organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o636-o637

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-(4-nitro­phen­yl)acetamide

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dMaterials Science Center, University of Mysore, Vijyana Bhavan Building, Manasagangothri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

Edited by P. C. Healy, Griffith University, Australia (Received 26 April 2014; accepted 30 April 2014; online 3 May 2014)

In the title compound, C19H18N4O4, the nitro­phenyl and phenyl rings are twisted by 67.0 (6) and 37.4 (4)°, respectively, with respect to the pyrazole ring plane [maximum deviation = 0.0042 (16) Å]. The dihedral angle between the mean planes of the phenyl rings is 59.3 (3)°. The amide group, with a C—N—C—C torsion angle of 177.54 (13)°, is twisted away from the plane of the pyrazole ring in an anti­periplanar conformation. In the crystal, N—H⋯O hydrogen bonds involving the carbonyl group on the pyrazole ring and the amide group, together with weak C—H⋯O inter­actions forming R22(10) graph-set motifs, link the mol­ecules into chains along [100]. Additional weak C—H⋯O inter­actions involving the nitro­phenyl rings further link the mol­ecules along [001], also forming R22(10) graph-set motifs, thereby generating (010) layers.

Related literature

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For the coordination abilities of amides, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013[Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arab. J Chem. 6, 97-102.]); Cheng et al. (2008[Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622-627.]); Hatton et al. (1993[Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.]); Liu et al. (2010[Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897-902.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.]); Butcher et al. (2013a[Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46-o47.],b[Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39.]); Kaur et al. (2013[Kaur, M., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, o1726-o1727.]); Mahan et al. (2013[Mahan, A., Butcher, R. J., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013). Acta Cryst. E69, o402-o403.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O4

  • Mr = 366.37

  • Triclinic, [P \overline 1]

  • a = 6.7023 (6) Å

  • b = 8.6335 (8) Å

  • c = 15.8720 (13) Å

  • α = 76.305 (7)°

  • β = 84.399 (7)°

  • γ = 77.252 (7)°

  • V = 869.33 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.851, Tmax = 1.000

  • 5113 measured reflections

  • 3262 independent reflections

  • 2913 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.07

  • 3262 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.03 2.8658 (18) 164
C7—H7⋯O4ii 0.93 2.54 3.307 (2) 139
C18—H18B⋯O2iii 0.96 2.56 3.336 (2) 138
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+2; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton et al., 1993), antifungal activities (Liu et al., 2010) and non-linear optical properties (Chandrakantha et al., 2013). Crystal structures of some related acetamide and pyrazole derivatives including: N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihrdro-1H-pyrazol-4-yl)-2- [4-(methylsulfanyl)phenyl]acetamide, (Fun et al., 2012), 2-(2,4-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-yl)acetamide (Butcher et al., 2013a,b), 2-(3,4-Dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acteamide (Mahan et al., 2013) and recently N-(1,5-Dimethyl- 3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenylacetamide (Kaur et al., 2013) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C19H18N4O4.

The title compound, (I), C19H18N4O4, crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, the pyrazole ring is nearly planar with C9 atom showing a maximum deviation of 0.0042 (16)Å. The mean planes of the 4-nitrophenyl and phenyl rings is twisted with respect to that of the pyrazole ring by 67.0 (6)° and 37.4 (4)°, respectively. The dihedral angle between the mean planes of the two phenyl rings is 59.3 (3)°. The amide group, with a torsion angle of 177.54° is twisted away from the plane of the pyrazole ring in an anti-periplanar conformation. Bond lengths are in normal ranges (Allen et al., 1987). Classical N—H···O intermolecular hydrogen bonds involving the pyrazole ring and the amide group along with weak C—H···O intermolecular interactions forming R22(10) graph set motifs link the molecules into chains along [100]. Additional weak C—H···O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming R22(10) graph set motifs and further extending crystal packing into a 2-D supramolecular network (Fig. 2).

Related literature top

For the structural similarity of N-substituted 2-arylacetamides to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013); Cheng et al. (2008); Hatton et al. (1993); Liu et al. (2010). For related structures, see: Fun et al. (2012); Butcher et al. (2013a,b); Kaur et al. (2013); Mahan et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

4-Nitrophenylacetic acid (0.181 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h (Fig. 3). The reaction completion was confirmed by thin layer chormatography. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with a saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound, (I). Single crystals were grown from dichloromethane and and further recrystallised from methanol solution by the slow evaporation method which were subsequently used for x-ray studies.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH)and 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C19H18N4O4) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions forming R22(10) graph set motifs linking the molecules into chains along [100]. Additional weak C—H···O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming R22(10) graph set motifs viewed with dashed lines. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis scheme of (I).
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-(4-nitrophenyl)acetamide top
Crystal data top
C19H18N4O4Z = 2
Mr = 366.37F(000) = 384
Triclinic, P1Dx = 1.400 Mg m3
a = 6.7023 (6) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.6335 (8) ÅCell parameters from 2476 reflections
c = 15.8720 (13) Åθ = 5.4–71.4°
α = 76.305 (7)°µ = 0.84 mm1
β = 84.399 (7)°T = 173 K
γ = 77.252 (7)°Block, colourless
V = 869.33 (13) Å30.28 × 0.22 × 0.12 mm
Data collection top
Agilent Eos Gemini
diffractometer
3262 independent reflections
Radiation source: Enhance (Cu) X-ray Source2913 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.030
ω scansθmax = 71.6°, θmin = 5.4°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 48
Tmin = 0.851, Tmax = 1.000k = 1010
5113 measured reflectionsl = 1919
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.27 e Å3
3262 reflectionsΔρmin = 0.21 e Å3
247 parametersExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0160 (14)
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H18N4O4γ = 77.252 (7)°
Mr = 366.37V = 869.33 (13) Å3
Triclinic, P1Z = 2
a = 6.7023 (6) ÅCu Kα radiation
b = 8.6335 (8) ŵ = 0.84 mm1
c = 15.8720 (13) ÅT = 173 K
α = 76.305 (7)°0.28 × 0.22 × 0.12 mm
β = 84.399 (7)°
Data collection top
Agilent Eos Gemini
diffractometer
3262 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2913 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 1.000Rint = 0.030
5113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
3262 reflectionsΔρmin = 0.21 e Å3
247 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1021 (2)0.22514 (15)0.69436 (8)0.0438 (3)
O20.42534 (16)0.19900 (14)0.42650 (7)0.0318 (3)
O30.5894 (2)0.31428 (19)1.03446 (9)0.0505 (4)
O40.8856 (2)0.18161 (18)1.00103 (10)0.0521 (4)
N10.2446 (2)0.05926 (16)0.60349 (8)0.0288 (3)
H10.32710.03000.59830.035*
N20.10661 (19)0.30173 (16)0.44159 (8)0.0285 (3)
N30.08379 (19)0.31651 (16)0.39847 (8)0.0273 (3)
N40.6997 (2)0.22341 (17)0.99332 (9)0.0342 (3)
C10.2184 (2)0.10192 (19)0.68181 (10)0.0295 (3)
C20.3372 (3)0.02284 (19)0.75387 (10)0.0333 (4)
H2A0.24560.08930.78780.040*
H2B0.44530.09400.72770.040*
C30.4314 (2)0.04908 (18)0.81419 (9)0.0290 (3)
C40.3122 (3)0.1581 (2)0.86039 (11)0.0345 (4)
H40.17270.19240.85160.041*
C50.3993 (3)0.2157 (2)0.91904 (11)0.0347 (4)
H50.31960.28790.95020.042*
C60.6072 (2)0.16397 (18)0.93061 (9)0.0292 (3)
C70.7300 (3)0.0574 (2)0.88551 (11)0.0348 (4)
H70.86980.02470.89400.042*
C80.6403 (3)0.0001 (2)0.82728 (10)0.0336 (4)
H80.72080.07210.79640.040*
C90.1396 (2)0.15810 (18)0.53105 (9)0.0273 (3)
C100.0656 (2)0.20985 (19)0.52365 (10)0.0288 (3)
C110.2410 (2)0.22118 (18)0.45045 (9)0.0259 (3)
C120.0955 (2)0.35883 (18)0.30627 (10)0.0270 (3)
C130.0571 (3)0.33649 (19)0.25914 (10)0.0321 (4)
H130.16760.29410.28780.039*
C140.0426 (3)0.3779 (2)0.16951 (11)0.0377 (4)
H140.14570.36600.13780.045*
C150.1246 (3)0.4370 (2)0.12657 (11)0.0402 (4)
H150.13500.46290.06620.048*
C160.2765 (3)0.4574 (2)0.17385 (11)0.0377 (4)
H160.38960.49550.14490.045*
C170.2615 (2)0.42151 (19)0.26367 (10)0.0319 (4)
H170.36120.43910.29510.038*
C180.2656 (2)0.4522 (2)0.42912 (11)0.0346 (4)
H18A0.24600.51740.46770.052*
H18B0.39830.42480.44140.052*
H18C0.25610.51220.37020.052*
C190.2353 (3)0.1816 (2)0.58962 (11)0.0402 (4)
H19A0.26640.26760.62060.060*
H19B0.19430.07920.62960.060*
H19C0.35450.17990.56120.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (8)0.0399 (7)0.0327 (6)0.0048 (6)0.0132 (5)0.0154 (5)
O20.0265 (6)0.0381 (6)0.0309 (6)0.0061 (4)0.0018 (4)0.0081 (5)
O30.0527 (8)0.0643 (9)0.0441 (8)0.0095 (7)0.0063 (6)0.0315 (7)
O40.0444 (8)0.0567 (8)0.0606 (9)0.0034 (6)0.0248 (6)0.0207 (7)
N10.0320 (7)0.0311 (7)0.0243 (6)0.0055 (5)0.0044 (5)0.0077 (5)
N20.0241 (6)0.0364 (7)0.0266 (7)0.0075 (5)0.0009 (5)0.0088 (5)
N30.0253 (6)0.0338 (7)0.0244 (6)0.0067 (5)0.0013 (5)0.0088 (5)
N40.0423 (8)0.0332 (7)0.0280 (7)0.0087 (6)0.0102 (6)0.0044 (6)
C10.0351 (8)0.0311 (8)0.0252 (7)0.0097 (6)0.0051 (6)0.0075 (6)
C20.0468 (9)0.0282 (8)0.0269 (8)0.0086 (7)0.0076 (7)0.0068 (6)
C30.0401 (9)0.0276 (7)0.0197 (7)0.0090 (6)0.0050 (6)0.0023 (6)
C40.0303 (8)0.0438 (9)0.0318 (8)0.0058 (7)0.0037 (6)0.0135 (7)
C50.0375 (9)0.0380 (9)0.0307 (8)0.0035 (7)0.0029 (6)0.0147 (7)
C60.0371 (8)0.0291 (8)0.0226 (7)0.0099 (6)0.0064 (6)0.0032 (6)
C70.0322 (8)0.0377 (9)0.0328 (8)0.0025 (6)0.0080 (6)0.0065 (7)
C80.0402 (9)0.0307 (8)0.0284 (8)0.0003 (6)0.0045 (6)0.0088 (6)
C90.0318 (8)0.0304 (8)0.0237 (7)0.0098 (6)0.0041 (6)0.0095 (6)
C100.0322 (8)0.0337 (8)0.0252 (7)0.0118 (6)0.0017 (6)0.0107 (6)
C110.0284 (7)0.0275 (7)0.0254 (7)0.0068 (6)0.0041 (6)0.0106 (6)
C120.0324 (8)0.0251 (7)0.0242 (7)0.0042 (6)0.0034 (6)0.0078 (5)
C130.0356 (8)0.0319 (8)0.0310 (8)0.0077 (6)0.0064 (6)0.0085 (6)
C140.0478 (10)0.0357 (9)0.0313 (9)0.0048 (7)0.0133 (7)0.0098 (7)
C150.0567 (11)0.0367 (9)0.0234 (8)0.0037 (8)0.0041 (7)0.0041 (6)
C160.0453 (10)0.0329 (8)0.0311 (9)0.0073 (7)0.0037 (7)0.0023 (7)
C170.0345 (8)0.0309 (8)0.0306 (8)0.0071 (6)0.0029 (6)0.0064 (6)
C180.0310 (8)0.0354 (8)0.0390 (9)0.0041 (6)0.0019 (6)0.0137 (7)
C190.0346 (9)0.0571 (11)0.0315 (9)0.0166 (8)0.0025 (7)0.0098 (8)
Geometric parameters (Å, º) top
O1—C11.217 (2)C7—H70.9300
O2—C111.2436 (19)C7—C81.384 (2)
O3—N41.2168 (19)C8—H80.9300
O4—N41.2278 (19)C9—C101.357 (2)
N1—H10.8600C9—C111.435 (2)
N1—C11.3630 (19)C10—C191.489 (2)
N1—C91.405 (2)C12—C131.396 (2)
N2—N31.4047 (17)C12—C171.390 (2)
N2—C101.373 (2)C13—H130.9300
N2—C181.473 (2)C13—C141.382 (2)
N3—C111.3905 (19)C14—H140.9300
N3—C121.4206 (19)C14—C151.386 (3)
N4—C61.463 (2)C15—H150.9300
C1—C21.523 (2)C15—C161.386 (3)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C16—C171.384 (2)
C2—C31.508 (2)C17—H170.9300
C3—C41.394 (2)C18—H18A0.9600
C3—C81.391 (2)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C4—C51.381 (2)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C5—C61.382 (2)C19—H19C0.9600
C6—C71.378 (2)
C1—N1—H1119.3N1—C9—C11123.26 (13)
C1—N1—C9121.36 (13)C10—C9—N1127.98 (14)
C9—N1—H1119.3C10—C9—C11108.77 (13)
N3—N2—C18115.56 (12)N2—C10—C19120.59 (14)
C10—N2—N3106.45 (12)C9—C10—N2109.94 (13)
C10—N2—C18120.24 (13)C9—C10—C19129.46 (15)
N2—N3—C12118.84 (12)O2—C11—N3124.28 (14)
C11—N3—N2109.85 (12)O2—C11—C9131.03 (14)
C11—N3—C12125.33 (12)N3—C11—C9104.68 (13)
O3—N4—O4122.92 (14)C13—C12—N3120.30 (14)
O3—N4—C6118.50 (14)C17—C12—N3119.20 (14)
O4—N4—C6118.56 (14)C17—C12—C13120.49 (15)
O1—C1—N1123.02 (14)C12—C13—H13120.3
O1—C1—C2122.67 (14)C14—C13—C12119.43 (16)
N1—C1—C2114.22 (13)C14—C13—H13120.3
C1—C2—H2A108.6C13—C14—H14119.8
C1—C2—H2B108.6C13—C14—C15120.40 (16)
H2A—C2—H2B107.6C15—C14—H14119.8
C3—C2—C1114.64 (13)C14—C15—H15120.1
C3—C2—H2A108.6C14—C15—C16119.79 (15)
C3—C2—H2B108.6C16—C15—H15120.1
C4—C3—C2121.41 (15)C15—C16—H16119.7
C8—C3—C2119.46 (14)C17—C16—C15120.67 (16)
C8—C3—C4119.05 (14)C17—C16—H16119.7
C3—C4—H4119.7C12—C17—H17120.4
C5—C4—C3120.64 (15)C16—C17—C12119.16 (15)
C5—C4—H4119.7C16—C17—H17120.4
C4—C5—H5120.6N2—C18—H18A109.5
C4—C5—C6118.71 (15)N2—C18—H18B109.5
C6—C5—H5120.6N2—C18—H18C109.5
C5—C6—N4118.90 (14)H18A—C18—H18B109.5
C7—C6—N4118.88 (14)H18A—C18—H18C109.5
C7—C6—C5122.21 (14)H18B—C18—H18C109.5
C6—C7—H7120.8C10—C19—H19A109.5
C6—C7—C8118.36 (15)C10—C19—H19B109.5
C8—C7—H7120.8C10—C19—H19C109.5
C3—C8—H8119.5H19A—C19—H19B109.5
C7—C8—C3121.01 (15)H19A—C19—H19C109.5
C7—C8—H8119.5H19B—C19—H19C109.5
O1—C1—C2—C343.2 (2)C4—C5—C6—N4179.40 (14)
O3—N4—C6—C51.4 (2)C4—C5—C6—C70.1 (3)
O3—N4—C6—C7178.19 (15)C5—C6—C7—C80.5 (2)
O4—N4—C6—C5177.43 (15)C6—C7—C8—C30.2 (2)
O4—N4—C6—C73.0 (2)C8—C3—C4—C50.7 (2)
N1—C1—C2—C3140.27 (14)C9—N1—C1—O11.0 (2)
N1—C9—C10—N2178.78 (14)C9—N1—C1—C2177.54 (13)
N1—C9—C10—C192.0 (3)C10—N2—N3—C115.88 (16)
N1—C9—C11—O23.9 (2)C10—N2—N3—C12160.12 (13)
N1—C9—C11—N3177.63 (13)C10—C9—C11—O2176.07 (15)
N2—N3—C11—O2173.55 (13)C10—C9—C11—N32.41 (16)
N2—N3—C11—C95.07 (15)C11—N3—C12—C13130.08 (16)
N2—N3—C12—C1319.9 (2)C11—N3—C12—C1749.4 (2)
N2—N3—C12—C17160.63 (13)C11—C9—C10—N21.18 (17)
N3—N2—C10—C94.27 (16)C11—C9—C10—C19178.02 (16)
N3—N2—C10—C19175.01 (13)C12—N3—C11—O221.4 (2)
N3—C12—C13—C14179.79 (14)C12—N3—C11—C9157.26 (14)
N3—C12—C17—C16177.76 (14)C12—C13—C14—C151.7 (2)
N4—C6—C7—C8179.08 (14)C13—C12—C17—C161.8 (2)
C1—N1—C9—C1056.9 (2)C13—C14—C15—C161.1 (3)
C1—N1—C9—C11123.16 (16)C14—C15—C16—C170.9 (3)
C1—C2—C3—C457.6 (2)C15—C16—C17—C122.4 (2)
C1—C2—C3—C8125.41 (16)C17—C12—C13—C140.3 (2)
C2—C3—C4—C5176.33 (15)C18—N2—N3—C11142.19 (13)
C2—C3—C8—C7176.71 (15)C18—N2—N3—C1263.56 (17)
C3—C4—C5—C60.4 (3)C18—N2—C10—C9138.12 (14)
C4—C3—C8—C70.3 (2)C18—N2—C10—C1941.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.032.8658 (18)164
C7—H7···O4ii0.932.543.307 (2)139
C18—H18B···O2iii0.962.563.336 (2)138
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.032.8658 (18)164.4
C7—H7···O4ii0.932.543.307 (2)139.4
C18—H18B···O2iii0.962.563.336 (2)138.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+2; (iii) x1, y, z.
 

Acknowledgements

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationButcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationButcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39.  CSD CrossRef IUCr Journals Google Scholar
First citationChandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arab. J Chem. 6, 97–102.  Web of Science CrossRef CAS Google Scholar
First citationCheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677.  CSD CrossRef IUCr Journals Google Scholar
First citationHatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.  Google Scholar
First citationKaur, M., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, o1726–o1727.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.  Web of Science CrossRef CAS Google Scholar
First citationMahan, A., Butcher, R. J., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013). Acta Cryst. E69, o402–o403.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o636-o637
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds