organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3Z)-3-[(Z)-2-(2-Oxoindolin-3-yl­­idene)hydrazin-1-yl­­idene]indolin-2-one 0.17-hydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Provincial Key Laboratory of Environmental Material & Engineering, Yangzhou, 225002, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: yhliu@yzu.edu.cn

(Received 4 May 2014; accepted 21 May 2014; online 31 May 2014)

In the title compound, C16H10N4O2·0.17H2O, prepared by the one-step condensation reaction of isatin with hydrazine hydrate under microwave irradiation, the complete organic mol­ecule is generated by crystallographic inversion symmetry and therefore exists in an S-trans conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating a three-dimensional framework with [001] channels, which are occupied by the disordered water mol­ecules.

Related literature

For background to microwave synthesis, see: Hoz et al. (2004[Hoz, A. D. L., Ortiz, A. D. & Moreno, A. (2004). Curr. Org. Chem. 8, 903-918.]); Jagani et al. (2012[Jagani, C. L., Vanparia, S. F., Patel, T. S., Dixit, R. B. & Dixit, B. C. (2012). Arkivoc, vi, 281-294.]). For our previous work in this area, see: Liu et al. (2008[Liu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109-113.]); Wang et al. (2010[Wang, Y.-B., Shi, Y., Liu, X.-L. & Liu, Y.-H. (2010). Acta Cryst. E66, o955-o956.]). For the coventional synthesis of the title compound, see: Ali & Alam (1994[Ali, S. & Alam, M. (1994). Arch. Pharm. Res. 17, 131-133.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N4O2·0.17H2O

  • Mr = 308.30

  • Trigonal, [R \overline 3]

  • a = 24.8699 (18) Å

  • c = 5.6603 (8) Å

  • V = 3031.9 (5) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.38 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.986

  • 8691 measured reflections

  • 1547 independent reflections

  • 1290 reflections with I > 2σigma(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.01

  • 1547 reflections

  • 103 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.13 2.8951 (17) 148
Symmetry code: (i) [-y+{\script{1\over 3}}, x-y-{\script{1\over 3}}, z+{\script{2\over 3}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Microwave irradiated and solvent-free synthesis have aroused great attention in recent years due to rapid, convenient, green, environment friendly, inexpensive and efficient (Hoz et al., 2004; Jagani et al., 2012). As a continuation of our research work on Schiff bases (Liu et al., 2008; Wang et al.,2010), we report here one step synthesis of the title compound under microwave irradiated and free-solvent condition, which was prepared by two steps in the normal method (Ali & Alam, 1994), and its structure.

In the central symmetric molecule of the compound, the non-hydrogen atoms are conjugated by a couple of double bonds of C7=N2 and C7a=N2a, because whose bond length [1.2891 (17) Å] is shorter than the single bond one of C1—N1or C1a—N1a [1.4022 (17) Å] but longer than normal double one of C=N [1.271 (5) Å]. The molecule exists as the most stable configuration of (E, E)-isomer and conformation of s-trans (Fig. 1, Table 1).

In its pack structure there are two couples of N1–H1···O1 inter-molecular hydrogen bonds in the neighbor molecules which link many molecules into three dimensional net-work frames, and the disorder water molecules merge into the net-work (Fig. 2, Table 1). Thus the guest molecules of the water and the host molecules of the compound form into a super-molecular net-work structure.

Related literature top

For background to microwave synthesis, see: Hoz et al. (2004); Jagani et al. (2012). For our previous work in this area, see: Liu et al. (2008); Wang et al. (2010). For the coventional synthesis of the title compound, see: Ali & Alam (1994).

Experimental top

In refluxing equipment, isatin (2.94 g, 20 mmol), 50% hydrazine hydrate (0.62 ml, 9.5 mmol) were heated under microwave irradiation for 10 min. After cooling, the red crystalline mixture was recrystallized from dimethylformamide to give 2.5 g (86.2%) of the title compound, m.p. 494.5–495.5 K (ref. 494.5~495.5 K, Ali et al., 1994).

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C — H distances of 0.93 (aromaticl CH), O — H distances of 0.84 and N— H distances of 0.86, and with Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing two couples of N–H···O inter-molecular hydrogen bonds as dashed lines linking the molecules and disorder water molecules into a super-molecular net-work structure. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
(3Z)-3-[(Z)-2-(2-Oxoindolin-3-ylidene)hydrazin-1-ylidene]indolin-2-one 0.17-hydrate top
Crystal data top
C16H10N4O2·0.17H2OF(000) = 1369
Mr = 308.30Dx = 1.450 Mg m3
Trigonal, R3Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -R 3θ = 2.8–27.2°
a = 24.8699 (18) ŵ = 0.10 mm1
c = 5.6603 (8) ÅT = 296 K
V = 3031.9 (5) Å3Block, brown
Z = 90.38 × 0.16 × 0.14 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
1547 independent reflections
Radiation source: fine-focus sealed tube1290 reflections with I > 2σigma(I)
Graphite monochromatorRint = 0.025
thin–slice ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 3232
Tmin = 0.963, Tmax = 0.986k = 2932
8691 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0545P)2 + 2.5765P]
where P = (Fo2 + 2Fc2)/3
1547 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H10N4O2·0.17H2OZ = 9
Mr = 308.30Mo Kα radiation
Trigonal, R3µ = 0.10 mm1
a = 24.8699 (18) ÅT = 296 K
c = 5.6603 (8) Å0.38 × 0.16 × 0.14 mm
V = 3031.9 (5) Å3
Data collection top
Bruker SMART1000 CCD
diffractometer
1547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1290 reflections with I > 2σigma(I)
Tmin = 0.963, Tmax = 0.986Rint = 0.025
8691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
1547 reflectionsΔρmin = 0.18 e Å3
103 parameters
Special details top

Experimental. The title compound was synthesized under microwave irradiation.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.25001 (6)0.06795 (6)0.2063 (2)0.0345 (3)
C20.20279 (7)0.05119 (7)0.3672 (3)0.0429 (3)
H20.19750.02500.49340.051*
C30.16336 (8)0.07495 (8)0.3331 (3)0.0515 (4)
H30.13100.06440.43900.062*
C40.17099 (8)0.11403 (8)0.1452 (3)0.0521 (4)
H40.14340.12860.12570.063*
C50.21929 (7)0.13147 (7)0.0134 (3)0.0439 (3)
H50.22470.15810.13790.053*
C60.25943 (6)0.10844 (6)0.0170 (2)0.0341 (3)
C70.31363 (6)0.11575 (6)0.1095 (2)0.0336 (3)
C80.33439 (6)0.07495 (6)0.0163 (2)0.0349 (3)
N10.29469 (5)0.04931 (5)0.20131 (19)0.0386 (3)
H10.29670.02460.30260.046*
N20.34522 (6)0.14844 (5)0.2881 (2)0.0406 (3)
O10.37735 (5)0.06693 (5)0.03535 (18)0.0459 (3)
O1W0.00000.00000.248 (4)0.177 (8)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (7)0.0309 (6)0.0306 (6)0.0163 (5)0.0026 (5)0.0005 (5)
C20.0495 (8)0.0409 (7)0.0372 (7)0.0217 (6)0.0112 (6)0.0069 (6)
C30.0532 (9)0.0532 (9)0.0516 (9)0.0291 (8)0.0181 (7)0.0037 (7)
C40.0582 (9)0.0549 (9)0.0574 (10)0.0388 (8)0.0097 (7)0.0033 (7)
C50.0547 (9)0.0410 (7)0.0422 (8)0.0287 (7)0.0055 (6)0.0060 (6)
C60.0412 (7)0.0297 (6)0.0297 (6)0.0165 (5)0.0034 (5)0.0017 (5)
C70.0385 (7)0.0309 (6)0.0281 (6)0.0149 (5)0.0011 (5)0.0005 (5)
C80.0394 (7)0.0345 (6)0.0292 (6)0.0173 (5)0.0018 (5)0.0003 (5)
N10.0461 (6)0.0415 (6)0.0327 (6)0.0252 (5)0.0067 (5)0.0103 (5)
N20.0460 (7)0.0416 (6)0.0335 (6)0.0214 (5)0.0066 (5)0.0095 (5)
O10.0479 (6)0.0568 (6)0.0415 (6)0.0325 (5)0.0074 (4)0.0050 (5)
O1W0.093 (6)0.093 (6)0.34 (3)0.047 (3)0.0000.000
Geometric parameters (Å, º) top
C1—C21.3756 (19)C5—C61.388 (2)
C1—N11.4022 (17)C5—H50.9300
C1—C61.4073 (17)C6—C71.4554 (18)
C2—C31.389 (2)C7—N21.2891 (17)
C2—H20.9300C7—C81.5254 (18)
C3—C41.388 (2)C8—O11.2165 (17)
C3—H30.9300C8—N11.3594 (17)
C4—C51.384 (2)N1—H10.8593
C4—H40.9300N2—N2i1.404 (2)
C2—C1—N1127.63 (12)C6—C5—H5120.6
C2—C1—C6122.16 (13)C5—C6—C1119.53 (12)
N1—C1—C6110.21 (11)C5—C6—C7134.43 (12)
C1—C2—C3117.17 (13)C1—C6—C7106.04 (11)
C1—C2—H2121.4N2—C7—C6134.34 (12)
C3—C2—H2121.4N2—C7—C8118.92 (12)
C4—C3—C2121.72 (14)C6—C7—C8106.71 (10)
C4—C3—H3119.1O1—C8—N1126.85 (12)
C2—C3—H3119.1O1—C8—C7127.86 (12)
C5—C4—C3120.64 (14)N1—C8—C7105.29 (11)
C5—C4—H4119.7C8—N1—C1111.72 (10)
C3—C4—H4119.7C8—N1—H1124.1
C4—C5—C6118.75 (13)C1—N1—H1124.2
C4—C5—H5120.6C7—N2—N2i111.89 (14)
N1—C1—C2—C3178.92 (14)C5—C6—C7—C8177.99 (15)
C6—C1—C2—C31.3 (2)C1—C6—C7—C81.50 (14)
C1—C2—C3—C40.0 (2)N2—C7—C8—O12.8 (2)
C2—C3—C4—C51.1 (3)C6—C7—C8—O1178.67 (13)
C3—C4—C5—C60.9 (2)N2—C7—C8—N1176.85 (12)
C4—C5—C6—C10.3 (2)C6—C7—C8—N11.65 (14)
C4—C5—C6—C7179.71 (15)O1—C8—N1—C1179.13 (13)
C2—C1—C6—C51.4 (2)C7—C8—N1—C11.18 (14)
N1—C1—C6—C5178.74 (12)C2—C1—N1—C8179.94 (13)
C2—C1—C6—C7178.98 (12)C6—C1—N1—C80.26 (15)
N1—C1—C6—C70.83 (14)C6—C7—N2—N2i0.1 (2)
C5—C6—C7—N23.8 (3)C8—C7—N2—N2i177.92 (13)
C1—C6—C7—N2176.67 (15)
Symmetry code: (i) x+2/3, y+1/3, z2/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.862.132.8951 (17)148
Symmetry code: (ii) y+1/3, xy1/3, z+2/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.132.8951 (17)148
Symmetry code: (i) y+1/3, xy1/3, z+2/3.
 

Acknowledgements

The authors thank the Priority Academic Program Development of Jiangsu Higher Education Institutions and the National Disciplining and Cultivating Key of Physics and Chemistry in Yangzhou University (070304) for financial support of this work.

References

First citationAli, S. & Alam, M. (1994). Arch. Pharm. Res. 17, 131–133.  CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHoz, A. D. L., Ortiz, A. D. & Moreno, A. (2004). Curr. Org. Chem. 8, 903–918.  CrossRef Google Scholar
First citationJagani, C. L., Vanparia, S. F., Patel, T. S., Dixit, R. B. & Dixit, B. C. (2012). Arkivoc, vi, 281–294.  CrossRef Google Scholar
First citationLiu, Y.-H., Liu, X.-L., Dai, X.-Q., Xu, W. & Guo, R. (2008). J. Chem. Crystallogr. 38, 109–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-B., Shi, Y., Liu, X.-L. & Liu, Y.-H. (2010). Acta Cryst. E66, o955–o956.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds