organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl­phen­yl)-N-(1,3-thia­zol-2-yl)acetamide

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Studies in Chemistry, Industrial Chemistry Section, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 19 May 2014; accepted 20 May 2014; online 31 May 2014)

In the title compound, C12H12N2OS, the dihedral angle between the benzene and thia­zole rings is 83.5 (7)°. The acetamide group is almost coplanar with the thia­zole ring, being twisted from it by 4.2 (9)°. In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers, generating R22[8] loops; the dimers are stacked along [001].

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of benzyl­penicillin, see: Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For our studies of acetamides, see: Nayak et al. (2014[Nayak, P. S., Narayana, B., Sarojini, B. K., Hegde, K. & Shashidhara, K. S. (2014). Med. Chem. Res. doi:10.1007/s00044-014-1003-3.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2OS

  • Mr = 232.30

  • Monoclinic, P 21 /c

  • a = 17.6983 (6) Å

  • b = 4.94078 (13) Å

  • c = 14.4603 (5) Å

  • β = 111.236 (4)°

  • V = 1178.60 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.38 × 0.26 × 0.14 mm

Data collection
  • Agilent Agilent (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]) Tmin = 0.582, Tmax = 1.000

  • 7059 measured reflections

  • 2250 independent reflections

  • 2065 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.07

  • 2250 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.04 2.9138 (19) 176
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.]); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N-Substituted 2-arylacetamides are interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008). As part of our ongoing studies of such systems (Nayak et al., 2014) we report herein the crystal structure of the title compound, (I), C12H12N2OS.

In (I), the dihedral angle between the mean planes of the phenyl and thiazol rings is 83.5 (7)° (Fig. 1). The acetamide group (N1/O1/C4/C5) is close to coplanar with the mean plane of the thiazol ring twisted by 4.2 (9)°. In the crystal, pairs of N—H···N hydrogen bonds link the molecules into inversion dimers forming R22[8] ring motifs and stacked along [001] (Fig. 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of benzylpenicillin, see: Mijin et al. (2008). For our studies of acetamides, see: Nayak et al. (2014).

Experimental top

2-Methylphenylacetic acid (0.150 g, 1 mmol), 2-aminothiazole (0.100 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Colourless prisms were grown from methanol solution by slow evaporation (M.P.: 401–403 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C12H12N2OS, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak N1—H1···N2 hydrogen bonds forming inversion dimers in an R22[8] motif format and stacked along [001]. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Reaction scheme.
2-(2-Methylphenyl)-N-(1,3-thiazol-2-yl)acetamide top
Crystal data top
C12H12N2OSF(000) = 488
Mr = 232.30Dx = 1.309 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.6983 (6) ÅCell parameters from 3416 reflections
b = 4.94078 (13) Åθ = 3.4–71.5°
c = 14.4603 (5) ŵ = 2.28 mm1
β = 111.236 (4)°T = 173 K
V = 1178.60 (7) Å3Prism, colourless
Z = 40.38 × 0.26 × 0.14 mm
Data collection top
Agilent Agilent (Eos, Gemini)
diffractometer
2250 independent reflections
Radiation source: Enhance (Cu) X-ray Source2065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 5.4°
ω scansh = 1221
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
k = 56
Tmin = 0.582, Tmax = 1.000l = 1716
7059 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.367P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.30 e Å3
2250 reflectionsΔρmin = 0.28 e Å3
147 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0013 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H12N2OSV = 1178.60 (7) Å3
Mr = 232.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.6983 (6) ŵ = 2.28 mm1
b = 4.94078 (13) ÅT = 173 K
c = 14.4603 (5) Å0.38 × 0.26 × 0.14 mm
β = 111.236 (4)°
Data collection top
Agilent Agilent (Eos, Gemini)
diffractometer
2250 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
2065 reflections with I > 2σ(I)
Tmin = 0.582, Tmax = 1.000Rint = 0.037
7059 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
2250 reflectionsΔρmin = 0.28 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51096 (2)1.09810 (8)0.33600 (3)0.02349 (18)
O10.66917 (7)0.9640 (3)0.43484 (10)0.0341 (3)
N10.58012 (8)0.6996 (3)0.47251 (10)0.0225 (3)
H10.57480.56590.50990.027*
N20.43898 (8)0.7241 (3)0.39749 (10)0.0241 (3)
C10.51059 (10)0.8180 (3)0.40772 (11)0.0204 (3)
C20.38010 (11)0.8760 (3)0.32755 (13)0.0269 (4)
H20.32400.83620.30890.032*
C30.40679 (11)1.0842 (3)0.28727 (13)0.0263 (4)
H30.37301.20550.23900.032*
C40.65649 (10)0.7763 (3)0.48226 (12)0.0248 (4)
C50.72262 (11)0.6059 (4)0.55603 (14)0.0311 (4)
H5A0.71210.59260.61860.037*
H5B0.72050.42060.52910.037*
C60.80617 (11)0.7206 (4)0.57813 (14)0.0352 (4)
C70.85116 (13)0.6620 (5)0.51962 (17)0.0469 (5)
C80.92758 (14)0.7817 (6)0.5445 (2)0.0675 (9)
H80.95940.74200.50550.081*
C90.95774 (17)0.9541 (7)0.6231 (3)0.0828 (11)
H91.00961.03430.63770.099*
C100.91323 (19)1.0119 (7)0.6813 (3)0.0811 (10)
H100.93391.13180.73610.097*
C110.83836 (15)0.8938 (5)0.6590 (2)0.0559 (6)
H110.80790.93110.69980.067*
C120.81906 (19)0.4717 (7)0.4331 (2)0.0710 (8)
H12A0.80220.30210.45500.106*
H12B0.86160.43430.40640.106*
H12C0.77240.55460.38140.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (3)0.0181 (3)0.0218 (2)0.00228 (14)0.01054 (18)0.00177 (13)
O10.0295 (7)0.0335 (7)0.0382 (7)0.0062 (5)0.0106 (5)0.0106 (6)
N10.0257 (7)0.0202 (7)0.0220 (6)0.0031 (5)0.0089 (5)0.0035 (5)
N20.0257 (7)0.0219 (7)0.0250 (7)0.0004 (5)0.0096 (5)0.0022 (5)
C10.0294 (8)0.0159 (7)0.0183 (7)0.0018 (6)0.0115 (6)0.0023 (6)
C20.0260 (8)0.0261 (9)0.0284 (8)0.0015 (6)0.0096 (7)0.0019 (6)
C30.0308 (9)0.0247 (9)0.0235 (8)0.0044 (6)0.0101 (7)0.0013 (6)
C40.0265 (8)0.0240 (9)0.0233 (8)0.0034 (6)0.0085 (7)0.0018 (6)
C50.0271 (9)0.0322 (10)0.0335 (9)0.0013 (7)0.0102 (7)0.0068 (7)
C60.0263 (9)0.0361 (11)0.0391 (10)0.0002 (7)0.0070 (7)0.0099 (8)
C70.0370 (11)0.0567 (13)0.0489 (12)0.0071 (10)0.0178 (10)0.0186 (10)
C80.0339 (12)0.089 (2)0.0833 (19)0.0044 (13)0.0251 (13)0.0412 (17)
C90.0353 (13)0.090 (2)0.101 (3)0.0176 (14)0.0016 (15)0.037 (2)
C100.0568 (17)0.071 (2)0.083 (2)0.0188 (15)0.0131 (15)0.0067 (17)
C110.0426 (12)0.0610 (16)0.0519 (14)0.0004 (10)0.0026 (10)0.0077 (11)
C120.0721 (18)0.088 (2)0.0601 (16)0.0142 (16)0.0329 (14)0.0043 (15)
Geometric parameters (Å, º) top
S1—C11.7307 (16)C6—C71.386 (3)
S1—C31.7202 (18)C6—C111.394 (3)
O1—C41.222 (2)C7—C81.399 (3)
N1—H10.8800C7—C121.502 (4)
N1—C11.378 (2)C8—H80.9500
N1—C41.361 (2)C8—C91.365 (5)
N2—C11.307 (2)C9—H90.9500
N2—C21.382 (2)C9—C101.375 (5)
C2—H20.9500C10—H100.9500
C2—C31.349 (2)C10—C111.375 (4)
C3—H30.9500C11—H110.9500
C4—C51.521 (2)C12—H12A0.9800
C5—H5A0.9900C12—H12B0.9800
C5—H5B0.9900C12—H12C0.9800
C5—C61.506 (2)
C3—S1—C188.70 (8)C7—C6—C11119.3 (2)
C1—N1—H1117.9C11—C6—C5118.73 (19)
C4—N1—H1117.9C6—C7—C8118.1 (3)
C4—N1—C1124.11 (14)C6—C7—C12120.8 (2)
C1—N2—C2109.46 (14)C8—C7—C12121.2 (2)
N1—C1—S1123.41 (12)C7—C8—H8119.1
N2—C1—S1115.48 (12)C9—C8—C7121.8 (3)
N2—C1—N1121.11 (14)C9—C8—H8119.1
N2—C2—H2121.9C8—C9—H9120.0
C3—C2—N2116.18 (16)C8—C9—C10120.1 (3)
C3—C2—H2121.9C10—C9—H9120.0
S1—C3—H3124.9C9—C10—H10120.5
C2—C3—S1110.15 (13)C9—C10—C11119.1 (3)
C2—C3—H3124.9C11—C10—H10120.5
O1—C4—N1122.06 (15)C6—C11—H11119.2
O1—C4—C5124.26 (15)C10—C11—C6121.5 (3)
N1—C4—C5113.67 (14)C10—C11—H11119.2
C4—C5—H5A109.0C7—C12—H12A109.5
C4—C5—H5B109.0C7—C12—H12B109.5
H5A—C5—H5B107.8C7—C12—H12C109.5
C6—C5—C4112.79 (14)H12A—C12—H12B109.5
C6—C5—H5A109.0H12A—C12—H12C109.5
C6—C5—H5B109.0H12B—C12—H12C109.5
C7—C6—C5121.9 (2)
O1—C4—C5—C69.8 (3)C4—C5—C6—C786.3 (2)
N1—C4—C5—C6170.71 (15)C4—C5—C6—C1192.8 (2)
N2—C2—C3—S10.6 (2)C5—C6—C7—C8178.75 (19)
C1—S1—C3—C20.12 (13)C5—C6—C7—C122.2 (3)
C1—N1—C4—O11.8 (3)C5—C6—C11—C10177.9 (2)
C1—N1—C4—C5177.74 (14)C6—C7—C8—C90.7 (4)
C1—N2—C2—C31.3 (2)C7—C6—C11—C101.1 (4)
C2—N2—C1—S11.36 (17)C7—C8—C9—C100.8 (5)
C2—N2—C1—N1179.21 (14)C8—C9—C10—C110.0 (5)
C3—S1—C1—N1179.70 (14)C9—C10—C11—C61.0 (5)
C3—S1—C1—N20.89 (13)C11—C6—C7—C80.3 (3)
C4—N1—C1—S14.9 (2)C11—C6—C7—C12178.7 (2)
C4—N1—C1—N2175.74 (14)C12—C7—C8—C9179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.042.9138 (19)176
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.882.042.9138 (19)176
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

BN thanks the UGC for financial assistance through BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE financial assistance. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire,England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationNayak, P. S., Narayana, B., Sarojini, B. K., Hegde, K. & Shashidhara, K. S. (2014). Med. Chem. Res. doi:10.1007/s00044-014-1003-3.  Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds