organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Phenyl-1,2,4-tri­aza­spiro­[4.6]undec-1-ene-3-thione

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 29 April 2014; accepted 1 May 2014; online 10 May 2014)

In the title compound, C14H17N3S, the plane of the phenyl ring makes a dihedral angle of 74.90 (4)° with that of the tri­aza­thione ring (r.m.s. deviation = 0.001 Å), while the seven-membered ring adopts a twist-chair conformation. No specific intermolecular interactions are discerned in the crystal packing.

Related literature

For various pharmaceutical properties of spiro compounds, see: Chin et al. (2008[Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390-395.]); Thadhaney et al. (2010[Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368-373.]). For industrial uses of heterocyclic spiro compounds, see: Sarma et al. (2010[Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364-5374.]). For the crystal structures of two similar compounds, see: Akkurt et al. (2013[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259.]); Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o433-o434.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3S

  • Mr = 259.36

  • Triclinic, [P \overline 1]

  • a = 9.0578 (5) Å

  • b = 9.1324 (5) Å

  • c = 9.4637 (5) Å

  • α = 88.2940 (8)°

  • β = 79.0690 (7)°

  • γ = 61.6640 (6)°

  • V = 674.89 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 150 K

  • 0.28 × 0.23 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.85, Tmax = 0.98

  • 12510 measured reflections

  • 3508 independent reflections

  • 3125 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 3508 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2013[Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Spiro-compounds are a significant class of of organic compounds due to their wide spectrum of pharmaceutical and applied chemistry aspects. They showed very promising biological activities such as anticancer agents (Chin et al., 2008) and antimicrobial agents (Thadhaney et al., 2010). Some spiro-compounds have also been recently used as antioxidants (Sarma et al., 2010). In this context and as part of our on-going study in synthesis of spiro-compounds for the purpose of biological potential, we report in this study the synthesis and crystal structure determination of the title compound.

In the title compound (I, Fig. 1), a Cremer-Pople analysis of the conformation of the 7-membered ring (C2/C9/C10–C14) gave puckering parameters Q(2) = 0.5606 (14) Å, Q(3) = 0.6549 (15) Å, ϕ(2) = 272.80 (15)° and ϕ(3) = 272.01 (12)° (Cremer & Pople, 1975). The total puckerin amplitude is 0.8620 (14) Å.

The phenyl ring (C3–C8) makes a dihedral angle of 74.90 (4)° with the triazathione ring (C1/C2/N1–N3). All bond lengths and bond angles in (I) are comparable with those for the similar compounds that we have reported previously (Akkurt et al., 2013; Mague et al., 2014).

Related literature top

For various pharmaceutical properties of spiro-compounds, see: Chin et al. (2008); Thadhaney et al. (2010). For industrial uses of heterocyclic spiro compounds, see: Sarma et al. (2010). For the crystal structures of two similar compounds, see: Akkurt et al. (2013); Mague et al. (2014). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 1 mmol (261 mg) of cycloheptan-1-one N-phenylthiosemicarbazone and 1 mmol (246 mg) of 2,3,5,6-tetrachloro-1,4-benzoquinone (DDQ) in 30 ml of ethyl acetate was stirred at room temperature. The reaction was monitored by TLC until completion. The precipitated DDQ-H2 was filtered off and the filtrate was concentrated by slow evaporation in air to afford the corresponding product. The crude product was recrystallized from ethanol to furnish orange block crystals suitable for X-ray diffraction.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Title compound with 50% probability displacement ellipsoids for non-H atoms.
4-Phenyl-1,2,4-triazaspiro[4.6]undec-1-ene-3-thione top
Crystal data top
C14H17N3SZ = 2
Mr = 259.36F(000) = 276
Triclinic, P1Dx = 1.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0578 (5) ÅCell parameters from 9063 reflections
b = 9.1324 (5) Åθ = 2.2–29.1°
c = 9.4637 (5) ŵ = 0.23 mm1
α = 88.2940 (8)°T = 150 K
β = 79.0690 (7)°Plate, orange
γ = 61.6640 (6)°0.28 × 0.23 × 0.06 mm
V = 674.89 (6) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3508 independent reflections
Radiation source: fine-focus sealed tube3125 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3660 pixels mm-1θmax = 29.1°, θmin = 2.2°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1212
Tmin = 0.85, Tmax = 0.98l = 1212
12510 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
3508 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H17N3Sγ = 61.6640 (6)°
Mr = 259.36V = 674.89 (6) Å3
Triclinic, P1Z = 2
a = 9.0578 (5) ÅMo Kα radiation
b = 9.1324 (5) ŵ = 0.23 mm1
c = 9.4637 (5) ÅT = 150 K
α = 88.2940 (8)°0.28 × 0.23 × 0.06 mm
β = 79.0690 (7)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3508 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3125 reflections with I > 2σ(I)
Tmin = 0.85, Tmax = 0.98Rint = 0.032
12510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.04Δρmax = 0.44 e Å3
3508 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.18135 (4)0.44697 (4)0.80140 (3)0.0246 (1)
N10.85249 (12)0.58855 (11)0.76728 (10)0.0161 (2)
N20.75975 (13)0.84504 (12)0.87544 (11)0.0222 (3)
N30.91495 (13)0.75963 (13)0.87953 (11)0.0223 (3)
C10.98219 (14)0.59098 (14)0.81285 (12)0.0180 (3)
C20.69598 (14)0.75078 (13)0.80402 (12)0.0169 (3)
C30.85298 (13)0.44117 (13)0.71782 (12)0.0165 (3)
C40.85413 (15)0.32566 (14)0.81669 (13)0.0205 (3)
C50.84438 (16)0.18734 (15)0.77211 (14)0.0255 (3)
C60.83537 (18)0.16576 (16)0.63011 (15)0.0292 (4)
C70.83794 (18)0.28004 (17)0.53131 (14)0.0294 (4)
C80.84735 (15)0.41916 (15)0.57489 (12)0.0219 (3)
C90.55281 (15)0.73871 (14)0.91260 (12)0.0202 (3)
C100.42376 (16)0.71324 (16)0.84612 (13)0.0238 (3)
C110.27415 (16)0.87693 (17)0.81639 (14)0.0267 (3)
C120.31779 (16)0.96808 (17)0.69115 (14)0.0273 (3)
C130.46872 (15)0.99887 (15)0.69690 (13)0.0232 (3)
C140.64134 (14)0.83880 (14)0.66771 (12)0.0192 (3)
H40.861500.340800.913500.0250*
H50.843900.107700.838800.0310*
H60.827400.071800.600300.0350*
H70.833300.263500.434000.0350*
H80.849900.497800.507800.0260*
H9A0.606400.644900.973100.0240*
H9B0.489300.842200.977000.0240*
H10A0.484100.643400.754500.0280*
H10B0.377900.652000.912500.0280*
H11A0.183900.852900.796800.0320*
H11B0.225500.952800.904900.0320*
H12A0.215501.077000.688800.0330*
H12B0.343800.902400.599900.0330*
H13A0.451201.050500.793300.0280*
H13B0.471401.078600.624500.0280*
H14A0.730500.866400.617700.0230*
H14B0.635000.760600.601900.0230*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0207 (2)0.0261 (2)0.0266 (2)0.0094 (1)0.0087 (1)0.0025 (1)
N10.0189 (4)0.0140 (4)0.0172 (4)0.0087 (3)0.0049 (3)0.0000 (3)
N20.0285 (5)0.0188 (5)0.0241 (5)0.0141 (4)0.0079 (4)0.0009 (4)
N30.0278 (5)0.0208 (5)0.0241 (5)0.0148 (4)0.0090 (4)0.0004 (4)
C10.0234 (5)0.0190 (5)0.0158 (5)0.0129 (4)0.0058 (4)0.0023 (4)
C20.0203 (5)0.0136 (5)0.0185 (5)0.0089 (4)0.0049 (4)0.0011 (4)
C30.0177 (5)0.0148 (5)0.0185 (5)0.0092 (4)0.0026 (4)0.0023 (4)
C40.0234 (5)0.0192 (5)0.0199 (5)0.0112 (4)0.0037 (4)0.0006 (4)
C50.0301 (6)0.0187 (5)0.0303 (6)0.0149 (5)0.0033 (5)0.0030 (5)
C60.0374 (7)0.0225 (6)0.0336 (7)0.0193 (5)0.0051 (5)0.0056 (5)
C70.0412 (7)0.0293 (7)0.0226 (6)0.0205 (6)0.0059 (5)0.0058 (5)
C80.0290 (6)0.0212 (5)0.0176 (5)0.0141 (5)0.0033 (4)0.0003 (4)
C90.0230 (5)0.0207 (5)0.0161 (5)0.0102 (4)0.0024 (4)0.0002 (4)
C100.0254 (6)0.0265 (6)0.0236 (6)0.0168 (5)0.0015 (5)0.0014 (5)
C110.0209 (5)0.0338 (7)0.0259 (6)0.0137 (5)0.0034 (5)0.0030 (5)
C120.0221 (6)0.0311 (6)0.0259 (6)0.0093 (5)0.0082 (5)0.0009 (5)
C130.0248 (6)0.0188 (5)0.0246 (6)0.0085 (4)0.0076 (5)0.0031 (4)
C140.0214 (5)0.0182 (5)0.0191 (5)0.0100 (4)0.0050 (4)0.0032 (4)
Geometric parameters (Å, º) top
S1—C11.6364 (13)C13—C141.5325 (18)
N1—C11.3357 (18)C4—H40.9500
N1—C21.4750 (15)C5—H50.9500
N1—C31.4359 (15)C6—H60.9500
N2—N31.2506 (17)C7—H70.9500
N2—C21.4786 (17)C8—H80.9500
N3—C11.4707 (15)C9—H9A0.9900
C2—C91.5406 (19)C9—H9B0.9900
C2—C141.5356 (16)C10—H10A0.9900
C3—C41.3867 (16)C10—H10B0.9900
C3—C81.3874 (16)C11—H11A0.9900
C4—C51.3904 (18)C11—H11B0.9900
C5—C61.387 (2)C12—H12A0.9900
C6—C71.3859 (19)C12—H12B0.9900
C7—C81.392 (2)C13—H13A0.9900
C9—C101.537 (2)C13—H13B0.9900
C10—C111.532 (2)C14—H14A0.9900
C11—C121.5264 (19)C14—H14B0.9900
C12—C131.531 (2)
C1—N1—C2110.52 (10)C6—C7—H7120.00
C1—N1—C3124.94 (10)C8—C7—H7120.00
C2—N1—C3123.30 (11)C3—C8—H8120.00
N3—N2—C2112.14 (10)C7—C8—H8121.00
N2—N3—C1110.00 (11)C2—C9—H9A108.00
S1—C1—N1131.05 (9)C2—C9—H9B108.00
S1—C1—N3122.55 (10)C10—C9—H9A108.00
N1—C1—N3106.39 (10)C10—C9—H9B108.00
N1—C2—N2100.93 (10)H9A—C9—H9B107.00
N1—C2—C9112.71 (9)C9—C10—H10A109.00
N1—C2—C14111.24 (9)C9—C10—H10B109.00
N2—C2—C9108.93 (9)C11—C10—H10A109.00
N2—C2—C14107.14 (9)C11—C10—H10B109.00
C9—C2—C14114.78 (11)H10A—C10—H10B108.00
N1—C3—C4118.50 (10)C10—C11—H11A108.00
N1—C3—C8120.00 (10)C10—C11—H11B108.00
C4—C3—C8121.47 (11)C12—C11—H11A108.00
C3—C4—C5119.06 (11)C12—C11—H11B108.00
C4—C5—C6119.93 (12)H11A—C11—H11B107.00
C5—C6—C7120.60 (13)C11—C12—H12A109.00
C6—C7—C8119.93 (12)C11—C12—H12B109.00
C3—C8—C7118.98 (11)C13—C12—H12A108.00
C2—C9—C10115.55 (10)C13—C12—H12B108.00
C9—C10—C11113.31 (11)H12A—C12—H12B108.00
C10—C11—C12115.62 (12)C12—C13—H13A109.00
C11—C12—C13115.09 (12)C12—C13—H13B109.00
C12—C13—C14112.85 (11)C14—C13—H13A109.00
C2—C14—C13114.07 (9)C14—C13—H13B109.00
C3—C4—H4120.00H13A—C13—H13B108.00
C5—C4—H4120.00C2—C14—H14A109.00
C4—C5—H5120.00C2—C14—H14B109.00
C6—C5—H5120.00C13—C14—H14A109.00
C5—C6—H6120.00C13—C14—H14B109.00
C7—C6—H6120.00H14A—C14—H14B108.00
C2—N1—C1—S1179.77 (9)N1—C2—C9—C1093.43 (12)
C2—N1—C1—N31.29 (12)N2—C2—C9—C10155.42 (10)
C3—N1—C1—S112.16 (18)C14—C2—C9—C1035.32 (14)
C3—N1—C1—N3168.90 (10)N1—C2—C14—C13173.50 (11)
C1—N1—C2—N20.83 (12)N2—C2—C14—C1377.06 (14)
C1—N1—C2—C9115.21 (11)C9—C2—C14—C1344.03 (14)
C1—N1—C2—C14114.23 (11)N1—C3—C4—C5176.23 (12)
C3—N1—C2—N2168.68 (9)C8—C3—C4—C51.9 (2)
C3—N1—C2—C952.64 (14)N1—C3—C8—C7176.32 (13)
C3—N1—C2—C1477.92 (14)C4—C3—C8—C71.8 (2)
C1—N1—C3—C467.68 (16)C3—C4—C5—C60.6 (2)
C1—N1—C3—C8114.17 (14)C4—C5—C6—C70.7 (2)
C2—N1—C3—C498.41 (14)C5—C6—C7—C80.9 (2)
C2—N1—C3—C879.74 (15)C6—C7—C8—C30.4 (2)
C2—N2—N3—C10.83 (13)C2—C9—C10—C1187.16 (13)
N3—N2—C2—N10.05 (13)C9—C10—C11—C1271.74 (14)
N3—N2—C2—C9118.86 (11)C10—C11—C12—C1352.16 (16)
N3—N2—C2—C14116.42 (11)C11—C12—C13—C1470.85 (14)
N2—N3—C1—S1179.60 (9)C12—C13—C14—C291.21 (13)
N2—N3—C1—N11.35 (13)
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o433–o434.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds