inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nickel hexa­yttrium deca­iodide, [NiY6]I10

aDepartment für Chemie, Anorganische Festkörper- und Koordinationschemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany
*Correspondence e-mail: gerd.meyer@uni-koeln.de

Edited by E. F. C. Herdtweck, Technischen Universität München, Germany (Received 24 March 2014; accepted 30 April 2014; online 10 May 2014)

Comproportionation reactions of yttrium triiodide, yttrium and nickel led to the formation of the compound [NiY6]I10, which is isostructural with the prototypical [RuY6]I10. In particular, [NiY6]I10 is composed of isolated nickel centered yttrium octa­hedra (site symmetry -1) that are further surrounded by iodide ligands to construct a three-dimensional cluster complex framework. Although this compound has been previously detected by powder X-ray diffraction techniques [Payne & Corbett (1990[Payne, M. W. & Corbett, J. D. (1990). Inorg. Chem. 29, 2246-2251.]). Inorg. Chem. 29, 2246–2251], details of the crystal structure for triclinic [NiY6]I10 were not provided.

Related literature

For a report of the prototypical [RuY6]I10, see: Hughbanks et al. (1989[Hughbanks, T. & Corbett, J. D. (1989). Inorg. Chem. 28, 631-635.]). For the determination of the lattice parameters of [NiY6]I10 from PXRD data, see: Payne & Corbett (1990[Payne, M. W. & Corbett, J. D. (1990). Inorg. Chem. 29, 2246-2251.]). For a survey of isotypic structures, see: Rustige et al. (2012[Rustige, C., Brühmann, M., Steinberg, S., Meyer, E., Daub, K., Zimmermann, S., Wolberg, M., Mudring, A.-V. & Meyer, G. (2012). Z. Anorg. Allg. Chem. 638, 1922-1931.]). For the synthesis of the starting material YI3, see: Corbett (1983[Corbett, J. D. (1983). Inorg. Synth. 22, 31.]); Meyer (1991[Meyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135-144. Dordrecht: Kluwer Academic Publishers.]). The symmetry of the refined structure was checked using the PLATON software package (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Experimental

Crystal data
  • [NiY6]I10

  • Mr = 1861.17

  • Triclinic, [P \overline 1]

  • a = 9.4904 (7) Å

  • b = 9.4990 (7) Å

  • c = 7.5702 (5) Å

  • α = 97.056 (6)°

  • β = 105.096 (6)°

  • γ = 107.540 (5)°

  • V = 613.06 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 27.35 mm−1

  • T = 293 K

  • 0.1 × 0.1 × 0.1 mm

Data collection
  • Stoe IPDS 2T diffractometer

  • Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) and X-RED (Stoe & Cie, 2001[Stoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.031, Tmax = 0.084

  • 11699 measured reflections

  • 3294 independent reflections

  • 2873 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.05

  • 3294 reflections

  • 80 parameters

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.64 e Å−3

Table 1
Averaged Y—Ni, Y—Y and Y—I distances (Å) in triclinic [NiY6]I10

Inter­action Y—Ni Y—Y Y—I
Distance 2.649 3.746 3.143

Data collection: X-AREA (Stoe & Cie, 2003[Stoe & Cie (2003). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and local programs.

Supporting information


Comment top

[NiY6]I10 crystallizes with the triclinic [RuY6]I10 type of structure (Hughbanks et al., 1989) and may be depicted as cubic closest packings of nickel and iodine atoms with yttrium atoms residing in 6/11 of all octahedral holes. Particularly, the yttrium atoms occupy those voids surrounding the nickel atoms to aggregate to octahedral [NiY6] clusters (Fig. 1). The twelve edges of each [NiY6] octahedron are capped by inner iodido ligands forming cuboctahedra around the endohedral nickel atoms. Additionally, the yttrium atoms bond to outer iodido ligands that reside in the inner coordination spheres of like clusters. More specifically, the iodido ligands interconnect the [NiY6] clusters via (i)–(i)–, (i)–(a)– and (a)–(i)–functionalities (Fig. 2), which can be emphasized by the formula [NiY6]Ii2/1Ii-i4/2Ii-a6/2Ia-i6/2 (Rustige et al., 2012 and lit. cited therein). The averaged Y–Y and Y–I (see below) distances correlate well with data of recently reported yttrium cluster iodides (Rustige et al., 2012).

Related literature top

For a report of the prototypical [RuY6]I10, see: Hughbanks et al. (1989). For the determination of the lattice parameters of [NiY6]I10 from PXRD data, see: Payne et al. (1990). For a survey of isotypic structures, see: Rustige et al. (2012). For the synthesis of the starting material YI3, see: Corbett (1983); Meyer (1991). The symmetry of the refined structure was checked using the PLATON software package (Spek, 2009).

Experimental top

[NiY6]I10 was obtained from comproportionation reactions of yttrium triiodide, yttrium and nickel. Yttrium triiodide was synthesized from reactions of the pure elements (Corbett, 1983; Meyer, 1991), while the metals were obtained from commercial sources (Y, smart elements, 99.99%; Ni, Riedel–de Haen, 99.8%) and used without further purification. Due to the sensivity of the used chemicals and products to air and moisture, all sample preparations were performed under a nitrogen atmosphere in a glove box with strict exclusion of air and water (< 0.1 p.p.m.). The reaction mixtures were loaded as {NiY3}I3 in pre–cleaned, one–side He–arc welded tantalum tubes, which were closed inside a glove box, arc–welded at the other end and jacketed by evacuated, fused silica tubes. The mixtures were first heated to 1050 °C, kept at that temperature for one week, slowly–annealed to 700 °C and, then, rapidly cooled to room temperature. The product appeared as a black powder containing small crystals of polyhedral shape. Single crystals were selected from the bulk and fixed in capilleries, which were closed inside a glove box. The crystals were subsequently transferred to a Stoe IPDS 2 T diffractometer and complete sets of intensity data were collected at room temperature (293 (2) K).

Refinement top

The intensity data sets were corrected for Lorentz and polarization effects. The structure was solved using direct methods (SHELXS97, Sheldrick, 2008) and refined on F2 (SHELXL97, Sheldrick, 2008). A numerical absorption correction and a crystal shape optimization were carried out with the programs X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999), respectively. The PLATON software package (Spek, 2009) was utilized to check the symmetry of the refined structure and no higher symmetry was identified. As the largest difference peaks (1.365 and -1.635 e.Å) are located 0.73 Å and 0.81 Å near to the I2 and I1 sites, respectively, and all thermal ellipsoids are reasonable in shape and size (Rustige et al., 2012), the presence of further atom sites was excluded. To compare the lattice parameters of the title compound to those of more recently reported yttrium cluster iodides (Rustige et al., 2012), a lattice setting unlike the standard setting was chosen for the triclinic [NiY6]I10.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2003); cell refinement: X-AREA (Stoe & Cie, 2003); data reduction: X-AREA (Stoe & Cie, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Representation of isolated [NiY6] octahedra. The edges are capped by the iodido ligands, whereas each yttrium atom bonds to one outer iodido ligand (90% probability thermal ellipsoids).
[Figure 2] Fig. 2. View on the (i)–(i)–, (i)–a)– and (a)–(i)–interconnections as seen in the triclinic [NiY6]I10.
Hexayttrium nickel decaiodide top
Crystal data top
Y6NiI10Z = 1
Mr = 1861.17F(000) = 792
Triclinic, P1Dx = 5.041 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4904 (7) ÅCell parameters from 7675 reflections
b = 9.4990 (7) Åθ = 2.3–29.7°
c = 7.5702 (5) ŵ = 27.35 mm1
α = 97.056 (6)°T = 293 K
β = 105.096 (6)°Polyhedral, black
γ = 107.540 (5)°0.1 × 0.1 × 0.1 mm
V = 613.06 (8) Å3
Data collection top
Stoe IPDS 2T
diffractometer
3294 independent reflections
Radiation source: fine-focus sealed tube2873 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
Detector resolution: not measured pixels mm-1θmax = 29.2°, θmin = 2.3°
ω and ϕ scansh = 1212
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)]
k = 1212
Tmin = 0.031, Tmax = 0.084l = 1010
11699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.37 e Å3
3294 reflectionsΔρmin = 1.64 e Å3
80 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0065 (3)
Crystal data top
Y6NiI10γ = 107.540 (5)°
Mr = 1861.17V = 613.06 (8) Å3
Triclinic, P1Z = 1
a = 9.4904 (7) ÅMo Kα radiation
b = 9.4990 (7) ŵ = 27.35 mm1
c = 7.5702 (5) ÅT = 293 K
α = 97.056 (6)°0.1 × 0.1 × 0.1 mm
β = 105.096 (6)°
Data collection top
Stoe IPDS 2T
diffractometer
3294 independent reflections
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)]
2873 reflections with I > 2σ(I)
Tmin = 0.031, Tmax = 0.084Rint = 0.106
11699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03480 parameters
wR(F2) = 0.0910 restraints
S = 1.05Δρmax = 1.37 e Å3
3294 reflectionsΔρmin = 1.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.46133 (4)0.27745 (5)0.36198 (5)0.03196 (12)
I20.09092 (5)0.53117 (5)0.73275 (5)0.03117 (12)
I30.62560 (4)0.18495 (5)0.08746 (6)0.03022 (12)
I40.18872 (4)0.09482 (4)0.45161 (4)0.02376 (11)
I50.26512 (4)0.35524 (4)0.21790 (6)0.02461 (11)
Y10.03920 (6)0.24090 (6)0.88682 (7)0.01994 (13)
Y20.28566 (6)0.08659 (6)0.02824 (7)0.02070 (13)
Y30.12577 (6)0.16546 (6)0.65217 (7)0.02003 (13)
Ni10.00000.00000.00000.01763 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0218 (2)0.0379 (3)0.02921 (19)0.00438 (18)0.00735 (15)0.00074 (17)
I20.0445 (3)0.0225 (2)0.02586 (18)0.01531 (18)0.00550 (16)0.00573 (15)
I30.0238 (2)0.0314 (2)0.0443 (2)0.01372 (17)0.01644 (16)0.01687 (19)
I40.02514 (19)0.0264 (2)0.02106 (17)0.01056 (16)0.00748 (13)0.00530 (14)
I50.02516 (19)0.0237 (2)0.02650 (17)0.00764 (14)0.01043 (13)0.00798 (13)
Y10.0214 (2)0.0197 (3)0.0214 (2)0.00886 (18)0.00798 (17)0.00681 (18)
Y20.0188 (2)0.0232 (3)0.0223 (2)0.00806 (18)0.00821 (17)0.00681 (19)
Y30.0212 (2)0.0205 (3)0.0198 (2)0.00802 (18)0.00750 (16)0.00500 (17)
Ni10.0174 (4)0.0184 (5)0.0191 (4)0.0072 (3)0.0070 (3)0.0060 (3)
Geometric parameters (Å, º) top
I1—Y3i3.0062 (7)Y1—Y2vii3.7458 (8)
I1—Y23.0150 (7)Y1—Y33.7913 (8)
I2—Y1ii3.0839 (7)Y2—Ni12.6595 (5)
I2—Y3iii3.1124 (7)Y2—I3iv3.0999 (6)
I2—Y13.2421 (6)Y2—Y3i3.6579 (8)
I3—Y2iv3.0999 (6)Y2—Y1vi3.7404 (8)
I3—Y1v3.1255 (7)Y2—Y1i3.7458 (8)
I3—Y23.2437 (7)Y2—Y3vi3.8540 (8)
I4—Y13.1700 (6)Y3—Ni1vii2.6540 (5)
I4—Y33.1805 (6)Y3—I1vii3.0062 (7)
I4—Y3vi3.1811 (7)Y3—I2ix3.1124 (7)
I4—Y23.1999 (6)Y3—I4vi3.1811 (7)
I5—Y1vi3.1085 (7)Y3—Y2vii3.6579 (8)
I5—Y23.1091 (6)Y3—Y1viii3.6863 (7)
I5—Y33.2633 (7)Y3—Y2vi3.8540 (8)
Y1—Ni1vii2.6339 (5)Ni1—Y1i2.6339 (5)
Y1—I2ii3.0839 (7)Ni1—Y1vi2.6339 (5)
Y1—I5vi3.1085 (7)Ni1—Y3vi2.6540 (5)
Y1—I3v3.1255 (7)Ni1—Y3i2.6540 (5)
Y1—Y3viii3.6863 (7)Ni1—Y2x2.6595 (5)
Y1—Y2vi3.7404 (8)
Y3i—I1—Y274.819 (17)I1—Y2—Y1vi95.963 (18)
Y1ii—I2—Y3iii73.012 (17)I3iv—Y2—Y1vi142.723 (19)
Y1ii—I2—Y197.915 (17)I5—Y2—Y1vi53.010 (13)
Y3iii—I2—Y1170.822 (19)I4—Y2—Y1vi95.321 (16)
Y2iv—I3—Y1v73.981 (17)I3—Y2—Y1vi134.546 (18)
Y2iv—I3—Y297.455 (17)Y3i—Y2—Y1vi59.759 (14)
Y1v—I3—Y2171.270 (19)Ni1—Y2—Y1i44.682 (11)
Y1—I4—Y373.313 (16)I1—Y2—Y1i96.665 (18)
Y1—I4—Y3vi97.782 (17)I3iv—Y2—Y1i53.322 (14)
Y3—I4—Y3vi92.193 (17)I5—Y2—Y1i141.452 (18)
Y1—I4—Y2167.857 (18)I4—Y2—Y1i93.299 (17)
Y3—I4—Y297.453 (17)I3—Y2—Y1i135.838 (19)
Y3vi—I4—Y274.310 (16)Y3i—Y2—Y1i61.592 (15)
Y1vi—I5—Y273.966 (16)Y1vi—Y2—Y1i89.447 (15)
Y1vi—I5—Y397.326 (18)Ni1—Y2—Y3vi43.448 (11)
Y2—I5—Y397.588 (18)I1—Y2—Y3vi142.34 (2)
Ni1vii—Y1—I2ii99.864 (17)I3iv—Y2—Y3vi93.585 (17)
Ni1vii—Y1—I5vi97.898 (17)I5—Y2—Y3vi91.241 (16)
I2ii—Y1—I5vi94.416 (18)I4—Y2—Y3vi52.622 (13)
Ni1vii—Y1—I3v97.912 (18)I3—Y2—Y3vi133.462 (18)
I2ii—Y1—I3v88.724 (19)Y3i—Y2—Y3vi89.881 (16)
I5vi—Y1—I3v163.10 (2)Y1vi—Y2—Y3vi59.875 (14)
Ni1vii—Y1—I497.867 (18)Y1i—Y2—Y3vi58.011 (13)
I2ii—Y1—I4162.27 (2)Ni1vii—Y3—I1vii99.248 (19)
I5vi—Y1—I483.191 (17)Ni1vii—Y3—I2ix98.706 (17)
I3v—Y1—I488.768 (17)I1vii—Y3—I2ix90.954 (19)
Ni1vii—Y1—I2178.04 (2)Ni1vii—Y3—I497.190 (17)
I2ii—Y1—I282.085 (17)I1vii—Y3—I488.952 (18)
I5vi—Y1—I281.656 (16)I2ix—Y3—I4163.91 (2)
I3v—Y1—I282.341 (16)Ni1vii—Y3—I4vi96.629 (17)
I4—Y1—I280.185 (15)I1vii—Y3—I4vi164.07 (2)
Ni1vii—Y1—Y3viii46.028 (12)I2ix—Y3—I4vi87.890 (18)
I2ii—Y1—Y3viii53.849 (14)I4—Y3—I4vi87.807 (17)
I5vi—Y1—Y3viii98.781 (17)Ni1vii—Y3—I5176.74 (2)
I3v—Y1—Y3viii96.476 (18)I1vii—Y3—I583.500 (17)
I4—Y1—Y3viii143.879 (19)I2ix—Y3—I582.942 (16)
I2—Y1—Y3viii135.914 (19)I4—Y3—I581.059 (15)
Ni1vii—Y1—Y2vi45.319 (11)I4vi—Y3—I580.592 (16)
I2ii—Y1—Y2vi95.733 (17)Ni1vii—Y3—Y2vii46.558 (12)
I5vi—Y1—Y2vi53.024 (13)I1vii—Y3—Y2vii52.700 (15)
I3v—Y1—Y2vi143.204 (19)I2ix—Y3—Y2vii96.907 (18)
I4—Y1—Y2vi96.770 (17)I4—Y3—Y2vii95.821 (17)
I2—Y1—Y2vi134.455 (19)I4vi—Y3—Y2vii143.186 (18)
Y3viii—Y1—Y2vi59.009 (14)I5—Y3—Y2vii136.194 (19)
Ni1vii—Y1—Y2vii45.234 (12)Ni1vii—Y3—Y1viii45.581 (11)
I2ii—Y1—Y2vii98.116 (18)I1vii—Y3—Y1viii97.251 (19)
I5vi—Y1—Y2vii142.547 (19)I2ix—Y3—Y1viii53.138 (14)
I3v—Y1—Y2vii52.697 (13)I4—Y3—Y1viii142.755 (19)
I4—Y1—Y2vii94.288 (17)I4vi—Y3—Y1viii94.750 (17)
I2—Y1—Y2vii134.926 (19)I5—Y3—Y1viii136.052 (19)
Y3viii—Y1—Y2vii62.465 (15)Y2vii—Y3—Y1viii61.232 (14)
Y2vi—Y1—Y2vii90.553 (16)Ni1vii—Y3—Y143.984 (11)
Ni1vii—Y1—Y344.407 (11)I1vii—Y3—Y195.871 (19)
I2ii—Y1—Y3144.254 (18)I2ix—Y3—Y1142.674 (18)
I5vi—Y1—Y392.436 (17)I4—Y3—Y153.216 (13)
I3v—Y1—Y394.680 (17)I4vi—Y3—Y194.652 (16)
I4—Y1—Y353.471 (13)I5—Y3—Y1134.247 (18)
I2—Y1—Y3133.650 (17)Y2vii—Y3—Y160.346 (15)
Y3viii—Y1—Y390.435 (16)Y1viii—Y3—Y189.565 (16)
Y2vi—Y1—Y361.551 (14)Ni1vii—Y3—Y2vi43.561 (12)
Y2vii—Y1—Y358.063 (14)I1vii—Y3—Y2vi142.796 (19)
Ni1—Y2—I198.905 (19)I2ix—Y3—Y2vi95.413 (17)
Ni1—Y2—I3iv97.985 (17)I4—Y3—Y2vi94.365 (16)
I1—Y2—I3iv90.836 (17)I4vi—Y3—Y2vi53.068 (13)
Ni1—Y2—I597.335 (17)I5—Y3—Y2vi133.637 (19)
I1—Y2—I595.806 (19)Y2vii—Y3—Y2vi90.119 (16)
I3iv—Y2—I5162.14 (2)Y1viii—Y3—Y2vi59.523 (14)
Ni1—Y2—I496.070 (17)Y1—Y3—Y2vi58.574 (14)
I1—Y2—I4165.00 (2)Y1i—Ni1—Y1vi180.0
I3iv—Y2—I486.140 (18)Y1i—Ni1—Y3vi88.391 (16)
I5—Y2—I483.167 (16)Y1vi—Ni1—Y3vi91.609 (16)
Ni1—Y2—I3176.84 (2)Y1i—Ni1—Y3i91.609 (16)
I1—Y2—I384.194 (17)Y1vi—Ni1—Y3i88.391 (16)
I3iv—Y2—I382.545 (17)Y3vi—Ni1—Y3i180.00 (2)
I5—Y2—I381.665 (16)Y1i—Ni1—Y290.083 (17)
I4—Y2—I380.844 (17)Y1vi—Ni1—Y289.917 (17)
Ni1—Y2—Y3i46.433 (12)Y3vi—Ni1—Y292.991 (17)
I1—Y2—Y3i52.481 (14)Y3i—Ni1—Y287.009 (17)
I3iv—Y2—Y3i97.823 (18)Y1i—Ni1—Y2x89.917 (17)
I5—Y2—Y3i99.371 (18)Y1vi—Ni1—Y2x90.083 (17)
I4—Y2—Y3i142.503 (18)Y3vi—Ni1—Y2x87.009 (17)
I3—Y2—Y3i136.648 (19)Y3i—Ni1—Y2x92.991 (17)
Ni1—Y2—Y1vi44.765 (11)Y2—Ni1—Y2x180.000 (7)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z2; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y, z1; (vi) x, y, z1; (vii) x, y, z1; (viii) x, y, z2; (ix) x, y+1, z; (x) x, y, z.
Averaged Y—Ni, Y—Y and Y—I distances (Å) in triclinic [NiY6]I10 top
InteractionY—NiY—YY—I
Distance2.6493.7463.143
 

Acknowledgements

This work was generously supported by the Deutsche Forschungsgemeinschaft Bonn (SFB 608 `Komplexe Übergangsmetallverbindungen mit Spin- und Ladungsfreiheitsgraden und Unordnung'), as well as by the Fonds der Chemischen Industrie e. V., Frankfurt a. M., through a PhD stipend to ST.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCorbett, J. D. (1983). Inorg. Synth. 22, 31.  Google Scholar
First citationHughbanks, T. & Corbett, J. D. (1989). Inorg. Chem. 28, 631–635.  CrossRef CAS Web of Science Google Scholar
First citationMeyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135–144. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationPayne, M. W. & Corbett, J. D. (1990). Inorg. Chem. 29, 2246–2251.  CrossRef CAS Web of Science Google Scholar
First citationRustige, C., Brühmann, M., Steinberg, S., Meyer, E., Daub, K., Zimmermann, S., Wolberg, M., Mudring, A.-V. & Meyer, G. (2012). Z. Anorg. Allg. Chem. 638, 1922–1931.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2001). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2003). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds