4)
H12D0.18020.40700.39480.071*0.43 (4)
H12E0.11430.50700.34650.071*0.43 (4)
H12F0.08710.43990.42380.071*0.43 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (5)0.0348 (5)0.0403 (5)0.0016 (4)0.0039 (4)0.0055 (4)
O20.0245 (5)0.0250 (5)0.0593 (6)0.0043 (4)0.0072 (4)0.0100 (4)
N10.0295 (6)0.0269 (5)0.0241 (5)0.0043 (4)0.0007 (4)0.0049 (4)
N20.0276 (6)0.0224 (5)0.0221 (5)0.0000 (4)0.0013 (4)0.0010 (4)
C10.0306 (7)0.0229 (6)0.0238 (6)0.0058 (5)0.0006 (5)0.0013 (4)
C20.0445 (8)0.0366 (7)0.0283 (7)0.0022 (6)0.0028 (6)0.0055 (5)
C30.0619 (10)0.0532 (9)0.0254 (7)0.0081 (8)0.0061 (7)0.0062 (6)
C40.0516 (10)0.0571 (9)0.0366 (7)0.0069 (7)0.0177 (7)0.0026 (7)
C50.0345 (8)0.0477 (8)0.0427 (8)0.0009 (6)0.0099 (6)0.0005 (6)
C60.0303 (7)0.0356 (7)0.0285 (6)0.0015 (5)0.0016 (5)0.0024 (5)
C70.0341 (8)0.0414 (8)0.0366 (7)0.0111 (6)0.0008 (6)0.0104 (6)
C80.0237 (6)0.0228 (6)0.0263 (6)0.0015 (5)0.0008 (5)0.0013 (4)
C90.0231 (6)0.0210 (6)0.0245 (6)0.0014 (5)0.0012 (5)0.0031 (4)
C100.0259 (7)0.0249 (6)0.0196 (6)0.0001 (5)0.0003 (5)0.0000 (4)
C110.027 (2)0.028 (2)0.071 (4)0.0120 (19)0.006 (2)0.007 (2)
C120.045 (3)0.029 (3)0.083 (5)0.010 (2)0.012 (3)0.015 (3)
C11'0.032 (3)0.029 (3)0.073 (6)0.008 (2)0.005 (3)0.016 (3)
C12'0.037 (3)0.032 (3)0.074 (5)0.006 (2)0.004 (4)0.007 (3)
Geometric parameters (Å, º) top
O1—C101.1987 (14)C7—H7A0.9800
O2—C101.3298 (15)C7—H7B0.9800
O2—C11'1.462 (8)C7—H7C0.9800
O2—C111.472 (6)C8—C91.4458 (16)
N1—N21.3463 (13)C8—H8A0.9500
N1—C11.4133 (15)C9—C9i1.351 (2)
N1—C71.4440 (16)C9—C101.5042 (16)
N2—C81.2902 (14)C11—C121.495 (7)
C1—C21.3956 (17)C11—H11A0.9900
C1—C61.3964 (18)C11—H11B0.9900
C2—C31.384 (2)C12—H12A0.9800
C2—H2A0.9500C12—H12B0.9800
C3—C41.373 (2)C12—H12C0.9800
C3—H3A0.9500C11'—C12'1.511 (8)
C4—C51.383 (2)C11'—H11C0.9900
C4—H4A0.9500C11'—H11D0.9900
C5—C61.3807 (18)C12'—H12D0.9800
C5—H5A0.9500C12'—H12E0.9800
C6—H6A0.9500C12'—H12F0.9800
C10—O2—C11'114.1 (6)H7A—C7—H7C109.5
C10—O2—C11117.0 (5)H7B—C7—H7C109.5
C11'—O2—C1111.4 (12)N2—C8—C9116.46 (10)
N2—N1—C1115.27 (9)N2—C8—H8A121.8
N2—N1—C7120.49 (10)C9—C8—H8A121.8
C1—N1—C7124.21 (10)C9i—C9—C8124.51 (14)
C8—N2—N1121.22 (10)C9i—C9—C10120.18 (13)
C2—C1—C6118.71 (11)C8—C9—C10115.31 (10)
C2—C1—N1121.31 (11)O1—C10—O2124.51 (11)
C6—C1—N1119.94 (10)O1—C10—C9124.54 (11)
C3—C2—C1119.92 (13)O2—C10—C9110.95 (10)
C3—C2—H2A120.0O2—C11—C12106.2 (7)
C1—C2—H2A120.0O2—C11—H11A110.5
C4—C3—C2121.30 (13)C12—C11—H11A110.5
C4—C3—H3A119.3O2—C11—H11B110.5
C2—C3—H3A119.3C12—C11—H11B110.5
C3—C4—C5118.93 (13)H11A—C11—H11B108.7
C3—C4—H4A120.5O2—C11'—C12'107.1 (10)
C5—C4—H4A120.5O2—C11'—H11C110.3
C6—C5—C4120.90 (14)C12'—C11'—H11C110.3
C6—C5—H5A119.6O2—C11'—H11D110.3
C4—C5—H5A119.6C12'—C11'—H11D110.3
C5—C6—C1120.20 (12)H11C—C11'—H11D108.6
C5—C6—H6A119.9C11'—C12'—H12D109.5
C1—C6—H6A119.9C11'—C12'—H12E109.5
N1—C7—H7A109.5H12D—C12'—H12E109.5
N1—C7—H7B109.5C11'—C12'—H12F109.5
H7A—C7—H7B109.5H12D—C12'—H12F109.5
N1—C7—H7C109.5H12E—C12'—H12F109.5
C1—N1—N2—C8177.93 (10)N2—C8—C9—C9i178.85 (14)
C7—N1—N2—C84.05 (16)N2—C8—C9—C100.46 (15)
N2—N1—C1—C2169.89 (11)C11'—O2—C10—O16.8 (10)
C7—N1—C1—C28.05 (18)C11—O2—C10—O15.4 (7)
N2—N1—C1—C67.57 (15)C11'—O2—C10—C9173.7 (10)
C7—N1—C1—C6174.49 (12)C11—O2—C10—C9174.1 (7)
C6—C1—C2—C30.60 (19)C9i—C9—C10—O192.64 (17)
N1—C1—C2—C3176.88 (12)C8—C9—C10—O186.70 (14)
C1—C2—C3—C41.2 (2)C9i—C9—C10—O286.85 (16)
C2—C3—C4—C51.4 (2)C8—C9—C10—O293.81 (12)
C3—C4—C5—C60.2 (2)C10—O2—C11—C12177.4 (7)
C4—C5—C6—C11.9 (2)C11'—O2—C11—C12104 (6)
C2—C1—C6—C52.13 (18)C10—O2—C11'—C12'172.3 (7)
N1—C1—C6—C5175.39 (11)C11—O2—C11'—C12'81 (5)
N1—N2—C8—C9179.66 (10)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1ii0.952.473.3749 (19)160
Symmetry code: (ii) x+1/2, y+2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.952.473.3749 (19)160
Symmetry code: (i) x+1/2, y+2, z1/2.
 

Acknowledgements

This work was supported financially by the Key Projects in the National Science & Technology Pillar Program (No. 2012ZX10001007–008-002) and the Doctoral Fund of Innovation of Beijing University of Technology.

References

First citationAumann, R., Kuckert, E. & Heinen, H. (1987). Chem. Ber. 120, 1293–1296.  CrossRef CAS Web of Science Google Scholar
First citationMandal, S. & Basak, A. (2009). Tetrahedron Lett. 50, 3641–3644.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoerlee, E., Bosma, R., Van Eijl, J. & Mol, J. (1984). Appl. Catal. 10, 219–229.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds