organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Prop-2-yn­yl)-2H-1,4-benzo­thia­zin-3(4H)-one

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bLaboratoire de Chimie Organique et Etudes Physicochimiques, ENS Takaddoum, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: nk_sebbar@yahoo.fr

(Received 11 April 2014; accepted 26 April 2014; online 10 May 2014)

In the title compound, C11H9NOS, the six-membered heterocycle of the benzo­thia­zine fragment exhibits a screw-boat conformation. The benzene ring makes a dihedral angle of 79.4 (1)° with the mean plane through the prop-2-ynyl chain and the ring N atom. In the crystal, mol­ecules are linked by C—H⋯O inter­actions of the acetyl­enic C—H group towards the carbonyl O atom of a neighbouring mol­ecule, forming zigzag chains running along the b-axis direction.

Related literature

For general background to the synthesis of 1,4-benzo­thia­zines derivatives, see: Sebbar et al. (2014[Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160-o161.]); Zerzouf et al. (2001[Zerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498-o499.]). For the pharmacological activity of 1,4-benzo­thia­zine derivatives, see: Trapani et al. (1985[Trapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Sci. 40, 369-376.]); Yaltirik et al. (2001[Yaltirik, M., Oral, C. K., Oral, O., Kasaboĝlu, Ç. & Çebí, V. (2001). Turk. J. Med. Sci. 31, 151-154.]); Wammack et al. (2002[Wammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596-601.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NOS

  • Mr = 203.25

  • Monoclinic, P 21 /n

  • a = 9.005 (2) Å

  • b = 10.889 (3) Å

  • c = 10.341 (3) Å

  • β = 104.565 (7)°

  • V = 981.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.28 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.692, Tmax = 0.747

  • 9586 measured reflections

  • 2532 independent reflections

  • 2242 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 1.05

  • 2532 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.32 3.1937 (19) 157
Symmetry code: (i) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,4-Benzothiazine derivatives constitute an important class of heterocyclic compounds which possess a wide range of therapeutic and pharmacological properties. Derivatives of 1,4-benzothiazine are widely used as anti-inflammatory (Trapani et al., 1985) and analgesic (Wammack et al., 2002; Yaltirik et al., 2001) drugs. In our previous work we have reported the synthesis of new 1,4-benzothiazine derivatives for biological activities (Zerzouf et al., 2001; Sebbar et al., 2014). The reactivity of propargyl bromide towards 3-oxo-1,4-benzothiazine under phase-transfer catalysis conditions using tetra n-butyl ammonium bromide (TBAB) as catalyst and potassium carbonate as base, leads to the formation of the title compound in good yields.

The two fused six-membered rings building the molecule of the title compound are linked to a prop-2-ynyl chain as shown in Fig.1. The six-membered heterocycle of the benzothiazine fragment displays a screw boat conformation as indicated by the puckering amplitude Q = 0.6643 (11) Å, and spherical polar angle θ = 66.56 (9)°, with ϕ = 330.45 (11)° (Cremer & Pople, 1975). The benzene ring (C1 to C6) makes a dihedral angle of 79.4 (1)° with the mean plan through the prop-2-ynyl chain and the N1 atom (N1C9C10C11).

In the crystal, molecules are linked together by intermolecular C11–H11···O1 interactions forming zigzag chains running along b direction (see Fig.2 and Table 1).

Related literature top

For general background to the synthesis of 1,4-benzothiazines derivatives, see: Sebbar et al. (2014); Zerzouf et al. (2001). For the pharmacological activity of 1,4-benzothiazine derivatives, see: Trapani et al. (1985); Yaltirik et al. (2001); Wammack et al. (2002). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a solution of 3-oxo-1,4-benzothiazine (1.00 g, 6.05 mmol), potassium carbonate (1.52 g,11.3 mmol) and tetra n-butyl ammonium bromide (0.12 g, 0.37 mmol) in DMF (25 ml) was added propargyl bromide (0.5 ml, 6.6 mmol). Stirring was continued at room temperature for 24 h. The mixture was filtered and the solvent removed. The residue was extracted with water. The organic compound was chromatographed on a column of silica gel with ethyl acetate-hexane (1/1) as eluent. Orange crystals were isolated when the solvent was allowed to evaporate (yield: 75%, m.p. 493 K).

Refinement top

H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic, acetylenic) and C—H = 0.97 Å (methylene). All hydrogen atoms were refined isotropically with Uiso(H) = 1.2 Ueq (aromatic, acetylenic and methylene).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Projection of the structure along (0 0 1) of the title compound, showing molecules linked through C113–H11···O1 hydrogen bond (dashed lines).
4-(Prop-2-ynyl)-2H-1,4-benzothiazin-3(4H)-one top
Crystal data top
C11H9NOSF(000) = 424
Mr = 203.25Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2532 reflections
a = 9.005 (2) Åθ = 2.7–28.7°
b = 10.889 (3) ŵ = 0.29 mm1
c = 10.341 (3) ÅT = 296 K
β = 104.565 (7)°Block, colourless
V = 981.3 (4) Å30.39 × 0.34 × 0.28 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2532 independent reflections
Radiation source: fine-focus sealed tube2242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.692, Tmax = 0.747k = 1414
9586 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1971P]
where P = (Fo2 + 2Fc2)/3
2532 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H9NOSV = 981.3 (4) Å3
Mr = 203.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.005 (2) ŵ = 0.29 mm1
b = 10.889 (3) ÅT = 296 K
c = 10.341 (3) Å0.39 × 0.34 × 0.28 mm
β = 104.565 (7)°
Data collection top
Bruker X8 APEX
diffractometer
2532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2242 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.747Rint = 0.025
9586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.29 e Å3
2532 reflectionsΔρmin = 0.26 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72598 (13)0.66267 (11)0.41584 (11)0.0349 (2)
C20.57459 (15)0.63028 (14)0.40891 (14)0.0468 (3)
H20.52550.66350.46990.056*
C30.49680 (15)0.54991 (15)0.31310 (16)0.0545 (4)
H30.39500.53020.30810.065*
C40.57071 (16)0.49879 (14)0.22443 (16)0.0523 (3)
H40.51850.44390.15990.063*
C50.72189 (15)0.52826 (12)0.23035 (13)0.0432 (3)
H50.77100.49220.17090.052*
C60.80051 (12)0.61176 (10)0.32501 (11)0.0321 (2)
C71.05883 (13)0.68706 (11)0.43826 (12)0.0365 (2)
C81.00619 (14)0.69227 (13)0.56496 (12)0.0400 (3)
H8A1.08110.73650.63270.048*
H8B0.99810.60960.59740.048*
C91.00187 (16)0.64258 (13)0.20101 (12)0.0430 (3)
H9A0.91450.65910.12640.052*
H9B1.07790.70590.20210.052*
C101.06719 (14)0.52290 (14)0.18089 (12)0.0430 (3)
N10.95243 (11)0.64883 (9)0.32600 (9)0.0343 (2)
C111.12110 (16)0.42755 (16)0.16435 (14)0.0528 (3)
H111.16370.35220.15130.063*
O11.18902 (11)0.71561 (11)0.43539 (11)0.0552 (3)
S10.82271 (4)0.76777 (3)0.53643 (3)0.04266 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0342 (5)0.0363 (6)0.0354 (5)0.0037 (4)0.0114 (4)0.0046 (4)
C20.0349 (6)0.0579 (8)0.0515 (7)0.0039 (5)0.0181 (5)0.0071 (6)
C30.0322 (6)0.0634 (9)0.0667 (9)0.0064 (6)0.0101 (6)0.0087 (7)
C40.0433 (7)0.0464 (7)0.0602 (8)0.0078 (6)0.0002 (6)0.0034 (6)
C50.0411 (6)0.0410 (6)0.0456 (6)0.0019 (5)0.0074 (5)0.0055 (5)
C60.0299 (5)0.0317 (5)0.0350 (5)0.0015 (4)0.0086 (4)0.0038 (4)
C70.0342 (5)0.0343 (6)0.0421 (6)0.0021 (4)0.0115 (4)0.0026 (5)
C80.0376 (6)0.0451 (6)0.0359 (6)0.0005 (5)0.0067 (5)0.0010 (5)
C90.0458 (7)0.0512 (7)0.0373 (6)0.0020 (5)0.0202 (5)0.0070 (5)
C100.0364 (6)0.0614 (8)0.0346 (6)0.0008 (5)0.0155 (5)0.0003 (5)
N10.0335 (5)0.0389 (5)0.0340 (5)0.0008 (4)0.0147 (4)0.0015 (4)
C110.0466 (7)0.0656 (9)0.0484 (7)0.0069 (7)0.0158 (6)0.0085 (7)
O10.0370 (5)0.0686 (7)0.0619 (6)0.0143 (4)0.0160 (4)0.0024 (5)
S10.0458 (2)0.04378 (19)0.04046 (19)0.00495 (12)0.01474 (14)0.00623 (12)
Geometric parameters (Å, º) top
C1—C21.3924 (17)C7—O11.2204 (15)
C1—C61.3990 (16)C7—N11.3709 (16)
C1—S11.7542 (13)C7—C81.5023 (16)
C2—C31.374 (2)C8—S11.8021 (13)
C2—H20.9300C8—H8A0.9700
C3—C41.379 (2)C8—H8B0.9700
C3—H30.9300C9—C101.4660 (19)
C4—C51.385 (2)C9—N11.4707 (14)
C4—H40.9300C9—H9A0.9700
C5—C61.3919 (17)C9—H9B0.9700
C5—H50.9300C10—C111.177 (2)
C6—N11.4239 (14)C11—H110.9300
C2—C1—C6119.60 (12)N1—C7—C8116.32 (10)
C2—C1—S1120.43 (10)C7—C8—S1110.60 (9)
C6—C1—S1119.97 (9)C7—C8—H8A109.5
C3—C2—C1120.88 (13)S1—C8—H8A109.5
C3—C2—H2119.6C7—C8—H8B109.5
C1—C2—H2119.6S1—C8—H8B109.5
C2—C3—C4119.52 (12)H8A—C8—H8B108.1
C2—C3—H3120.2C10—C9—N1112.76 (10)
C4—C3—H3120.2C10—C9—H9A109.0
C3—C4—C5120.71 (13)N1—C9—H9A109.0
C3—C4—H4119.6C10—C9—H9B109.0
C5—C4—H4119.6N1—C9—H9B109.0
C4—C5—C6120.20 (12)H9A—C9—H9B107.8
C4—C5—H5119.9C11—C10—C9179.18 (14)
C6—C5—H5119.9C7—N1—C6123.91 (9)
C5—C6—C1119.07 (11)C7—N1—C9117.17 (10)
C5—C6—N1120.54 (10)C6—N1—C9118.89 (10)
C1—C6—N1120.34 (10)C10—C11—H11180.0
O1—C7—N1121.86 (11)C1—S1—C895.14 (6)
O1—C7—C8121.83 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.323.1937 (19)157
Symmetry code: (i) x+5/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.323.1937 (19)156.9
Symmetry code: (i) x+5/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o160–o161.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrapani, G., Reho, A., Morlacchi, F., Latrofa, A., Marchini, P., Venturi, F. & Cantalamessa, F. (1985). Farmaco Sci. 40, 369–376.  CAS PubMed Web of Science Google Scholar
First citationWammack, R., Remzi, M., Seitz, C., Djavan, B. & Marberger, M. (2002). Eur. Urol. 41, 596–601.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaltirik, M., Oral, C. K., Oral, O., Kasaboĝlu, Ç. & Çebí, V. (2001). Turk. J. Med. Sci. 31, 151–154.  CAS Google Scholar
First citationZerzouf, A., Salem, M., Essassi, E. M. & Pierrot, M. (2001). Acta Cryst. E57, o498–o499.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds