inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ba4GaN3O

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp

Edited by E. F. C. Herdtweck, Technischen Universität München, Germany (Received 24 April 2014; accepted 8 May 2014; online 17 May 2014)

Red transparant platelet-shaped single crystals of tetra­barium gallium trinitride oxide, Ba4GaN3O, were synthesized by the Na flux method. The crystal structure is isotypic with Sr4GaN3O, containing isolated triangular [GaN3]6− anionic groups. O2− atoms are inserted between the slabs of [Ba4GaN3]2+, in which the [GaN3]6− groups are surrounded by Ba2+ atoms.

Related literature

For isotypic Sr4GaN3O, see: Mallinson et al. (2006[Mallinson, P. M., Gál, Z. A. & Clarke, S. J. (2006). Inorg. Chem. 45, 419-423.]). For the major phase in the product, Ba3Ga2N4, see: Yamane & DiSalvo (1996[Yamane, H. & DiSalvo, F. J. (1996). Acta Cryst. C52, 760-761.]). For compounds containing isolated triangular-planar [GaN3]6− nitridogallate anions, see: Park et al. (2003[Park, D. G., Gál, Z. A. & DiSalvo, F. J. (2003). Inorg. Chem. 42, 1779-1785.]); Mallinson et al. (2006[Mallinson, P. M., Gál, Z. A. & Clarke, S. J. (2006). Inorg. Chem. 45, 419-423.]); Hintze & Schnick (2010[Hintze, F. & Schnick, W. (2010). Solid State Sci. 12, 1368-1373.]). For details of Madelung site potential and energy calculations, see: O'Keeffe (1992[O'Keeffe, M. (1992). EUTAX. Arizona State University, USA.]); Orhan et al.. (2002[Orhan, E., Jobic, S., Brec, R., Marchand, R. & Saillard, J.-Y. (2002). J. Mater. Chem. 12, 2475-2479.]); Paszkowicz et al. (2004[Paszkowicz, W., Podsiadło, S. & Minikayev, R. (2004). J. Alloys Compd, 382, 100-106.]); Taylor (1984[Taylor, D. (1984). Trans. Br. Ceram. Soc. 83, 5-9.]). For details of the synthetic procedure, see: Kowach et al. (1998[Kowach, G. R., Lin, H. Y. & DiSalvo, F. J. (1998). J. Solid State Chem. 141, 1-9.]).

Experimental

Crystal data
  • Ba4GaN3O

  • Mr = 677.11

  • Orthorhombic, P b c a

  • a = 7.8130 (3) Å

  • b = 25.6453 (10) Å

  • c = 7.9162 (4) Å

  • V = 1586.14 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 22.84 mm−1

  • T = 293 K

  • 0.18 × 0.13 × 0.07 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.071, Tmax = 0.411

  • 14273 measured reflections

  • 1820 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.133

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.05

  • 1820 reflections

  • 82 parameters

  • Δρmax = 2.54 e Å−3

  • Δρmin = −1.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ba1—N1i 2.675 (8)
Ba1—N1 2.799 (9)
Ba1—N2ii 2.998 (7)
Ba1—O1iii 2.999 (8)
Ba1—O1iv 3.054 (9)
Ba2—O1v 2.683 (9)
Ba2—N2v 2.687 (8)
Ba2—N1iii 2.991 (9)
Ba2—N2 3.158 (8)
Ba2—O1 3.184 (9)
Ba2—O1vi 3.264 (10)
Ba3—N3vii 2.730 (7)
Ba3—N3i 2.762 (8)
Ba3—N3 2.764 (7)
Ba3—N1i 2.914 (9)
Ba3—N3ii 2.994 (8)
Ba4—N3ii 2.661 (8)
Ba4—N2 2.808 (7)
Ba4—N2v 2.862 (8)
Ba4—O1 3.133 (10)
Ba4—N1viii 3.231 (9)
Ga1—N3 1.876 (8)
Ga1—N2 1.908 (8)
Ga1—N1iii 1.924 (8)
N3—Ga1—N2 125.3 (3)
N3—Ga1—N1iii 119.8 (3)
N2—Ga1—N1iii 114.6 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (viii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: RAPID-AUTO (Rigaku Corporation, 2005[Rigaku Corporation (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ba4GaN3O is isostructural with Sr4GaN3O (Mallinson et al., 2006) which crystallizes in an orthorhombic cell with the space group Pbca (No. 61). The coordination environment around Ga1 site and Ba1–Ba3 sites are shown in Fig.1. Ga1 atom is bonded to N1, N2 and N3 atoms and form a triangular anionic group of [GaN3]6-. Ga—N bond lengths of 1.876 (8)–1.924 (8)Å are comparable with those observed in [GaN3]6- groups of Sr3GaN3 and Sr6GaN5 (1.938 Å, 1.895 Å, Park et al., 2003), Sr4GaN3O (1.880–1.921 Å, Mallinson et al., 2006) and LiBa5GaN3F5 (1.896–1.945 Å, Hintze & Schnick, 2010). Ba1 atom is coordinated by two N1, one N2 and three O1 atoms, and Ba2 atom is by one N1, two N2 and three O1 atoms. N1 and N2 atoms are in seven-fold coordination sites of one Ga and six Ba atoms, and N3 atom is in the six-fold coordination site of one Ga and five Ba atoms. O1 atom is coordinated by seven Ba atoms. As shown in Fig. 2, O1 atoms are situated at the sites between [Ba4GaN3] slabs which are composed of triangular [GaN3] groups and Ba atoms in the ac plane.

Mallinson et al., (2006) calculated Madelung site potential and Madelung energy per formula of Sr4GaN3O for four models of O and N atom arrangement. They concluded the model with O atom located at the O1 site coordinated by only Sr atoms is the most stable structure because this model showed the smallest deviation of the site potentials in atom sites of the same species and the lowest energy. The site potentials and energy calculated by using EUTAX (O'Keeffe, 1992) and VESTA (Momma & Izumi, 2008) programs with the data of the present study are -17.12 – -17.87 V for Ba1–Ba4, -36.17 V for Ga1, 28.24 – 29.45 V for N1–N3, 16.86 V for O1, and -26,100 kJ/mol for Ba4GaN3O. The values of Ga, N and O sites were consistent with the site potentials reported for Sr4GaN3O (Ga: -35.01 V, N: 29.58 – 31.38 V, O: 17.36 V) (Mallinson et al., 2006). The difference between the Madelung energy per formula of Ba4GaN3O and the sum of Madelung energies of Ba3N2 derived by the theoretical calculation (-12,200 kJ/mol, Orhan et al., 2002), BaO (-3,500 kJ/mol, Taylor, 1984) and GaN (-10,500 kJ/mol, Paszkowicz et al., 2004) calculated from the crystal structure data is 0.4%.

Experimental top

Starting materials were pieces of Ba (Sigma-Aldrich, 99.99%), Ga (Rasa Industries, 99.99995%) and Na (Nippon Soda Co. Ltd., 99.95%), and powders of Si (Kojundo Chemical Laboratory, 99.999%) and NaN3 (Toyo Kasei Kogyo Co. Ltd., 99.9%). In an Ar gas-filled glove box (O2 < 1 ppm, H2O < 1 ppm), Ba (1.00 mmol), Ga (0.25 mmol), Na (2.4 mmol), Si (0.50 mmol) and NaN3 (1.2 mmol) were weighed and placed in a BN crucible (Showa Denko, 99.5%). The crucible was sealed in a stainless-steel tube. The sample was heated to 750°C in an electric furnace with a rate of 6°C min-1. This temperature was maintained for 2 hours and lowered to 550°C with a cooling rate of -2.8°C min-1. After that the sample was cooled to room temperature by shutting off the electric power to the furnace. The stainless-steel tube was cut and opened in the glove box, and the crucible was washed with liquid NH3 (Japan Fine Products, >99.999%) to dissolve away Na. The details of the Na removing method have been described in the literature (Kowach et al., 1998). The initial objective was to synthesize a Ba–Ga–Si–N quaternary compound by the Na flux method, but the main product obtained was yellow transparent granular single crystals of Ba3Ga2N4 (Yamane & DiSalvo, 1996). A small amount of red transparent platelet single crystals of Ba4GaN3O were included in the product.

Semi-qu­anti­tative elemental analysis of the red single crystals was carried out with an energy-dispersive X-ray detector (EDX, EDAX, Genesis) attached to a scanning electron microscope (SEM, Hitachi, S-4800). Ba:Ga molar ratio determined by the EDX analysis was 78:22 which was close to the ratio (4:1) of Ba4GaN3O. The oxygen was probably originated from the surface oxide layers of the starting materials. Since Ba4GaN3O is unstable in air, a single crystal was picked up from the product and sealed in glass capillaries in the glove box for XRD data collection.

The peaks of 2.25–2.54 e Å-3 in the FoFc map were observed at 0.88–0.96 Å distant from Ba1–Ba3 atoms. These large differences are probably a result of the cut-off effect of the Fourier synthesis.

Related literature top

For isotypic Sr4GaN3O, see: Mallinson et al. (2006). For the major phase in the product, Ba3Ga2N4, see: Yamane & DiSalvo (1996). For compounds containing isolated trianglular planar [GaN3]6- nitridogallate anions, see: Park et al. (2003); Mallinson et al. (2006); Hintze & Schnick (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku Corporation, 2005); cell refinement: RAPID-AUTO (Rigaku Corporation, 2005); data reduction: RAPID-AUTO (Rigaku Corporation, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atomic arrangement around Ba and Ga atoms in the structure of Ba4GaN3O. Displacement ellipsoids are drawn at 70% probability. Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) -x + 1/2, y + 1/2, z; (iii) x + 1/2, y, -z + 1/2; (iv) x + 1/2, -y + 1/2, -z; (v) -x, y + 1/2, -z + 1/2.
[Figure 2] Fig. 2. Crystal structure of Ba4GaN3O illustrated with Ga-centered N atom triangles.
Tetrabarium gallium trinitride oxide top
Crystal data top
Ba4GaN3OF(000) = 2272
Mr = 677.11Dx = 5.671 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 11112 reflections
a = 7.8130 (3) Åθ = 3.0–27.5°
b = 25.6453 (10) ŵ = 22.84 mm1
c = 7.9162 (4) ÅT = 293 K
V = 1586.14 (12) Å3Platelet, red
Z = 80.18 × 0.13 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1820 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.133
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 910
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 3333
Tmin = 0.071, Tmax = 0.411l = 1010
14273 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.043Secondary atom site location: difference Fourier map
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.P)2 + 18.6031P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1820 reflectionsΔρmax = 2.54 e Å3
82 parametersΔρmin = 1.72 e Å3
Crystal data top
Ba4GaN3OV = 1586.14 (12) Å3
Mr = 677.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8130 (3) ŵ = 22.84 mm1
b = 25.6453 (10) ÅT = 293 K
c = 7.9162 (4) Å0.18 × 0.13 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
1820 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
1588 reflections with I > 2σ(I)
Tmin = 0.071, Tmax = 0.411Rint = 0.133
14273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.P)2 + 18.6031P]
where P = (Fo2 + 2Fc2)/3
S = 1.05Δρmax = 2.54 e Å3
1820 reflectionsΔρmin = 1.72 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.36690 (8)0.42906 (2)0.32613 (7)0.02148 (18)
Ba20.03129 (8)0.06166 (2)0.16149 (7)0.02055 (18)
Ba30.45621 (7)0.26486 (2)0.23802 (7)0.02003 (18)
Ba40.20527 (8)0.15269 (2)0.46083 (7)0.02310 (19)
Ga10.20637 (12)0.17178 (4)0.01682 (12)0.0157 (2)
N10.0710 (11)0.3685 (3)0.3614 (11)0.0246 (19)
N20.3630 (10)0.1319 (3)0.1492 (9)0.0187 (17)
N30.1943 (10)0.2448 (3)0.0124 (9)0.0169 (17)
O10.2416 (12)0.0314 (4)0.4918 (11)0.049 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0234 (3)0.0214 (4)0.0196 (3)0.0002 (2)0.0046 (2)0.0002 (2)
Ba20.0211 (3)0.0211 (4)0.0194 (3)0.0001 (2)0.0009 (2)0.0004 (2)
Ba30.0152 (3)0.0326 (4)0.0123 (3)0.0000 (2)0.0001 (2)0.0007 (2)
Ba40.0258 (3)0.0226 (4)0.0209 (3)0.0000 (2)0.0001 (2)0.0023 (2)
Ga10.0158 (5)0.0183 (6)0.0132 (5)0.0002 (4)0.0006 (4)0.0001 (4)
N10.026 (4)0.019 (5)0.029 (5)0.011 (4)0.010 (4)0.006 (3)
N20.022 (4)0.020 (4)0.015 (4)0.006 (3)0.002 (3)0.000 (3)
N30.022 (4)0.011 (4)0.018 (4)0.002 (3)0.002 (3)0.001 (3)
O10.053 (5)0.052 (6)0.041 (5)0.007 (5)0.001 (4)0.010 (4)
Geometric parameters (Å, º) top
Ba1—N1i2.675 (8)Ba4—N1viii3.231 (9)
Ba1—N12.799 (9)Ga1—N31.876 (8)
Ba1—N2ii2.998 (7)Ga1—N21.908 (8)
Ba1—O1iii2.999 (8)Ga1—N1iii1.924 (8)
Ba1—O1iv3.054 (9)Ga1—Ba3ix3.2450 (11)
Ba1—Ga1ii3.2466 (12)Ga1—Ba1iii3.2467 (12)
Ba2—O1v2.683 (9)Ga1—Ba3iii3.3648 (11)
Ba2—N2v2.687 (8)N1—Ga1ii1.924 (8)
Ba2—N1iii2.991 (9)N1—Ba1v2.675 (8)
Ba2—N23.158 (8)N1—Ba3v2.914 (9)
Ba2—O13.184 (9)N1—Ba2ii2.991 (9)
Ba2—O1vi3.264 (10)N1—Ba4x3.231 (9)
Ba2—Ga13.3405 (12)N2—Ba2i2.687 (8)
Ba3—N3vii2.730 (7)N2—Ba4i2.862 (8)
Ba3—N3i2.762 (8)N2—Ba1iii2.998 (7)
Ba3—N32.764 (7)N3—Ba4iii2.661 (8)
Ba3—N1i2.914 (9)N3—Ba3ix2.730 (7)
Ba3—N3ii2.994 (8)N3—Ba3v2.762 (8)
Ba3—Ga1vii3.2450 (11)N3—Ba3iii2.994 (8)
Ba3—Ga1ii3.3647 (11)O1—Ba2i2.683 (9)
Ba4—N3ii2.661 (8)O1—Ba1ii2.999 (8)
Ba4—N22.808 (7)O1—Ba1xi3.054 (9)
Ba4—N2v2.862 (8)O1—Ba2xii3.264 (10)
Ba4—O13.133 (10)
N1i—Ba1—N1103.0 (3)Ba4iii—Ba3—Ba4viii109.76 (2)
N1i—Ba1—N2ii100.2 (2)Ga1i—Ba3—Ba4viii75.61 (2)
N1—Ba1—N2ii67.5 (2)N3vii—Ba3—Ba4i44.25 (16)
N1i—Ba1—O1iii84.3 (3)N3i—Ba3—Ba4i79.12 (16)
N1—Ba1—O1iii90.3 (2)N3—Ba3—Ba4i88.33 (16)
N2ii—Ba1—O1iii157.8 (2)N1i—Ba3—Ba4i114.81 (15)
N1i—Ba1—O1iv154.5 (3)N3ii—Ba3—Ba4i125.84 (15)
N1—Ba1—O1iv101.8 (3)Ga1vii—Ba3—Ba4i79.26 (2)
N2ii—Ba1—O1iv94.5 (2)Ga1ii—Ba3—Ba4i158.61 (3)
O1iii—Ba1—O1iv89.88 (12)Ga1—Ba3—Ba4i64.48 (2)
N1i—Ba1—Ga1ii91.49 (19)Ba4iii—Ba3—Ba4i117.798 (17)
N1—Ba1—Ga1ii36.16 (16)Ga1i—Ba3—Ba4i56.77 (2)
N2ii—Ba1—Ga1ii35.30 (15)Ba4viii—Ba3—Ba4i115.14 (2)
O1iii—Ba1—Ga1ii123.61 (19)N3ii—Ba4—N2109.6 (2)
O1iv—Ba1—Ga1ii112.20 (18)N3ii—Ba4—N2v101.6 (2)
N1i—Ba1—Ba2iv102.02 (19)N2—Ba4—N2v96.16 (14)
N1—Ba1—Ba2iv135.83 (16)N3ii—Ba4—O1166.3 (2)
N2ii—Ba1—Ba2iv140.93 (15)N2—Ba4—O180.8 (2)
O1iii—Ba1—Ba2iv56.82 (19)N2v—Ba4—O185.6 (2)
O1iv—Ba1—Ba2iv54.92 (18)N3ii—Ba4—N1viii97.3 (2)
Ga1ii—Ba1—Ba2iv166.34 (3)N2—Ba4—N1viii87.9 (2)
N1i—Ba1—Ba2ii148.09 (19)N2v—Ba4—N1viii158.0 (2)
N1—Ba1—Ba2ii52.06 (18)O1—Ba4—N1viii73.7 (2)
N2ii—Ba1—Ba2ii54.58 (15)N3ii—Ba4—Ga190.91 (16)
O1iii—Ba1—Ba2ii112.10 (18)N2—Ba4—Ga132.35 (15)
O1iv—Ba1—Ba2ii56.35 (18)N2v—Ba4—Ga174.12 (15)
Ga1ii—Ba1—Ba2ii56.61 (2)O1—Ba4—Ga1102.37 (15)
Ba2iv—Ba1—Ba2ii109.870 (18)N1viii—Ba4—Ga1116.90 (14)
N1i—Ba1—Ba4viii60.51 (19)N3ii—Ba4—Ba2i134.97 (17)
N1—Ba1—Ba4viii103.06 (16)N2—Ba4—Ba2i47.79 (16)
N2ii—Ba1—Ba4viii48.37 (15)N2v—Ba4—Ba2i117.38 (16)
O1iii—Ba1—Ba4viii144.23 (18)O1—Ba4—Ba2i46.44 (17)
O1iv—Ba1—Ba4viii118.70 (17)N1viii—Ba4—Ba2i51.70 (15)
Ga1ii—Ba1—Ba4viii67.67 (2)Ga1—Ba4—Ba2i79.68 (2)
Ba2iv—Ba1—Ba4viii120.92 (2)N3ii—Ba4—Ba2136.94 (16)
Ba2ii—Ba1—Ba4viii102.089 (19)N2—Ba4—Ba257.57 (17)
N1i—Ba1—Ba4iii56.90 (19)N2v—Ba4—Ba247.55 (15)
N1—Ba1—Ba4iii59.59 (18)O1—Ba4—Ba256.00 (16)
N2ii—Ba1—Ba4iii111.04 (15)N1viii—Ba4—Ba2120.82 (16)
O1iii—Ba1—Ba4iii53.45 (19)Ga1—Ba4—Ba255.77 (2)
O1iv—Ba1—Ba4iii135.30 (17)Ba2i—Ba4—Ba270.604 (15)
Ga1ii—Ba1—Ba4iii77.60 (2)N3ii—Ba4—Ba3ii49.31 (16)
Ba2iv—Ba1—Ba4iii108.003 (19)N2—Ba4—Ba3ii113.90 (17)
Ba2ii—Ba1—Ba4iii110.09 (2)N2v—Ba4—Ba3ii142.97 (15)
Ba4viii—Ba1—Ba4iii105.50 (2)O1—Ba4—Ba3ii118.88 (16)
N1i—Ba1—Ba2vii47.19 (19)N1viii—Ba4—Ba3ii49.91 (15)
N1—Ba1—Ba2vii112.78 (17)Ga1—Ba4—Ba3ii121.19 (3)
N2ii—Ba1—Ba2vii147.32 (16)Ba2i—Ba4—Ba3ii99.15 (2)
O1iii—Ba1—Ba2vii41.16 (18)Ba2—Ba4—Ba3ii169.46 (2)
O1iv—Ba1—Ba2vii116.36 (17)N3ii—Ba4—Ba3x47.62 (16)
Ga1ii—Ba1—Ba2vii127.49 (3)N2—Ba4—Ba3x153.75 (16)
Ba2iv—Ba1—Ba2vii63.146 (17)N2v—Ba4—Ba3x79.21 (15)
Ba2ii—Ba1—Ba2vii152.86 (2)O1—Ba4—Ba3x124.02 (16)
Ba4viii—Ba1—Ba2vii103.594 (19)N1viii—Ba4—Ba3x106.15 (15)
Ba4iii—Ba1—Ba2vii54.148 (15)Ga1—Ba4—Ba3x123.74 (2)
N1i—Ba1—Ba1i42.85 (19)Ba2i—Ba4—Ba3x155.60 (2)
N1—Ba1—Ba1i144.95 (17)Ba2—Ba4—Ba3x126.28 (2)
N2ii—Ba1—Ba1i105.14 (15)Ba3ii—Ba4—Ba3x64.206 (12)
O1iii—Ba1—Ba1i92.97 (19)N3ii—Ba4—Ba1x117.25 (17)
O1iv—Ba1—Ba1i113.06 (19)N2—Ba4—Ba1x126.50 (17)
Ga1ii—Ba1—Ba1i120.41 (2)N2v—Ba4—Ba1x51.53 (15)
Ba2iv—Ba1—Ba1i72.121 (14)O1—Ba4—Ba1x58.44 (17)
Ba2ii—Ba1—Ba1i151.58 (2)N1viii—Ba4—Ba1x109.36 (14)
Ba4viii—Ba1—Ba1i57.460 (13)Ga1—Ba4—Ba1x121.41 (2)
Ba4iii—Ba1—Ba1i95.36 (2)Ba2i—Ba4—Ba1x104.86 (2)
Ba2vii—Ba1—Ba1i54.518 (17)Ba2—Ba4—Ba1x70.646 (17)
O1v—Ba2—N2v91.9 (3)Ba3ii—Ba4—Ba1x115.65 (2)
O1v—Ba2—N1iii84.3 (2)Ba3x—Ba4—Ba1x70.370 (17)
N2v—Ba2—N1iii95.3 (2)N3ii—Ba4—Ba1ii116.11 (16)
O1v—Ba2—N2147.5 (2)N2—Ba4—Ba1ii114.79 (16)
N2v—Ba2—N292.1 (2)N2v—Ba4—Ba1ii116.15 (16)
N1iii—Ba2—N263.2 (2)O1—Ba4—Ba1ii50.26 (16)
O1v—Ba2—O1137.4 (3)N1viii—Ba4—Ba1ii43.92 (14)
N2v—Ba2—O187.6 (2)Ga1—Ba4—Ba1ii146.26 (3)
N1iii—Ba2—O1138.1 (2)Ba2i—Ba4—Ba1ii67.004 (17)
N2—Ba2—O175.0 (2)Ba2—Ba4—Ba1ii105.66 (2)
O1v—Ba2—O1vi93.5 (3)Ba3ii—Ba4—Ba1ii71.359 (18)
N2v—Ba2—O1vi170.4 (2)Ba3x—Ba4—Ba1ii89.987 (19)
N1iii—Ba2—O1vi93.1 (2)Ba1x—Ba4—Ba1ii65.465 (13)
N2—Ba2—O1vi87.6 (2)N3—Ga1—N2125.3 (3)
O1—Ba2—O1vi83.07 (11)N3—Ga1—N1iii119.8 (3)
O1v—Ba2—Ga1115.78 (19)N2—Ga1—N1iii114.6 (4)
N2v—Ba2—Ga179.89 (17)N3—Ga1—Ba3ix57.2 (2)
N1iii—Ba2—Ga134.82 (15)N2—Ga1—Ba3ix174.9 (2)
N2—Ba2—Ga134.00 (14)N1iii—Ga1—Ba3ix62.6 (3)
O1—Ba2—Ga1106.04 (17)N3—Ga1—Ba1iii143.7 (2)
O1vi—Ba2—Ga1104.74 (16)N2—Ga1—Ba1iii65.2 (2)
O1v—Ba2—Ba4v57.8 (2)N1iii—Ga1—Ba1iii59.1 (3)
N2v—Ba2—Ba4v50.72 (16)Ba3ix—Ga1—Ba1iii110.03 (3)
N1iii—Ba2—Ba4v57.98 (17)N3—Ga1—Ba2146.1 (2)
N2—Ba2—Ba4v101.71 (14)N2—Ga1—Ba267.8 (2)
O1—Ba2—Ba4v138.28 (17)N1iii—Ga1—Ba262.6 (3)
O1vi—Ba2—Ba4v138.65 (15)Ba3ix—Ga1—Ba2112.94 (3)
Ga1—Ba2—Ba4v69.40 (2)Ba1iii—Ga1—Ba269.15 (3)
O1v—Ba2—Ba4143.6 (2)N3—Ga1—Ba3iii62.3 (2)
N2v—Ba2—Ba451.81 (17)N2—Ga1—Ba3iii104.3 (2)
N1iii—Ba2—Ba495.48 (15)N1iii—Ga1—Ba3iii99.1 (3)
N2—Ba2—Ba448.63 (13)Ba3ix—Ga1—Ba3iii72.53 (2)
O1—Ba2—Ba454.66 (17)Ba1iii—Ga1—Ba3iii81.70 (3)
O1vi—Ba2—Ba4122.74 (17)Ba2—Ga1—Ba3iii150.54 (4)
Ga1—Ba2—Ba461.44 (2)N3—Ga1—Ba350.6 (2)
Ba4v—Ba2—Ba491.37 (2)N2—Ga1—Ba374.7 (2)
O1v—Ba2—Ba1xi94.3 (2)N1iii—Ga1—Ba3168.6 (3)
N2v—Ba2—Ba1xi121.42 (16)Ba3ix—Ga1—Ba3107.55 (3)
N1iii—Ba2—Ba1xi143.29 (17)Ba1iii—Ga1—Ba3123.58 (3)
N2—Ba2—Ba1xi110.87 (14)Ba2—Ga1—Ba3128.70 (3)
O1—Ba2—Ba1xi51.72 (17)Ba3iii—Ga1—Ba371.31 (2)
O1vi—Ba2—Ba1xi50.26 (15)N3—Ga1—Ba499.0 (2)
Ga1—Ba2—Ba1xi143.49 (3)N2—Ga1—Ba451.9 (2)
Ba4v—Ba2—Ba1xi147.07 (2)N1iii—Ga1—Ba4123.9 (3)
Ba4—Ba2—Ba1xi106.34 (2)Ba3ix—Ga1—Ba4133.11 (3)
O1v—Ba2—Ba1iii106.80 (19)Ba1iii—Ga1—Ba4110.58 (3)
N2v—Ba2—Ba1iii134.13 (17)Ba2—Ga1—Ba462.79 (2)
N1iii—Ba2—Ba1iii47.56 (17)Ba3iii—Ga1—Ba4135.86 (3)
N2—Ba2—Ba1iii50.68 (13)Ba3—Ga1—Ba466.74 (2)
O1—Ba2—Ba1iii103.69 (17)N3—Ga1—Ba3v47.9 (2)
O1vi—Ba2—Ba1iii51.16 (15)N2—Ga1—Ba3v113.7 (2)
Ga1—Ba2—Ba1iii54.24 (2)N1iii—Ga1—Ba3v113.4 (3)
Ba4v—Ba2—Ba1iii105.36 (2)Ba3ix—Ga1—Ba3v71.35 (2)
Ba4—Ba2—Ba1iii99.30 (2)Ba1iii—Ga1—Ba3v167.54 (4)
Ba1xi—Ba2—Ba1iii99.012 (17)Ba2—Ga1—Ba3v98.71 (3)
O1v—Ba2—Ba1ix47.36 (18)Ba3iii—Ga1—Ba3v110.13 (3)
N2v—Ba2—Ba1ix109.56 (16)Ba3—Ga1—Ba3v65.886 (19)
N1iii—Ba2—Ba1ix41.01 (14)Ba4—Ga1—Ba3v64.00 (2)
N2—Ba2—Ba1ix101.32 (13)Ga1ii—N1—Ba1v173.9 (5)
O1—Ba2—Ba1ix162.69 (17)Ga1ii—N1—Ba184.7 (3)
O1vi—Ba2—Ba1ix79.87 (15)Ba1v—N1—Ba196.6 (3)
Ga1—Ba2—Ba1ix75.82 (2)Ga1ii—N1—Ba3v81.5 (3)
Ba4v—Ba2—Ba1ix58.845 (16)Ba1v—N1—Ba3v101.3 (3)
Ba4—Ba2—Ba1ix134.90 (2)Ba1—N1—Ba3v137.2 (3)
Ba1xi—Ba2—Ba1ix116.853 (17)Ga1ii—N1—Ba2ii82.6 (3)
Ba1iii—Ba2—Ba1ix62.918 (10)Ba1v—N1—Ba2ii91.8 (2)
N3vii—Ba3—N3i92.5 (2)Ba1—N1—Ba2ii80.4 (2)
N3vii—Ba3—N391.05 (3)Ba3v—N1—Ba2ii136.8 (3)
N3i—Ba3—N3157.9 (3)Ga1ii—N1—Ba4x96.7 (3)
N3vii—Ba3—N1i71.2 (2)Ba1v—N1—Ba4x79.2 (2)
N3i—Ba3—N1i98.9 (2)Ba1—N1—Ba4x150.1 (3)
N3—Ba3—N1i102.9 (2)Ba3v—N1—Ba4x72.1 (2)
N3vii—Ba3—N3ii170.0 (3)Ba2ii—N1—Ba4x70.32 (19)
N3i—Ba3—N3ii85.75 (3)Ga1—N2—Ba2i168.3 (4)
N3—Ba3—N3ii87.0 (2)Ga1—N2—Ba495.7 (3)
N1i—Ba3—N3ii118.8 (2)Ba2i—N2—Ba481.5 (2)
N3vii—Ba3—Ga1vii35.28 (16)Ga1—N2—Ba4i109.4 (3)
N3i—Ba3—Ga1vii97.59 (15)Ba2i—N2—Ba4i80.6 (2)
N3—Ba3—Ga1vii97.89 (16)Ba4—N2—Ba4i130.0 (3)
N1i—Ba3—Ga1vii35.89 (15)Ga1—N2—Ba1iii79.5 (2)
N3ii—Ba3—Ga1vii154.71 (15)Ba2i—N2—Ba1iii96.9 (2)
N3vii—Ba3—Ga1ii156.30 (16)Ba4—N2—Ba1iii148.5 (3)
N3i—Ba3—Ga1ii90.65 (16)Ba4i—N2—Ba1iii80.09 (19)
N3—Ba3—Ga1ii94.83 (16)Ga1—N2—Ba278.2 (3)
N1i—Ba3—Ga1ii85.14 (15)Ba2i—N2—Ba290.1 (2)
N3ii—Ba3—Ga1ii33.68 (15)Ba4—N2—Ba273.80 (18)
Ga1vii—Ba3—Ga1ii121.03 (4)Ba4i—N2—Ba2151.9 (3)
N3vii—Ba3—Ga187.43 (16)Ba1iii—N2—Ba274.74 (18)
N3i—Ba3—Ga1126.79 (16)Ga1—N3—Ba4iii170.9 (4)
N3—Ba3—Ga131.61 (16)Ga1—N3—Ba3ix87.5 (3)
N1i—Ba3—Ga1130.55 (17)Ba4iii—N3—Ba3ix90.0 (2)
N3ii—Ba3—Ga185.77 (15)Ga1—N3—Ba3v101.9 (3)
Ga1vii—Ba3—Ga1111.20 (2)Ba4iii—N3—Ba3v87.0 (2)
Ga1ii—Ba3—Ga1109.24 (3)Ba3ix—N3—Ba3v94.4 (2)
N3vii—Ba3—Ba4iii88.97 (16)Ga1—N3—Ba397.8 (3)
N3i—Ba3—Ba4iii154.98 (16)Ba4iii—N3—Ba383.8 (2)
N3—Ba3—Ba4iii46.89 (16)Ba3ix—N3—Ba3172.1 (3)
N1i—Ba3—Ba4iii58.03 (17)Ba3v—N3—Ba390.1 (2)
N3ii—Ba3—Ba4iii96.78 (14)Ga1—N3—Ba3iii84.1 (3)
Ga1vii—Ba3—Ba4iii69.95 (2)Ba4iii—N3—Ba3iii87.1 (2)
Ga1ii—Ba3—Ba4iii78.55 (2)Ba3ix—N3—Ba3iii86.1 (2)
Ga1—Ba3—Ba4iii78.22 (2)Ba3v—N3—Ba3iii174.0 (3)
N3vii—Ba3—Ga1i87.80 (16)Ba3—N3—Ba3iii88.8 (2)
N3i—Ba3—Ga1i30.24 (16)Ba2i—O1—Ba1ii91.5 (3)
N3—Ba3—Ga1i128.27 (16)Ba2i—O1—Ba1xi106.8 (3)
N1i—Ba3—Ga1i125.19 (17)Ba1ii—O1—Ba1xi139.5 (3)
N3ii—Ba3—Ga1i85.74 (14)Ba2i—O1—Ba475.8 (2)
Ga1vii—Ba3—Ga1i109.63 (3)Ba1ii—O1—Ba476.3 (2)
Ga1ii—Ba3—Ga1i106.15 (2)Ba1xi—O1—Ba4142.6 (3)
Ga1—Ba3—Ga1i96.74 (3)Ba2i—O1—Ba289.6 (2)
Ba4iii—Ba3—Ga1i174.14 (3)Ba1ii—O1—Ba2144.2 (3)
N3vii—Ba3—Ba4viii99.21 (16)Ba1xi—O1—Ba273.36 (19)
N3i—Ba3—Ba4viii45.37 (16)Ba4—O1—Ba269.3 (2)
N3—Ba3—Ba4viii154.63 (16)Ba2i—O1—Ba2xii86.5 (3)
N1i—Ba3—Ba4viii59.70 (17)Ba1ii—O1—Ba2xii72.9 (2)
N3ii—Ba3—Ba4viii86.56 (15)Ba1xi—O1—Ba2xii72.5 (2)
Ga1vii—Ba3—Ba4viii78.43 (2)Ba4—O1—Ba2xii143.9 (3)
Ga1ii—Ba3—Ba4viii67.05 (2)Ba2—O1—Ba2xii142.8 (3)
Ga1—Ba3—Ba4viii169.55 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1; (ix) x1/2, y+1/2, z; (x) x1/2, y+1/2, z+1; (xi) x+1/2, y1/2, z; (xii) x+1/2, y, z+1/2.
Selected geometric parameters (Å, º) top
Ba1—N1i2.675 (8)Ba3—N3i2.762 (8)
Ba1—N12.799 (9)Ba3—N32.764 (7)
Ba1—N2ii2.998 (7)Ba3—N1i2.914 (9)
Ba1—O1iii2.999 (8)Ba3—N3ii2.994 (8)
Ba1—O1iv3.054 (9)Ba4—N3ii2.661 (8)
Ba2—O1v2.683 (9)Ba4—N22.808 (7)
Ba2—N2v2.687 (8)Ba4—N2v2.862 (8)
Ba2—N1iii2.991 (9)Ba4—O13.133 (10)
Ba2—N23.158 (8)Ba4—N1viii3.231 (9)
Ba2—O13.184 (9)Ga1—N31.876 (8)
Ba2—O1vi3.264 (10)Ga1—N21.908 (8)
Ba3—N3vii2.730 (7)Ga1—N1iii1.924 (8)
N3—Ga1—N2125.3 (3)N2—Ga1—N1iii114.6 (4)
N3—Ga1—N1iii119.8 (3)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Resarch (C) (No. 25420701, 2013) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

References

First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHintze, F. & Schnick, W. (2010). Solid State Sci. 12, 1368–1373.  Web of Science CrossRef CAS Google Scholar
First citationKowach, G. R., Lin, H. Y. & DiSalvo, F. J. (1998). J. Solid State Chem. 141, 1–9.  Web of Science CrossRef CAS Google Scholar
First citationMallinson, P. M., Gál, Z. A. & Clarke, S. J. (2006). Inorg. Chem. 45, 419–423.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationO'Keeffe, M. (1992). EUTAX. Arizona State University, USA.  Google Scholar
First citationOrhan, E., Jobic, S., Brec, R., Marchand, R. & Saillard, J.-Y. (2002). J. Mater. Chem. 12, 2475–2479.  Web of Science CrossRef CAS Google Scholar
First citationPark, D. G., Gál, Z. A. & DiSalvo, F. J. (2003). Inorg. Chem. 42, 1779–1785.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaszkowicz, W., Podsiadło, S. & Minikayev, R. (2004). J. Alloys Compd, 382, 100–106.  Web of Science CrossRef CAS Google Scholar
First citationRigaku Corporation (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, D. (1984). Trans. Br. Ceram. Soc. 83, 5–9.  Google Scholar
First citationYamane, H. & DiSalvo, F. J. (1996). Acta Cryst. C52, 760–761.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds