inorganic compounds
Ba4GaN3O
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp
Red transparant platelet-shaped single crystals of tetrabarium gallium trinitride oxide, Ba4GaN3O, were synthesized by the Na method. The is isotypic with Sr4GaN3O, containing isolated triangular [GaN3]6− anionic groups. O2− atoms are inserted between the slabs of [Ba4GaN3]2+, in which the [GaN3]6− groups are surrounded by Ba2+ atoms.
CCDC reference: 1001671
Related literature
For isotypic Sr4GaN3O, see: Mallinson et al. (2006). For the major phase in the product, Ba3Ga2N4, see: Yamane & DiSalvo (1996). For compounds containing isolated triangular-planar [GaN3]6− nitridogallate anions, see: Park et al. (2003); Mallinson et al. (2006); Hintze & Schnick (2010). For details of Madelung site potential and energy calculations, see: O'Keeffe (1992); Orhan et al.. (2002); Paszkowicz et al. (2004); Taylor (1984). For details of the synthetic procedure, see: Kowach et al. (1998).
Experimental
Crystal data
|
Data collection: RAPID-AUTO (Rigaku Corporation, 2005); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 1001671
10.1107/S1600536814010472/hp2067sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814010472/hp2067Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814010472/hp2067Isup3.cml
Ba4GaN3O is isostructural with Sr4GaN3O (Mallinson et al., 2006) which crystallizes in an orthorhombic cell with the
Pbca (No. 61). The coordination environment around Ga1 site and Ba1–Ba3 sites are shown in Fig.1. Ga1 atom is bonded to N1, N2 and N3 atoms and form a triangular anionic group of [GaN3]6-. Ga—N bond lengths of 1.876 (8)–1.924 (8)Å are comparable with those observed in [GaN3]6- groups of Sr3GaN3 and Sr6GaN5 (1.938 Å, 1.895 Å, Park et al., 2003), Sr4GaN3O (1.880–1.921 Å, Mallinson et al., 2006) and LiBa5GaN3F5 (1.896–1.945 Å, Hintze & Schnick, 2010). Ba1 atom is coordinated by two N1, one N2 and three O1 atoms, and Ba2 atom is by one N1, two N2 and three O1 atoms. N1 and N2 atoms are in seven-fold coordination sites of one Ga and six Ba atoms, and N3 atom is in the six-fold coordination site of one Ga and five Ba atoms. O1 atom is coordinated by seven Ba atoms. As shown in Fig. 2, O1 atoms are situated at the sites between [Ba4GaN3] slabs which are composed of triangular [GaN3] groups and Ba atoms in the a–c plane.Mallinson et al., (2006) calculated Madelung site potential and Madelung energy per formula of Sr4GaN3O for four models of O and N atom arrangement. They concluded the model with O atom located at the O1 site coordinated by only Sr atoms is the most stable structure because this model showed the smallest deviation of the site potentials in atom sites of the same species and the lowest energy. The site potentials and energy calculated by using EUTAX (O'Keeffe, 1992) and VESTA (Momma & Izumi, 2008) programs with the data of the present study are -17.12 – -17.87 V for Ba1–Ba4, -36.17 V for Ga1, 28.24 – 29.45 V for N1–N3, 16.86 V for O1, and -26,100 kJ/mol for Ba4GaN3O. The values of Ga, N and O sites were consistent with the site potentials reported for Sr4GaN3O (Ga: -35.01 V, N: 29.58 – 31.38 V, O: 17.36 V) (Mallinson et al., 2006). The difference between the Madelung energy per formula of Ba4GaN3O and the sum of Madelung energies of Ba3N2 derived by the theoretical calculation (-12,200 kJ/mol, Orhan et al., 2002), BaO (-3,500 kJ/mol, Taylor, 1984) and GaN (-10,500 kJ/mol, Paszkowicz et al., 2004) calculated from the
data is 0.4%.Starting materials were pieces of Ba (Sigma-Aldrich, 99.99%), Ga (Rasa Industries, 99.99995%) and Na (Nippon Soda Co. Ltd., 99.95%), and powders of Si (Kojundo Chemical Laboratory, 99.999%) and NaN3 (Toyo Kasei Kogyo Co. Ltd., 99.9%). In an Ar gas-filled
(O2 < 1 ppm, H2O < 1 ppm), Ba (1.00 mmol), Ga (0.25 mmol), Na (2.4 mmol), Si (0.50 mmol) and NaN3 (1.2 mmol) were weighed and placed in a BN crucible (Showa Denko, 99.5%). The crucible was sealed in a stainless-steel tube. The sample was heated to 750°C in an electric furnace with a rate of 6°C min-1. This temperature was maintained for 2 hours and lowered to 550°C with a cooling rate of -2.8°C min-1. After that the sample was cooled to room temperature by shutting off the electric power to the furnace. The stainless-steel tube was cut and opened in the and the crucible was washed with liquid NH3 (Japan Fine Products, >99.999%) to dissolve away Na. The details of the Na removing method have been described in the literature (Kowach et al., 1998). The initial objective was to synthesize a Ba–Ga–Si–N quaternary compound by the Na method, but the main product obtained was yellow transparent granular single crystals of Ba3Ga2N4 (Yamane & DiSalvo, 1996). A small amount of red transparent platelet single crystals of Ba4GaN3O were included in the product.Semi-quantitative elemental analysis of the red single crystals was carried out with an energy-dispersive X-ray detector (EDX, EDAX, Genesis) attached to a scanning electron microscope (SEM, Hitachi, S-4800). Ba:Ga molar ratio determined by the EDX analysis was 78:22 which was close to the ratio (4:1) of Ba4GaN3O. The oxygen was probably originated from the surface oxide layers of the starting materials. Since Ba4GaN3O is unstable in air, a single crystal was picked up from the product and sealed in glass capillaries in the
for XRD data collection.The peaks of 2.25–2.54 e Å-3 in the Fo–Fc map were observed at 0.88–0.96 Å distant from Ba1–Ba3 atoms. These large differences are probably a result of the cut-off effect of the Fourier synthesis.
Data collection: RAPID-AUTO (Rigaku Corporation, 2005); cell
RAPID-AUTO (Rigaku Corporation, 2005); data reduction: RAPID-AUTO (Rigaku Corporation, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The atomic arrangement around Ba and Ga atoms in the structure of Ba4GaN3O. Displacement ellipsoids are drawn at 70% probability. Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) -x + 1/2, y + 1/2, z; (iii) x + 1/2, y, -z + 1/2; (iv) x + 1/2, -y + 1/2, -z; (v) -x, y + 1/2, -z + 1/2. | |
Fig. 2. Crystal structure of Ba4GaN3O illustrated with Ga-centered N atom triangles. |
Ba4GaN3O | F(000) = 2272 |
Mr = 677.11 | Dx = 5.671 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 11112 reflections |
a = 7.8130 (3) Å | θ = 3.0–27.5° |
b = 25.6453 (10) Å | µ = 22.84 mm−1 |
c = 7.9162 (4) Å | T = 293 K |
V = 1586.14 (12) Å3 | Platelet, red |
Z = 8 | 0.18 × 0.13 × 0.07 mm |
Rigaku R-AXIS RAPID II diffractometer | 1820 independent reflections |
Radiation source: fine-focus sealed tube | 1588 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.133 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −9→10 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −33→33 |
Tmin = 0.071, Tmax = 0.411 | l = −10→10 |
14273 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.043 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.P)2 + 18.6031P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
1820 reflections | Δρmax = 2.54 e Å−3 |
82 parameters | Δρmin = −1.72 e Å−3 |
Ba4GaN3O | V = 1586.14 (12) Å3 |
Mr = 677.11 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 7.8130 (3) Å | µ = 22.84 mm−1 |
b = 25.6453 (10) Å | T = 293 K |
c = 7.9162 (4) Å | 0.18 × 0.13 × 0.07 mm |
Rigaku R-AXIS RAPID II diffractometer | 1820 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 1588 reflections with I > 2σ(I) |
Tmin = 0.071, Tmax = 0.411 | Rint = 0.133 |
14273 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.P)2 + 18.6031P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | Δρmax = 2.54 e Å−3 |
1820 reflections | Δρmin = −1.72 e Å−3 |
82 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.36690 (8) | 0.42906 (2) | 0.32613 (7) | 0.02148 (18) | |
Ba2 | 0.03129 (8) | 0.06166 (2) | 0.16149 (7) | 0.02055 (18) | |
Ba3 | 0.45621 (7) | 0.26486 (2) | 0.23802 (7) | 0.02003 (18) | |
Ba4 | 0.20527 (8) | 0.15269 (2) | 0.46083 (7) | 0.02310 (19) | |
Ga1 | 0.20637 (12) | 0.17178 (4) | 0.01682 (12) | 0.0157 (2) | |
N1 | 0.0710 (11) | 0.3685 (3) | 0.3614 (11) | 0.0246 (19) | |
N2 | 0.3630 (10) | 0.1319 (3) | 0.1492 (9) | 0.0187 (17) | |
N3 | 0.1943 (10) | 0.2448 (3) | 0.0124 (9) | 0.0169 (17) | |
O1 | 0.2416 (12) | 0.0314 (4) | 0.4918 (11) | 0.049 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0234 (3) | 0.0214 (4) | 0.0196 (3) | 0.0002 (2) | 0.0046 (2) | 0.0002 (2) |
Ba2 | 0.0211 (3) | 0.0211 (4) | 0.0194 (3) | −0.0001 (2) | 0.0009 (2) | −0.0004 (2) |
Ba3 | 0.0152 (3) | 0.0326 (4) | 0.0123 (3) | 0.0000 (2) | 0.0001 (2) | 0.0007 (2) |
Ba4 | 0.0258 (3) | 0.0226 (4) | 0.0209 (3) | 0.0000 (2) | 0.0001 (2) | −0.0023 (2) |
Ga1 | 0.0158 (5) | 0.0183 (6) | 0.0132 (5) | −0.0002 (4) | −0.0006 (4) | −0.0001 (4) |
N1 | 0.026 (4) | 0.019 (5) | 0.029 (5) | 0.011 (4) | −0.010 (4) | 0.006 (3) |
N2 | 0.022 (4) | 0.020 (4) | 0.015 (4) | 0.006 (3) | −0.002 (3) | 0.000 (3) |
N3 | 0.022 (4) | 0.011 (4) | 0.018 (4) | −0.002 (3) | −0.002 (3) | −0.001 (3) |
O1 | 0.053 (5) | 0.052 (6) | 0.041 (5) | −0.007 (5) | 0.001 (4) | −0.010 (4) |
Ba1—N1i | 2.675 (8) | Ba4—N1viii | 3.231 (9) |
Ba1—N1 | 2.799 (9) | Ga1—N3 | 1.876 (8) |
Ba1—N2ii | 2.998 (7) | Ga1—N2 | 1.908 (8) |
Ba1—O1iii | 2.999 (8) | Ga1—N1iii | 1.924 (8) |
Ba1—O1iv | 3.054 (9) | Ga1—Ba3ix | 3.2450 (11) |
Ba1—Ga1ii | 3.2466 (12) | Ga1—Ba1iii | 3.2467 (12) |
Ba2—O1v | 2.683 (9) | Ga1—Ba3iii | 3.3648 (11) |
Ba2—N2v | 2.687 (8) | N1—Ga1ii | 1.924 (8) |
Ba2—N1iii | 2.991 (9) | N1—Ba1v | 2.675 (8) |
Ba2—N2 | 3.158 (8) | N1—Ba3v | 2.914 (9) |
Ba2—O1 | 3.184 (9) | N1—Ba2ii | 2.991 (9) |
Ba2—O1vi | 3.264 (10) | N1—Ba4x | 3.231 (9) |
Ba2—Ga1 | 3.3405 (12) | N2—Ba2i | 2.687 (8) |
Ba3—N3vii | 2.730 (7) | N2—Ba4i | 2.862 (8) |
Ba3—N3i | 2.762 (8) | N2—Ba1iii | 2.998 (7) |
Ba3—N3 | 2.764 (7) | N3—Ba4iii | 2.661 (8) |
Ba3—N1i | 2.914 (9) | N3—Ba3ix | 2.730 (7) |
Ba3—N3ii | 2.994 (8) | N3—Ba3v | 2.762 (8) |
Ba3—Ga1vii | 3.2450 (11) | N3—Ba3iii | 2.994 (8) |
Ba3—Ga1ii | 3.3647 (11) | O1—Ba2i | 2.683 (9) |
Ba4—N3ii | 2.661 (8) | O1—Ba1ii | 2.999 (8) |
Ba4—N2 | 2.808 (7) | O1—Ba1xi | 3.054 (9) |
Ba4—N2v | 2.862 (8) | O1—Ba2xii | 3.264 (10) |
Ba4—O1 | 3.133 (10) | ||
N1i—Ba1—N1 | 103.0 (3) | Ba4iii—Ba3—Ba4viii | 109.76 (2) |
N1i—Ba1—N2ii | 100.2 (2) | Ga1i—Ba3—Ba4viii | 75.61 (2) |
N1—Ba1—N2ii | 67.5 (2) | N3vii—Ba3—Ba4i | 44.25 (16) |
N1i—Ba1—O1iii | 84.3 (3) | N3i—Ba3—Ba4i | 79.12 (16) |
N1—Ba1—O1iii | 90.3 (2) | N3—Ba3—Ba4i | 88.33 (16) |
N2ii—Ba1—O1iii | 157.8 (2) | N1i—Ba3—Ba4i | 114.81 (15) |
N1i—Ba1—O1iv | 154.5 (3) | N3ii—Ba3—Ba4i | 125.84 (15) |
N1—Ba1—O1iv | 101.8 (3) | Ga1vii—Ba3—Ba4i | 79.26 (2) |
N2ii—Ba1—O1iv | 94.5 (2) | Ga1ii—Ba3—Ba4i | 158.61 (3) |
O1iii—Ba1—O1iv | 89.88 (12) | Ga1—Ba3—Ba4i | 64.48 (2) |
N1i—Ba1—Ga1ii | 91.49 (19) | Ba4iii—Ba3—Ba4i | 117.798 (17) |
N1—Ba1—Ga1ii | 36.16 (16) | Ga1i—Ba3—Ba4i | 56.77 (2) |
N2ii—Ba1—Ga1ii | 35.30 (15) | Ba4viii—Ba3—Ba4i | 115.14 (2) |
O1iii—Ba1—Ga1ii | 123.61 (19) | N3ii—Ba4—N2 | 109.6 (2) |
O1iv—Ba1—Ga1ii | 112.20 (18) | N3ii—Ba4—N2v | 101.6 (2) |
N1i—Ba1—Ba2iv | 102.02 (19) | N2—Ba4—N2v | 96.16 (14) |
N1—Ba1—Ba2iv | 135.83 (16) | N3ii—Ba4—O1 | 166.3 (2) |
N2ii—Ba1—Ba2iv | 140.93 (15) | N2—Ba4—O1 | 80.8 (2) |
O1iii—Ba1—Ba2iv | 56.82 (19) | N2v—Ba4—O1 | 85.6 (2) |
O1iv—Ba1—Ba2iv | 54.92 (18) | N3ii—Ba4—N1viii | 97.3 (2) |
Ga1ii—Ba1—Ba2iv | 166.34 (3) | N2—Ba4—N1viii | 87.9 (2) |
N1i—Ba1—Ba2ii | 148.09 (19) | N2v—Ba4—N1viii | 158.0 (2) |
N1—Ba1—Ba2ii | 52.06 (18) | O1—Ba4—N1viii | 73.7 (2) |
N2ii—Ba1—Ba2ii | 54.58 (15) | N3ii—Ba4—Ga1 | 90.91 (16) |
O1iii—Ba1—Ba2ii | 112.10 (18) | N2—Ba4—Ga1 | 32.35 (15) |
O1iv—Ba1—Ba2ii | 56.35 (18) | N2v—Ba4—Ga1 | 74.12 (15) |
Ga1ii—Ba1—Ba2ii | 56.61 (2) | O1—Ba4—Ga1 | 102.37 (15) |
Ba2iv—Ba1—Ba2ii | 109.870 (18) | N1viii—Ba4—Ga1 | 116.90 (14) |
N1i—Ba1—Ba4viii | 60.51 (19) | N3ii—Ba4—Ba2i | 134.97 (17) |
N1—Ba1—Ba4viii | 103.06 (16) | N2—Ba4—Ba2i | 47.79 (16) |
N2ii—Ba1—Ba4viii | 48.37 (15) | N2v—Ba4—Ba2i | 117.38 (16) |
O1iii—Ba1—Ba4viii | 144.23 (18) | O1—Ba4—Ba2i | 46.44 (17) |
O1iv—Ba1—Ba4viii | 118.70 (17) | N1viii—Ba4—Ba2i | 51.70 (15) |
Ga1ii—Ba1—Ba4viii | 67.67 (2) | Ga1—Ba4—Ba2i | 79.68 (2) |
Ba2iv—Ba1—Ba4viii | 120.92 (2) | N3ii—Ba4—Ba2 | 136.94 (16) |
Ba2ii—Ba1—Ba4viii | 102.089 (19) | N2—Ba4—Ba2 | 57.57 (17) |
N1i—Ba1—Ba4iii | 56.90 (19) | N2v—Ba4—Ba2 | 47.55 (15) |
N1—Ba1—Ba4iii | 59.59 (18) | O1—Ba4—Ba2 | 56.00 (16) |
N2ii—Ba1—Ba4iii | 111.04 (15) | N1viii—Ba4—Ba2 | 120.82 (16) |
O1iii—Ba1—Ba4iii | 53.45 (19) | Ga1—Ba4—Ba2 | 55.77 (2) |
O1iv—Ba1—Ba4iii | 135.30 (17) | Ba2i—Ba4—Ba2 | 70.604 (15) |
Ga1ii—Ba1—Ba4iii | 77.60 (2) | N3ii—Ba4—Ba3ii | 49.31 (16) |
Ba2iv—Ba1—Ba4iii | 108.003 (19) | N2—Ba4—Ba3ii | 113.90 (17) |
Ba2ii—Ba1—Ba4iii | 110.09 (2) | N2v—Ba4—Ba3ii | 142.97 (15) |
Ba4viii—Ba1—Ba4iii | 105.50 (2) | O1—Ba4—Ba3ii | 118.88 (16) |
N1i—Ba1—Ba2vii | 47.19 (19) | N1viii—Ba4—Ba3ii | 49.91 (15) |
N1—Ba1—Ba2vii | 112.78 (17) | Ga1—Ba4—Ba3ii | 121.19 (3) |
N2ii—Ba1—Ba2vii | 147.32 (16) | Ba2i—Ba4—Ba3ii | 99.15 (2) |
O1iii—Ba1—Ba2vii | 41.16 (18) | Ba2—Ba4—Ba3ii | 169.46 (2) |
O1iv—Ba1—Ba2vii | 116.36 (17) | N3ii—Ba4—Ba3x | 47.62 (16) |
Ga1ii—Ba1—Ba2vii | 127.49 (3) | N2—Ba4—Ba3x | 153.75 (16) |
Ba2iv—Ba1—Ba2vii | 63.146 (17) | N2v—Ba4—Ba3x | 79.21 (15) |
Ba2ii—Ba1—Ba2vii | 152.86 (2) | O1—Ba4—Ba3x | 124.02 (16) |
Ba4viii—Ba1—Ba2vii | 103.594 (19) | N1viii—Ba4—Ba3x | 106.15 (15) |
Ba4iii—Ba1—Ba2vii | 54.148 (15) | Ga1—Ba4—Ba3x | 123.74 (2) |
N1i—Ba1—Ba1i | 42.85 (19) | Ba2i—Ba4—Ba3x | 155.60 (2) |
N1—Ba1—Ba1i | 144.95 (17) | Ba2—Ba4—Ba3x | 126.28 (2) |
N2ii—Ba1—Ba1i | 105.14 (15) | Ba3ii—Ba4—Ba3x | 64.206 (12) |
O1iii—Ba1—Ba1i | 92.97 (19) | N3ii—Ba4—Ba1x | 117.25 (17) |
O1iv—Ba1—Ba1i | 113.06 (19) | N2—Ba4—Ba1x | 126.50 (17) |
Ga1ii—Ba1—Ba1i | 120.41 (2) | N2v—Ba4—Ba1x | 51.53 (15) |
Ba2iv—Ba1—Ba1i | 72.121 (14) | O1—Ba4—Ba1x | 58.44 (17) |
Ba2ii—Ba1—Ba1i | 151.58 (2) | N1viii—Ba4—Ba1x | 109.36 (14) |
Ba4viii—Ba1—Ba1i | 57.460 (13) | Ga1—Ba4—Ba1x | 121.41 (2) |
Ba4iii—Ba1—Ba1i | 95.36 (2) | Ba2i—Ba4—Ba1x | 104.86 (2) |
Ba2vii—Ba1—Ba1i | 54.518 (17) | Ba2—Ba4—Ba1x | 70.646 (17) |
O1v—Ba2—N2v | 91.9 (3) | Ba3ii—Ba4—Ba1x | 115.65 (2) |
O1v—Ba2—N1iii | 84.3 (2) | Ba3x—Ba4—Ba1x | 70.370 (17) |
N2v—Ba2—N1iii | 95.3 (2) | N3ii—Ba4—Ba1ii | 116.11 (16) |
O1v—Ba2—N2 | 147.5 (2) | N2—Ba4—Ba1ii | 114.79 (16) |
N2v—Ba2—N2 | 92.1 (2) | N2v—Ba4—Ba1ii | 116.15 (16) |
N1iii—Ba2—N2 | 63.2 (2) | O1—Ba4—Ba1ii | 50.26 (16) |
O1v—Ba2—O1 | 137.4 (3) | N1viii—Ba4—Ba1ii | 43.92 (14) |
N2v—Ba2—O1 | 87.6 (2) | Ga1—Ba4—Ba1ii | 146.26 (3) |
N1iii—Ba2—O1 | 138.1 (2) | Ba2i—Ba4—Ba1ii | 67.004 (17) |
N2—Ba2—O1 | 75.0 (2) | Ba2—Ba4—Ba1ii | 105.66 (2) |
O1v—Ba2—O1vi | 93.5 (3) | Ba3ii—Ba4—Ba1ii | 71.359 (18) |
N2v—Ba2—O1vi | 170.4 (2) | Ba3x—Ba4—Ba1ii | 89.987 (19) |
N1iii—Ba2—O1vi | 93.1 (2) | Ba1x—Ba4—Ba1ii | 65.465 (13) |
N2—Ba2—O1vi | 87.6 (2) | N3—Ga1—N2 | 125.3 (3) |
O1—Ba2—O1vi | 83.07 (11) | N3—Ga1—N1iii | 119.8 (3) |
O1v—Ba2—Ga1 | 115.78 (19) | N2—Ga1—N1iii | 114.6 (4) |
N2v—Ba2—Ga1 | 79.89 (17) | N3—Ga1—Ba3ix | 57.2 (2) |
N1iii—Ba2—Ga1 | 34.82 (15) | N2—Ga1—Ba3ix | 174.9 (2) |
N2—Ba2—Ga1 | 34.00 (14) | N1iii—Ga1—Ba3ix | 62.6 (3) |
O1—Ba2—Ga1 | 106.04 (17) | N3—Ga1—Ba1iii | 143.7 (2) |
O1vi—Ba2—Ga1 | 104.74 (16) | N2—Ga1—Ba1iii | 65.2 (2) |
O1v—Ba2—Ba4v | 57.8 (2) | N1iii—Ga1—Ba1iii | 59.1 (3) |
N2v—Ba2—Ba4v | 50.72 (16) | Ba3ix—Ga1—Ba1iii | 110.03 (3) |
N1iii—Ba2—Ba4v | 57.98 (17) | N3—Ga1—Ba2 | 146.1 (2) |
N2—Ba2—Ba4v | 101.71 (14) | N2—Ga1—Ba2 | 67.8 (2) |
O1—Ba2—Ba4v | 138.28 (17) | N1iii—Ga1—Ba2 | 62.6 (3) |
O1vi—Ba2—Ba4v | 138.65 (15) | Ba3ix—Ga1—Ba2 | 112.94 (3) |
Ga1—Ba2—Ba4v | 69.40 (2) | Ba1iii—Ga1—Ba2 | 69.15 (3) |
O1v—Ba2—Ba4 | 143.6 (2) | N3—Ga1—Ba3iii | 62.3 (2) |
N2v—Ba2—Ba4 | 51.81 (17) | N2—Ga1—Ba3iii | 104.3 (2) |
N1iii—Ba2—Ba4 | 95.48 (15) | N1iii—Ga1—Ba3iii | 99.1 (3) |
N2—Ba2—Ba4 | 48.63 (13) | Ba3ix—Ga1—Ba3iii | 72.53 (2) |
O1—Ba2—Ba4 | 54.66 (17) | Ba1iii—Ga1—Ba3iii | 81.70 (3) |
O1vi—Ba2—Ba4 | 122.74 (17) | Ba2—Ga1—Ba3iii | 150.54 (4) |
Ga1—Ba2—Ba4 | 61.44 (2) | N3—Ga1—Ba3 | 50.6 (2) |
Ba4v—Ba2—Ba4 | 91.37 (2) | N2—Ga1—Ba3 | 74.7 (2) |
O1v—Ba2—Ba1xi | 94.3 (2) | N1iii—Ga1—Ba3 | 168.6 (3) |
N2v—Ba2—Ba1xi | 121.42 (16) | Ba3ix—Ga1—Ba3 | 107.55 (3) |
N1iii—Ba2—Ba1xi | 143.29 (17) | Ba1iii—Ga1—Ba3 | 123.58 (3) |
N2—Ba2—Ba1xi | 110.87 (14) | Ba2—Ga1—Ba3 | 128.70 (3) |
O1—Ba2—Ba1xi | 51.72 (17) | Ba3iii—Ga1—Ba3 | 71.31 (2) |
O1vi—Ba2—Ba1xi | 50.26 (15) | N3—Ga1—Ba4 | 99.0 (2) |
Ga1—Ba2—Ba1xi | 143.49 (3) | N2—Ga1—Ba4 | 51.9 (2) |
Ba4v—Ba2—Ba1xi | 147.07 (2) | N1iii—Ga1—Ba4 | 123.9 (3) |
Ba4—Ba2—Ba1xi | 106.34 (2) | Ba3ix—Ga1—Ba4 | 133.11 (3) |
O1v—Ba2—Ba1iii | 106.80 (19) | Ba1iii—Ga1—Ba4 | 110.58 (3) |
N2v—Ba2—Ba1iii | 134.13 (17) | Ba2—Ga1—Ba4 | 62.79 (2) |
N1iii—Ba2—Ba1iii | 47.56 (17) | Ba3iii—Ga1—Ba4 | 135.86 (3) |
N2—Ba2—Ba1iii | 50.68 (13) | Ba3—Ga1—Ba4 | 66.74 (2) |
O1—Ba2—Ba1iii | 103.69 (17) | N3—Ga1—Ba3v | 47.9 (2) |
O1vi—Ba2—Ba1iii | 51.16 (15) | N2—Ga1—Ba3v | 113.7 (2) |
Ga1—Ba2—Ba1iii | 54.24 (2) | N1iii—Ga1—Ba3v | 113.4 (3) |
Ba4v—Ba2—Ba1iii | 105.36 (2) | Ba3ix—Ga1—Ba3v | 71.35 (2) |
Ba4—Ba2—Ba1iii | 99.30 (2) | Ba1iii—Ga1—Ba3v | 167.54 (4) |
Ba1xi—Ba2—Ba1iii | 99.012 (17) | Ba2—Ga1—Ba3v | 98.71 (3) |
O1v—Ba2—Ba1ix | 47.36 (18) | Ba3iii—Ga1—Ba3v | 110.13 (3) |
N2v—Ba2—Ba1ix | 109.56 (16) | Ba3—Ga1—Ba3v | 65.886 (19) |
N1iii—Ba2—Ba1ix | 41.01 (14) | Ba4—Ga1—Ba3v | 64.00 (2) |
N2—Ba2—Ba1ix | 101.32 (13) | Ga1ii—N1—Ba1v | 173.9 (5) |
O1—Ba2—Ba1ix | 162.69 (17) | Ga1ii—N1—Ba1 | 84.7 (3) |
O1vi—Ba2—Ba1ix | 79.87 (15) | Ba1v—N1—Ba1 | 96.6 (3) |
Ga1—Ba2—Ba1ix | 75.82 (2) | Ga1ii—N1—Ba3v | 81.5 (3) |
Ba4v—Ba2—Ba1ix | 58.845 (16) | Ba1v—N1—Ba3v | 101.3 (3) |
Ba4—Ba2—Ba1ix | 134.90 (2) | Ba1—N1—Ba3v | 137.2 (3) |
Ba1xi—Ba2—Ba1ix | 116.853 (17) | Ga1ii—N1—Ba2ii | 82.6 (3) |
Ba1iii—Ba2—Ba1ix | 62.918 (10) | Ba1v—N1—Ba2ii | 91.8 (2) |
N3vii—Ba3—N3i | 92.5 (2) | Ba1—N1—Ba2ii | 80.4 (2) |
N3vii—Ba3—N3 | 91.05 (3) | Ba3v—N1—Ba2ii | 136.8 (3) |
N3i—Ba3—N3 | 157.9 (3) | Ga1ii—N1—Ba4x | 96.7 (3) |
N3vii—Ba3—N1i | 71.2 (2) | Ba1v—N1—Ba4x | 79.2 (2) |
N3i—Ba3—N1i | 98.9 (2) | Ba1—N1—Ba4x | 150.1 (3) |
N3—Ba3—N1i | 102.9 (2) | Ba3v—N1—Ba4x | 72.1 (2) |
N3vii—Ba3—N3ii | 170.0 (3) | Ba2ii—N1—Ba4x | 70.32 (19) |
N3i—Ba3—N3ii | 85.75 (3) | Ga1—N2—Ba2i | 168.3 (4) |
N3—Ba3—N3ii | 87.0 (2) | Ga1—N2—Ba4 | 95.7 (3) |
N1i—Ba3—N3ii | 118.8 (2) | Ba2i—N2—Ba4 | 81.5 (2) |
N3vii—Ba3—Ga1vii | 35.28 (16) | Ga1—N2—Ba4i | 109.4 (3) |
N3i—Ba3—Ga1vii | 97.59 (15) | Ba2i—N2—Ba4i | 80.6 (2) |
N3—Ba3—Ga1vii | 97.89 (16) | Ba4—N2—Ba4i | 130.0 (3) |
N1i—Ba3—Ga1vii | 35.89 (15) | Ga1—N2—Ba1iii | 79.5 (2) |
N3ii—Ba3—Ga1vii | 154.71 (15) | Ba2i—N2—Ba1iii | 96.9 (2) |
N3vii—Ba3—Ga1ii | 156.30 (16) | Ba4—N2—Ba1iii | 148.5 (3) |
N3i—Ba3—Ga1ii | 90.65 (16) | Ba4i—N2—Ba1iii | 80.09 (19) |
N3—Ba3—Ga1ii | 94.83 (16) | Ga1—N2—Ba2 | 78.2 (3) |
N1i—Ba3—Ga1ii | 85.14 (15) | Ba2i—N2—Ba2 | 90.1 (2) |
N3ii—Ba3—Ga1ii | 33.68 (15) | Ba4—N2—Ba2 | 73.80 (18) |
Ga1vii—Ba3—Ga1ii | 121.03 (4) | Ba4i—N2—Ba2 | 151.9 (3) |
N3vii—Ba3—Ga1 | 87.43 (16) | Ba1iii—N2—Ba2 | 74.74 (18) |
N3i—Ba3—Ga1 | 126.79 (16) | Ga1—N3—Ba4iii | 170.9 (4) |
N3—Ba3—Ga1 | 31.61 (16) | Ga1—N3—Ba3ix | 87.5 (3) |
N1i—Ba3—Ga1 | 130.55 (17) | Ba4iii—N3—Ba3ix | 90.0 (2) |
N3ii—Ba3—Ga1 | 85.77 (15) | Ga1—N3—Ba3v | 101.9 (3) |
Ga1vii—Ba3—Ga1 | 111.20 (2) | Ba4iii—N3—Ba3v | 87.0 (2) |
Ga1ii—Ba3—Ga1 | 109.24 (3) | Ba3ix—N3—Ba3v | 94.4 (2) |
N3vii—Ba3—Ba4iii | 88.97 (16) | Ga1—N3—Ba3 | 97.8 (3) |
N3i—Ba3—Ba4iii | 154.98 (16) | Ba4iii—N3—Ba3 | 83.8 (2) |
N3—Ba3—Ba4iii | 46.89 (16) | Ba3ix—N3—Ba3 | 172.1 (3) |
N1i—Ba3—Ba4iii | 58.03 (17) | Ba3v—N3—Ba3 | 90.1 (2) |
N3ii—Ba3—Ba4iii | 96.78 (14) | Ga1—N3—Ba3iii | 84.1 (3) |
Ga1vii—Ba3—Ba4iii | 69.95 (2) | Ba4iii—N3—Ba3iii | 87.1 (2) |
Ga1ii—Ba3—Ba4iii | 78.55 (2) | Ba3ix—N3—Ba3iii | 86.1 (2) |
Ga1—Ba3—Ba4iii | 78.22 (2) | Ba3v—N3—Ba3iii | 174.0 (3) |
N3vii—Ba3—Ga1i | 87.80 (16) | Ba3—N3—Ba3iii | 88.8 (2) |
N3i—Ba3—Ga1i | 30.24 (16) | Ba2i—O1—Ba1ii | 91.5 (3) |
N3—Ba3—Ga1i | 128.27 (16) | Ba2i—O1—Ba1xi | 106.8 (3) |
N1i—Ba3—Ga1i | 125.19 (17) | Ba1ii—O1—Ba1xi | 139.5 (3) |
N3ii—Ba3—Ga1i | 85.74 (14) | Ba2i—O1—Ba4 | 75.8 (2) |
Ga1vii—Ba3—Ga1i | 109.63 (3) | Ba1ii—O1—Ba4 | 76.3 (2) |
Ga1ii—Ba3—Ga1i | 106.15 (2) | Ba1xi—O1—Ba4 | 142.6 (3) |
Ga1—Ba3—Ga1i | 96.74 (3) | Ba2i—O1—Ba2 | 89.6 (2) |
Ba4iii—Ba3—Ga1i | 174.14 (3) | Ba1ii—O1—Ba2 | 144.2 (3) |
N3vii—Ba3—Ba4viii | 99.21 (16) | Ba1xi—O1—Ba2 | 73.36 (19) |
N3i—Ba3—Ba4viii | 45.37 (16) | Ba4—O1—Ba2 | 69.3 (2) |
N3—Ba3—Ba4viii | 154.63 (16) | Ba2i—O1—Ba2xii | 86.5 (3) |
N1i—Ba3—Ba4viii | 59.70 (17) | Ba1ii—O1—Ba2xii | 72.9 (2) |
N3ii—Ba3—Ba4viii | 86.56 (15) | Ba1xi—O1—Ba2xii | 72.5 (2) |
Ga1vii—Ba3—Ba4viii | 78.43 (2) | Ba4—O1—Ba2xii | 143.9 (3) |
Ga1ii—Ba3—Ba4viii | 67.05 (2) | Ba2—O1—Ba2xii | 142.8 (3) |
Ga1—Ba3—Ba4viii | 169.55 (3) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+1/2, y+1/2, z; (v) x−1/2, y, −z+1/2; (vi) −x+1/2, −y, z−1/2; (vii) x+1/2, −y+1/2, −z; (viii) x+1/2, −y+1/2, −z+1; (ix) x−1/2, −y+1/2, −z; (x) x−1/2, −y+1/2, −z+1; (xi) −x+1/2, y−1/2, z; (xii) −x+1/2, −y, z+1/2. |
Ba1—N1i | 2.675 (8) | Ba3—N3i | 2.762 (8) |
Ba1—N1 | 2.799 (9) | Ba3—N3 | 2.764 (7) |
Ba1—N2ii | 2.998 (7) | Ba3—N1i | 2.914 (9) |
Ba1—O1iii | 2.999 (8) | Ba3—N3ii | 2.994 (8) |
Ba1—O1iv | 3.054 (9) | Ba4—N3ii | 2.661 (8) |
Ba2—O1v | 2.683 (9) | Ba4—N2 | 2.808 (7) |
Ba2—N2v | 2.687 (8) | Ba4—N2v | 2.862 (8) |
Ba2—N1iii | 2.991 (9) | Ba4—O1 | 3.133 (10) |
Ba2—N2 | 3.158 (8) | Ba4—N1viii | 3.231 (9) |
Ba2—O1 | 3.184 (9) | Ga1—N3 | 1.876 (8) |
Ba2—O1vi | 3.264 (10) | Ga1—N2 | 1.908 (8) |
Ba3—N3vii | 2.730 (7) | Ga1—N1iii | 1.924 (8) |
N3—Ga1—N2 | 125.3 (3) | N2—Ga1—N1iii | 114.6 (4) |
N3—Ga1—N1iii | 119.8 (3) |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2; (iv) −x+1/2, y+1/2, z; (v) x−1/2, y, −z+1/2; (vi) −x+1/2, −y, z−1/2; (vii) x+1/2, −y+1/2, −z; (viii) x+1/2, −y+1/2, −z+1. |
Acknowledgements
This work was supported in part by a Grant-in-Aid for Scientific Resarch (C) (No. 25420701, 2013) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.
References
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hintze, F. & Schnick, W. (2010). Solid State Sci. 12, 1368–1373. Web of Science CrossRef CAS Google Scholar
Kowach, G. R., Lin, H. Y. & DiSalvo, F. J. (1998). J. Solid State Chem. 141, 1–9. Web of Science CrossRef CAS Google Scholar
Mallinson, P. M., Gál, Z. A. & Clarke, S. J. (2006). Inorg. Chem. 45, 419–423. Web of Science CrossRef PubMed CAS Google Scholar
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. Web of Science CrossRef CAS IUCr Journals Google Scholar
O'Keeffe, M. (1992). EUTAX. Arizona State University, USA. Google Scholar
Orhan, E., Jobic, S., Brec, R., Marchand, R. & Saillard, J.-Y. (2002). J. Mater. Chem. 12, 2475–2479. Web of Science CrossRef CAS Google Scholar
Park, D. G., Gál, Z. A. & DiSalvo, F. J. (2003). Inorg. Chem. 42, 1779–1785. Web of Science CrossRef PubMed CAS Google Scholar
Paszkowicz, W., Podsiadło, S. & Minikayev, R. (2004). J. Alloys Compd, 382, 100–106. Web of Science CrossRef CAS Google Scholar
Rigaku Corporation (2005). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, D. (1984). Trans. Br. Ceram. Soc. 83, 5–9. Google Scholar
Yamane, H. & DiSalvo, F. J. (1996). Acta Cryst. C52, 760–761. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.