organic compounds
4-Phenyl-1,2,4-triazaspiro[4.6]undec-1-ene-3-thione
aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Mini University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C14H17N3S, the plane of the phenyl ring makes a dihedral angle of 74.90 (4)° with that of the triazathione ring (r.m.s. deviation = 0.001 Å), while the seven-membered ring adopts a twist-chair conformation. No specific intermolecular interactions are discerned in the crystal packing.
CCDC reference: 1000439
Related literature
For various pharmaceutical properties of et al. (2008); Thadhaney et al. (2010). For industrial uses of heterocyclic see: Sarma et al. (2010). For the crystal structures of two similar compounds, see: Akkurt et al. (2013); Mague et al. (2014). For ring-puckering parameters, see: Cremer & Pople (1975).
see: ChinExperimental
Crystal data
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1000439
10.1107/S1600536814009817/hg5394sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009817/hg5394Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814009817/hg5394Isup3.cml
A mixture of 1 mmol (261 mg) of cycloheptan-1-one N-phenylthiosemicarbazone and 1 mmol (246 mg) of 2,3,5,6-tetrachloro-1,4-benzoquinone (DDQ) in 30 ml of ethyl acetate was stirred at room temperature. The reaction was monitored by TLC until completion. The precipitated DDQ-H2 was filtered off and the filtrate was concentrated by slow evaporation in air to afford the corresponding product. The crude product was recrystallized from ethanol to furnish orange block crystals suitable for X-ray diffraction.
H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Bruker, 2013); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H17N3S | Z = 2 |
Mr = 259.36 | F(000) = 276 |
Triclinic, P1 | Dx = 1.276 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0578 (5) Å | Cell parameters from 9063 reflections |
b = 9.1324 (5) Å | θ = 2.2–29.1° |
c = 9.4637 (5) Å | µ = 0.23 mm−1 |
α = 88.2940 (8)° | T = 150 K |
β = 79.0690 (7)° | Plate, orange |
γ = 61.6640 (6)° | 0.28 × 0.23 × 0.06 mm |
V = 674.89 (6) Å3 |
Bruker SMART APEX CCD diffractometer | 3508 independent reflections |
Radiation source: fine-focus sealed tube | 3125 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8.3660 pixels mm-1 | θmax = 29.1°, θmin = 2.2° |
ϕ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −12→12 |
Tmin = 0.85, Tmax = 0.98 | l = −12→12 |
12510 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2315P] where P = (Fo2 + 2Fc2)/3 |
3508 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C14H17N3S | γ = 61.6640 (6)° |
Mr = 259.36 | V = 674.89 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.0578 (5) Å | Mo Kα radiation |
b = 9.1324 (5) Å | µ = 0.23 mm−1 |
c = 9.4637 (5) Å | T = 150 K |
α = 88.2940 (8)° | 0.28 × 0.23 × 0.06 mm |
β = 79.0690 (7)° |
Bruker SMART APEX CCD diffractometer | 3508 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 3125 reflections with I > 2σ(I) |
Tmin = 0.85, Tmax = 0.98 | Rint = 0.032 |
12510 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.44 e Å−3 |
3508 reflections | Δρmin = −0.20 e Å−3 |
163 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 1.18135 (4) | 0.44697 (4) | 0.80140 (3) | 0.0246 (1) | |
N1 | 0.85249 (12) | 0.58855 (11) | 0.76728 (10) | 0.0161 (2) | |
N2 | 0.75975 (13) | 0.84504 (12) | 0.87544 (11) | 0.0222 (3) | |
N3 | 0.91495 (13) | 0.75963 (13) | 0.87953 (11) | 0.0223 (3) | |
C1 | 0.98219 (14) | 0.59098 (14) | 0.81285 (12) | 0.0180 (3) | |
C2 | 0.69598 (14) | 0.75078 (13) | 0.80402 (12) | 0.0169 (3) | |
C3 | 0.85298 (13) | 0.44117 (13) | 0.71782 (12) | 0.0165 (3) | |
C4 | 0.85413 (15) | 0.32566 (14) | 0.81669 (13) | 0.0205 (3) | |
C5 | 0.84438 (16) | 0.18734 (15) | 0.77211 (14) | 0.0255 (3) | |
C6 | 0.83537 (18) | 0.16576 (16) | 0.63011 (15) | 0.0292 (4) | |
C7 | 0.83794 (18) | 0.28004 (17) | 0.53131 (14) | 0.0294 (4) | |
C8 | 0.84735 (15) | 0.41916 (15) | 0.57489 (12) | 0.0219 (3) | |
C9 | 0.55281 (15) | 0.73871 (14) | 0.91260 (12) | 0.0202 (3) | |
C10 | 0.42376 (16) | 0.71324 (16) | 0.84612 (13) | 0.0238 (3) | |
C11 | 0.27415 (16) | 0.87693 (17) | 0.81639 (14) | 0.0267 (3) | |
C12 | 0.31779 (16) | 0.96808 (17) | 0.69115 (14) | 0.0273 (3) | |
C13 | 0.46872 (15) | 0.99887 (15) | 0.69690 (13) | 0.0232 (3) | |
C14 | 0.64134 (14) | 0.83880 (14) | 0.66771 (12) | 0.0192 (3) | |
H4 | 0.86150 | 0.34080 | 0.91350 | 0.0250* | |
H5 | 0.84390 | 0.10770 | 0.83880 | 0.0310* | |
H6 | 0.82740 | 0.07180 | 0.60030 | 0.0350* | |
H7 | 0.83330 | 0.26350 | 0.43400 | 0.0350* | |
H8 | 0.84990 | 0.49780 | 0.50780 | 0.0260* | |
H9A | 0.60640 | 0.64490 | 0.97310 | 0.0240* | |
H9B | 0.48930 | 0.84220 | 0.97700 | 0.0240* | |
H10A | 0.48410 | 0.64340 | 0.75450 | 0.0280* | |
H10B | 0.37790 | 0.65200 | 0.91250 | 0.0280* | |
H11A | 0.18390 | 0.85290 | 0.79680 | 0.0320* | |
H11B | 0.22550 | 0.95280 | 0.90490 | 0.0320* | |
H12A | 0.21550 | 1.07700 | 0.68880 | 0.0330* | |
H12B | 0.34380 | 0.90240 | 0.59990 | 0.0330* | |
H13A | 0.45120 | 1.05050 | 0.79330 | 0.0280* | |
H13B | 0.47140 | 1.07860 | 0.62450 | 0.0280* | |
H14A | 0.73050 | 0.86640 | 0.61770 | 0.0230* | |
H14B | 0.63500 | 0.76060 | 0.60190 | 0.0230* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0207 (2) | 0.0261 (2) | 0.0266 (2) | −0.0094 (1) | −0.0087 (1) | 0.0025 (1) |
N1 | 0.0189 (4) | 0.0140 (4) | 0.0172 (4) | −0.0087 (3) | −0.0049 (3) | 0.0000 (3) |
N2 | 0.0285 (5) | 0.0188 (5) | 0.0241 (5) | −0.0141 (4) | −0.0079 (4) | −0.0009 (4) |
N3 | 0.0278 (5) | 0.0208 (5) | 0.0241 (5) | −0.0148 (4) | −0.0090 (4) | 0.0004 (4) |
C1 | 0.0234 (5) | 0.0190 (5) | 0.0158 (5) | −0.0129 (4) | −0.0058 (4) | 0.0023 (4) |
C2 | 0.0203 (5) | 0.0136 (5) | 0.0185 (5) | −0.0089 (4) | −0.0049 (4) | −0.0011 (4) |
C3 | 0.0177 (5) | 0.0148 (5) | 0.0185 (5) | −0.0092 (4) | −0.0026 (4) | −0.0023 (4) |
C4 | 0.0234 (5) | 0.0192 (5) | 0.0199 (5) | −0.0112 (4) | −0.0037 (4) | 0.0006 (4) |
C5 | 0.0301 (6) | 0.0187 (5) | 0.0303 (6) | −0.0149 (5) | −0.0033 (5) | 0.0030 (5) |
C6 | 0.0374 (7) | 0.0225 (6) | 0.0336 (7) | −0.0193 (5) | −0.0051 (5) | −0.0056 (5) |
C7 | 0.0412 (7) | 0.0293 (7) | 0.0226 (6) | −0.0205 (6) | −0.0059 (5) | −0.0058 (5) |
C8 | 0.0290 (6) | 0.0212 (5) | 0.0176 (5) | −0.0141 (5) | −0.0033 (4) | −0.0003 (4) |
C9 | 0.0230 (5) | 0.0207 (5) | 0.0161 (5) | −0.0102 (4) | −0.0024 (4) | 0.0002 (4) |
C10 | 0.0254 (6) | 0.0265 (6) | 0.0236 (6) | −0.0168 (5) | −0.0015 (5) | −0.0014 (5) |
C11 | 0.0209 (5) | 0.0338 (7) | 0.0259 (6) | −0.0137 (5) | −0.0034 (5) | −0.0030 (5) |
C12 | 0.0221 (6) | 0.0311 (6) | 0.0259 (6) | −0.0093 (5) | −0.0082 (5) | 0.0009 (5) |
C13 | 0.0248 (6) | 0.0188 (5) | 0.0246 (6) | −0.0085 (4) | −0.0076 (5) | 0.0031 (4) |
C14 | 0.0214 (5) | 0.0182 (5) | 0.0191 (5) | −0.0100 (4) | −0.0050 (4) | 0.0032 (4) |
S1—C1 | 1.6364 (13) | C13—C14 | 1.5325 (18) |
N1—C1 | 1.3357 (18) | C4—H4 | 0.9500 |
N1—C2 | 1.4750 (15) | C5—H5 | 0.9500 |
N1—C3 | 1.4359 (15) | C6—H6 | 0.9500 |
N2—N3 | 1.2506 (17) | C7—H7 | 0.9500 |
N2—C2 | 1.4786 (17) | C8—H8 | 0.9500 |
N3—C1 | 1.4707 (15) | C9—H9A | 0.9900 |
C2—C9 | 1.5406 (19) | C9—H9B | 0.9900 |
C2—C14 | 1.5356 (16) | C10—H10A | 0.9900 |
C3—C4 | 1.3867 (16) | C10—H10B | 0.9900 |
C3—C8 | 1.3874 (16) | C11—H11A | 0.9900 |
C4—C5 | 1.3904 (18) | C11—H11B | 0.9900 |
C5—C6 | 1.387 (2) | C12—H12A | 0.9900 |
C6—C7 | 1.3859 (19) | C12—H12B | 0.9900 |
C7—C8 | 1.392 (2) | C13—H13A | 0.9900 |
C9—C10 | 1.537 (2) | C13—H13B | 0.9900 |
C10—C11 | 1.532 (2) | C14—H14A | 0.9900 |
C11—C12 | 1.5264 (19) | C14—H14B | 0.9900 |
C12—C13 | 1.531 (2) | ||
C1—N1—C2 | 110.52 (10) | C6—C7—H7 | 120.00 |
C1—N1—C3 | 124.94 (10) | C8—C7—H7 | 120.00 |
C2—N1—C3 | 123.30 (11) | C3—C8—H8 | 120.00 |
N3—N2—C2 | 112.14 (10) | C7—C8—H8 | 121.00 |
N2—N3—C1 | 110.00 (11) | C2—C9—H9A | 108.00 |
S1—C1—N1 | 131.05 (9) | C2—C9—H9B | 108.00 |
S1—C1—N3 | 122.55 (10) | C10—C9—H9A | 108.00 |
N1—C1—N3 | 106.39 (10) | C10—C9—H9B | 108.00 |
N1—C2—N2 | 100.93 (10) | H9A—C9—H9B | 107.00 |
N1—C2—C9 | 112.71 (9) | C9—C10—H10A | 109.00 |
N1—C2—C14 | 111.24 (9) | C9—C10—H10B | 109.00 |
N2—C2—C9 | 108.93 (9) | C11—C10—H10A | 109.00 |
N2—C2—C14 | 107.14 (9) | C11—C10—H10B | 109.00 |
C9—C2—C14 | 114.78 (11) | H10A—C10—H10B | 108.00 |
N1—C3—C4 | 118.50 (10) | C10—C11—H11A | 108.00 |
N1—C3—C8 | 120.00 (10) | C10—C11—H11B | 108.00 |
C4—C3—C8 | 121.47 (11) | C12—C11—H11A | 108.00 |
C3—C4—C5 | 119.06 (11) | C12—C11—H11B | 108.00 |
C4—C5—C6 | 119.93 (12) | H11A—C11—H11B | 107.00 |
C5—C6—C7 | 120.60 (13) | C11—C12—H12A | 109.00 |
C6—C7—C8 | 119.93 (12) | C11—C12—H12B | 109.00 |
C3—C8—C7 | 118.98 (11) | C13—C12—H12A | 108.00 |
C2—C9—C10 | 115.55 (10) | C13—C12—H12B | 108.00 |
C9—C10—C11 | 113.31 (11) | H12A—C12—H12B | 108.00 |
C10—C11—C12 | 115.62 (12) | C12—C13—H13A | 109.00 |
C11—C12—C13 | 115.09 (12) | C12—C13—H13B | 109.00 |
C12—C13—C14 | 112.85 (11) | C14—C13—H13A | 109.00 |
C2—C14—C13 | 114.07 (9) | C14—C13—H13B | 109.00 |
C3—C4—H4 | 120.00 | H13A—C13—H13B | 108.00 |
C5—C4—H4 | 120.00 | C2—C14—H14A | 109.00 |
C4—C5—H5 | 120.00 | C2—C14—H14B | 109.00 |
C6—C5—H5 | 120.00 | C13—C14—H14A | 109.00 |
C5—C6—H6 | 120.00 | C13—C14—H14B | 109.00 |
C7—C6—H6 | 120.00 | H14A—C14—H14B | 108.00 |
C2—N1—C1—S1 | 179.77 (9) | N1—C2—C9—C10 | −93.43 (12) |
C2—N1—C1—N3 | −1.29 (12) | N2—C2—C9—C10 | 155.42 (10) |
C3—N1—C1—S1 | 12.16 (18) | C14—C2—C9—C10 | 35.32 (14) |
C3—N1—C1—N3 | −168.90 (10) | N1—C2—C14—C13 | 173.50 (11) |
C1—N1—C2—N2 | 0.83 (12) | N2—C2—C14—C13 | −77.06 (14) |
C1—N1—C2—C9 | −115.21 (11) | C9—C2—C14—C13 | 44.03 (14) |
C1—N1—C2—C14 | 114.23 (11) | N1—C3—C4—C5 | 176.23 (12) |
C3—N1—C2—N2 | 168.68 (9) | C8—C3—C4—C5 | −1.9 (2) |
C3—N1—C2—C9 | 52.64 (14) | N1—C3—C8—C7 | −176.32 (13) |
C3—N1—C2—C14 | −77.92 (14) | C4—C3—C8—C7 | 1.8 (2) |
C1—N1—C3—C4 | 67.68 (16) | C3—C4—C5—C6 | 0.6 (2) |
C1—N1—C3—C8 | −114.17 (14) | C4—C5—C6—C7 | 0.7 (2) |
C2—N1—C3—C4 | −98.41 (14) | C5—C6—C7—C8 | −0.9 (2) |
C2—N1—C3—C8 | 79.74 (15) | C6—C7—C8—C3 | −0.4 (2) |
C2—N2—N3—C1 | −0.83 (13) | C2—C9—C10—C11 | −87.16 (13) |
N3—N2—C2—N1 | 0.05 (13) | C9—C10—C11—C12 | 71.74 (14) |
N3—N2—C2—C9 | 118.86 (11) | C10—C11—C12—C13 | −52.16 (16) |
N3—N2—C2—C14 | −116.42 (11) | C11—C12—C13—C14 | 70.85 (14) |
N2—N3—C1—S1 | −179.60 (9) | C12—C13—C14—C2 | −91.21 (13) |
N2—N3—C1—N1 | 1.35 (13) |
Acknowledgements
Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study.
References
Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1259. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2, SHELXTL, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chin, Y.-W., Salim, A. A., Su, B.-N., Mi, Q., Chai, H.-B., Riswan, S., Kardono, L. B. S., Ruskandi, A., Farnsworth, N. R., Swanson, S. M. & Kinghorn, A. D. (2008). J. Nat. Prod. 71, 390–395. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o433–o434. CSD CrossRef CAS IUCr Journals Google Scholar
Sarma, B. K., Manna, D., Minoura, M. & Mugesh, G. (2010). J. Am. Chem. Soc. 132, 5364–5374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thadhaney, B., Sain, D., Pernawat, G. & Talesara, G. L. (2010). Indian J. Chem. Sect. B, 49, 368–373. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Spiro-compounds are a significant class of of organic compounds due to their wide spectrum of pharmaceutical and applied chemistry aspects. They showed very promising biological activities such as anticancer agents (Chin et al., 2008) and antimicrobial agents (Thadhaney et al., 2010). Some spiro-compounds have also been recently used as antioxidants (Sarma et al., 2010). In this context and as part of our on-going study in synthesis of spiro-compounds for the purpose of biological potential, we report in this study the synthesis and crystal structure determination of the title compound.
In the title compound (I, Fig. 1), a Cremer-Pople analysis of the conformation of the 7-membered ring (C2/C9/C10–C14) gave puckering parameters Q(2) = 0.5606 (14) Å, Q(3) = 0.6549 (15) Å, ϕ(2) = 272.80 (15)° and ϕ(3) = 272.01 (12)° (Cremer & Pople, 1975). The total puckerin amplitude is 0.8620 (14) Å.
The phenyl ring (C3–C8) makes a dihedral angle of 74.90 (4)° with the triazathione ring (C1/C2/N1–N3). All bond lengths and bond angles in (I) are comparable with those for the similar compounds that we have reported previously (Akkurt et al., 2013; Mague et al., 2014).