organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,7-[Ethane-1,2-diylbis(­oxy)]-2-[hy­droxy(phenyl)methyl]bi­cyclo[3.3.1]nonan-3-one

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: szlzgd@sina.com

(Received 28 February 2014; accepted 22 April 2014; online 17 May 2014)

In the title compound, C18H22O4, the cyclo­hexane and cyclo­hexa­none rings adopt normal chair and half-chair conformations, respectively. The dioxolane ring is almost planar, with an r.m.s. deviation of 0.094 (3) Å. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds, forming 21 helical chains along the a-axis direction. The chains are further connected by C—H⋯O hydrogen bonds.

Related literature

For related structures having condensed cyclo­hexa­none rings, see: Li et al. (2002[Li, W., LaCour, T. G. & Fuchs, P. L. (2002). J. Am. Chem. Soc. 124, 4548-4549.]); Lopez-Alvarado et al. (2002[Lopez-Alvarado, P., Garcia-Granda, S., Alvarez-Rua, C. & Avendano, C. (2002). Eur. J. Org. Chem. pp. 1702-1707.]). For a related structure with a cyclo­hexa­none ring, see: Shallard-Brown et al. (2005[Shallard-Brown, H. A., Watkin, D. J. & Cowley, A. R. (2005). Acta Cryst. E61, o2424-o2425.]). For the synthesis, see: Tomizawa et al. (2009[Tomizawa, M., Shibuya, M. & Iwabuchi, Y. (2009). Org. Lett. 11, 1829-1831.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22O4

  • Mr = 302.36

  • Orthorhombic, P 21 21 21

  • a = 9.1465 (3) Å

  • b = 10.0346 (4) Å

  • c = 16.6469 (6) Å

  • V = 1527.88 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.29 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.962

  • 12383 measured reflections

  • 1734 independent reflections

  • 1560 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.03

  • 1734 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.86 (4) 2.03 (4) 2.857 (3) 163 (3)
C16—H16⋯O3ii 0.93 2.59 3.473 (4) 159
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-(Hydroxyphenylmethyl)-7,7-ethylenedioxybicyclo[3.3.1]nonan-3-one is a key intermediate of the known asymmetrical catalysis of adamantane derivatives that is used in kinetic resolution of secondary alcohols (Tomizawa et al., 2009). Recently. it was synthesized in our lab and the structure was determined.

In the compound (Fig. 1), the C1/C4 cyclohexyl ring adopts a normal chair conformation. The O1/O2 dioxolane ring is almost planar, with a maximum deviation 0.086 (4) Å at the O2 atom. Atoms C3, C7, C8, C9, C5 and O3 are arranged roughly on a plane, with the maximum deviation 0.171 (4) Å at C7 atom. Therefore, the C4/C8 cyclohexanone ring adopts a half-chair conformation, which is different from most known condensed cyclohexanone ring that is part of the complex structure (Lopez-Alvarado et al., 2002; Li et al., 2002), and from free cyclohexanone in solid state (Shallard-Brown et al., 2005).

In the crystal, molecules are linked by O4—H4···O3i hydrogen bonds (Fig. 2 and Table 1) to form chiral chains. In addition, C—H···O hydrogen bonds help the stability of the crystal. No ππ packing and C—H···π contacts are observed.

Related literature top

For related structures having condensed cyclohexanone rings, see: Li et al. (2002); Lopez-Alvarado et al. (2002). For a related structure with a cyclohexanone ring, see: Shallard-Brown et al. (2005). For the synthesis, see: Tomizawa et al. (2009).

Experimental top

2-(Hydroxyphenylmethyl)-7,7-ethylenedioxybicyclo[3.3.1]nonan-3-one was synthesized through a known procedure (Tomizawa et al., 2009) and obtained as a white solid in a yield of 61% and a purity of 96%. Single crystals were obtained by recrystalization from anhydrous ethanol. MS (ESI) 325.1 (M+Na+) m/z.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and was refined freely. Other H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances 0.93 Å for phenyl, 0.97 Å for methylene and 0.98 Å for methine with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels, showing 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down along the a axis. O—H···O hydrogen bonds are shown by thin dashed lines.
7,7-[Ethane-1,2-diylbis(oxy)]-2-[hydroxy(phenyl)methyl]bicyclo[3.3.1]nonan-3-one top
Crystal data top
C18H22O4Dx = 1.314 Mg m3
Mr = 302.36Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1165 reflections
a = 9.1465 (3) Åθ = 2.4–24.4°
b = 10.0346 (4) ŵ = 0.09 mm1
c = 16.6469 (6) ÅT = 293 K
V = 1527.88 (10) Å3Prism, colorless
Z = 40.35 × 0.30 × 0.29 mm
F(000) = 648
Data collection top
Bruker SMART CCD area detector
diffractometer
1734 independent reflections
Radiation source: fine-focus sealed tube1560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1011
Tmin = 0.951, Tmax = 0.962k = 1212
12383 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.4409P]
where P = (Fo2 + 2Fc2)/3
1734 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H22O4V = 1527.88 (10) Å3
Mr = 302.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.1465 (3) ŵ = 0.09 mm1
b = 10.0346 (4) ÅT = 293 K
c = 16.6469 (6) Å0.35 × 0.30 × 0.29 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1734 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1560 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.962Rint = 0.026
12383 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
1734 reflectionsΔρmin = 0.17 e Å3
203 parameters
Special details top

Experimental. IR (KBr) 3488, 2929, 2901, 2875, 1685, 1455, 1332, 1268, 1215, 1145, 1094, 1072, 1044, 1024, 948, 715 cm-1. 1NMR (CDCl3) 7.28–7.39 (m, 5H), 4.68–4.70(m, 1H), 3.92–3.95(m, 2H), 3.89 (d, J = 1.5 Hz, 1H), 3.80–3.87 (m, 2H), 2.59–2.63 (m, 2H), 2.51–2.55 (m, 2H), 1.96 (s, 1H), 1.80–1.83 (m, 3H), 1.64–1.67 (m, 1H), 1.52–1.57 (m, 2H) p.p.m.. 13CNMR (CDCl3) 213.2, 141.3, 128.6, 128.2, 127.1, 107.3, 74.6, 64.4, 63.4, 60.1, 45.1, 41.0, 40.1, 30.5, 29.2, 28.4 p.p.m..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6491 (3)0.0825 (2)0.69986 (12)0.0753 (7)
O20.5859 (3)0.1011 (2)0.62676 (11)0.0652 (6)
O30.4901 (2)0.27188 (15)0.47755 (10)0.0465 (5)
O40.1336 (2)0.00830 (19)0.44707 (11)0.0497 (5)
C10.6058 (3)0.0396 (3)0.62152 (15)0.0506 (7)
C20.7289 (3)0.0663 (3)0.56347 (16)0.0496 (7)
H2A0.80890.00590.57520.060*
H2B0.76400.15650.57170.060*
C30.6849 (3)0.0497 (3)0.47526 (15)0.0454 (6)
H30.76580.08220.44200.054*
C40.5513 (3)0.1339 (3)0.45651 (16)0.0484 (6)
H4A0.52620.12530.40010.058*
H4B0.57200.22690.46750.058*
C50.4239 (3)0.0869 (2)0.50846 (16)0.0428 (6)
H50.33920.14330.49650.051*
C60.4659 (3)0.1088 (3)0.59727 (17)0.0550 (7)
H6A0.47640.20370.60690.066*
H6B0.38690.07670.63100.066*
C70.6542 (3)0.0947 (3)0.45113 (15)0.0431 (6)
H7A0.66180.10100.39310.052*
H7B0.73050.15030.47380.052*
C80.5093 (3)0.1518 (2)0.47572 (13)0.0351 (5)
C90.3807 (3)0.0595 (2)0.49186 (13)0.0340 (5)
H90.33540.09190.54150.041*
C100.6360 (6)0.0235 (4)0.75276 (19)0.0986 (15)
H10A0.56870.00130.79580.118*
H10B0.73030.04480.77620.118*
C110.5806 (4)0.1374 (4)0.70659 (17)0.0695 (10)
H11A0.64070.21550.71600.083*
H11B0.48090.15780.72220.083*
C120.2635 (2)0.0783 (2)0.42468 (14)0.0361 (5)
H120.23950.17340.42200.043*
C130.3099 (2)0.0343 (2)0.34160 (13)0.0351 (5)
C140.3927 (3)0.1185 (3)0.29428 (14)0.0445 (6)
H140.41690.20280.31330.053*
C150.4402 (3)0.0792 (3)0.21877 (16)0.0559 (7)
H150.49650.13690.18780.067*
C160.4044 (3)0.0444 (3)0.18965 (17)0.0598 (8)
H160.43620.07090.13910.072*
C170.3212 (3)0.1284 (3)0.23589 (17)0.0541 (7)
H170.29680.21230.21630.065*
C180.2731 (3)0.0903 (3)0.31126 (15)0.0437 (6)
H180.21610.14810.34170.052*
H40.078 (4)0.061 (4)0.474 (2)0.085 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1027 (18)0.0848 (16)0.0384 (10)0.0320 (15)0.0114 (11)0.0115 (11)
O20.1016 (17)0.0530 (12)0.0411 (10)0.0264 (12)0.0194 (11)0.0094 (9)
O30.0556 (11)0.0299 (9)0.0539 (10)0.0049 (8)0.0135 (9)0.0010 (8)
O40.0375 (9)0.0539 (12)0.0576 (11)0.0058 (9)0.0073 (9)0.0130 (9)
C10.0665 (18)0.0489 (15)0.0363 (12)0.0176 (14)0.0052 (12)0.0066 (11)
C20.0489 (15)0.0500 (15)0.0500 (14)0.0117 (13)0.0108 (12)0.0009 (12)
C30.0436 (13)0.0515 (15)0.0411 (12)0.0118 (12)0.0011 (11)0.0048 (12)
C40.0596 (15)0.0357 (13)0.0499 (14)0.0120 (12)0.0102 (12)0.0089 (11)
C50.0437 (13)0.0309 (12)0.0538 (14)0.0018 (11)0.0048 (11)0.0021 (11)
C60.0579 (17)0.0506 (16)0.0564 (16)0.0087 (14)0.0072 (13)0.0189 (13)
C70.0390 (13)0.0511 (15)0.0391 (12)0.0030 (12)0.0009 (10)0.0044 (11)
C80.0421 (12)0.0352 (12)0.0281 (10)0.0014 (10)0.0074 (10)0.0013 (9)
C90.0390 (12)0.0311 (11)0.0320 (10)0.0010 (10)0.0005 (9)0.0025 (9)
C100.128 (4)0.126 (4)0.0412 (16)0.041 (3)0.009 (2)0.002 (2)
C110.082 (2)0.079 (2)0.0473 (16)0.022 (2)0.0053 (16)0.0114 (16)
C120.0329 (12)0.0333 (12)0.0422 (12)0.0030 (10)0.0008 (10)0.0050 (10)
C130.0329 (12)0.0359 (12)0.0365 (11)0.0049 (10)0.0065 (9)0.0017 (10)
C140.0470 (14)0.0447 (14)0.0420 (12)0.0035 (12)0.0029 (11)0.0007 (11)
C150.0582 (17)0.0692 (19)0.0403 (14)0.0010 (16)0.0036 (12)0.0045 (14)
C160.0600 (18)0.080 (2)0.0393 (13)0.0102 (17)0.0024 (13)0.0139 (15)
C170.0601 (17)0.0504 (16)0.0518 (15)0.0063 (14)0.0077 (13)0.0182 (13)
C180.0473 (14)0.0395 (13)0.0445 (13)0.0006 (11)0.0043 (11)0.0046 (11)
Geometric parameters (Å, º) top
O1—C101.386 (4)C7—H7A0.9700
O1—C11.429 (3)C7—H7B0.9700
O2—C111.379 (3)C8—C91.521 (3)
O2—C11.425 (3)C9—C121.561 (3)
O3—C81.218 (3)C9—H90.9800
O4—C121.430 (3)C10—C111.467 (5)
O4—H40.86 (4)C10—H10A0.9700
C1—C21.508 (4)C10—H10B0.9700
C1—C61.511 (4)C11—H11A0.9700
C2—C31.532 (4)C11—H11B0.9700
C2—H2A0.9700C12—C131.513 (3)
C2—H2B0.9700C12—H120.9800
C3—C41.518 (4)C13—C141.381 (3)
C3—C71.529 (4)C13—C181.390 (3)
C3—H30.9800C14—C151.387 (4)
C4—C51.526 (4)C14—H140.9300
C4—H4A0.9700C15—C161.371 (4)
C4—H4B0.9700C15—H150.9300
C5—C61.543 (4)C16—C171.372 (4)
C5—C91.546 (3)C16—H160.9300
C5—H50.9800C17—C181.384 (4)
C6—H6A0.9700C17—H170.9300
C6—H6B0.9700C18—H180.9300
C7—C81.500 (3)
C10—O1—C1108.9 (2)O3—C8—C7120.8 (2)
C11—O2—C1109.0 (2)O3—C8—C9119.1 (2)
C12—O4—H4109 (2)C7—C8—C9119.91 (19)
O2—C1—O1106.1 (2)C8—C9—C5114.35 (19)
O2—C1—C2108.1 (2)C8—C9—C12109.31 (18)
O1—C1—C2108.9 (2)C5—C9—C12114.77 (18)
O2—C1—C6111.3 (2)C8—C9—H9105.9
O1—C1—C6109.9 (2)C5—C9—H9105.9
C2—C1—C6112.3 (2)C12—C9—H9105.9
C1—C2—C3113.5 (2)O1—C10—C11107.1 (3)
C1—C2—H2A108.9O1—C10—H10A110.3
C3—C2—H2A108.9C11—C10—H10A110.3
C1—C2—H2B108.9O1—C10—H10B110.3
C3—C2—H2B108.9C11—C10—H10B110.3
H2A—C2—H2B107.7H10A—C10—H10B108.5
C4—C3—C7109.0 (2)O2—C11—C10106.7 (3)
C4—C3—C2110.3 (2)O2—C11—H11A110.4
C7—C3—C2113.8 (2)C10—C11—H11A110.4
C4—C3—H3107.8O2—C11—H11B110.4
C7—C3—H3107.8C10—C11—H11B110.4
C2—C3—H3107.8H11A—C11—H11B108.6
C3—C4—C5109.0 (2)O4—C12—C13109.15 (19)
C3—C4—H4A109.9O4—C12—C9108.93 (19)
C5—C4—H4A109.9C13—C12—C9115.27 (18)
C3—C4—H4B109.9O4—C12—H12107.7
C5—C4—H4B109.9C13—C12—H12107.7
H4A—C4—H4B108.3C9—C12—H12107.7
C4—C5—C6108.0 (2)C14—C13—C18118.4 (2)
C4—C5—C9112.8 (2)C14—C13—C12119.8 (2)
C6—C5—C9111.7 (2)C18—C13—C12121.8 (2)
C4—C5—H5108.1C13—C14—C15121.0 (3)
C6—C5—H5108.1C13—C14—H14119.5
C9—C5—H5108.1C15—C14—H14119.5
C1—C6—C5113.7 (2)C16—C15—C14120.1 (3)
C1—C6—H6A108.8C16—C15—H15119.9
C5—C6—H6A108.8C14—C15—H15119.9
C1—C6—H6B108.8C15—C16—C17119.4 (3)
C5—C6—H6B108.8C15—C16—H16120.3
H6A—C6—H6B107.7C17—C16—H16120.3
C8—C7—C3116.9 (2)C16—C17—C18121.0 (3)
C8—C7—H7A108.1C16—C17—H17119.5
C3—C7—H7A108.1C18—C17—H17119.5
C8—C7—H7B108.1C17—C18—C13120.1 (3)
C3—C7—H7B108.1C17—C18—H18119.9
H7A—C7—H7B107.3C13—C18—H18119.9
C11—O2—C1—O114.4 (4)O3—C8—C9—C1264.0 (3)
C11—O2—C1—C2131.1 (3)C7—C8—C9—C12110.9 (2)
C11—O2—C1—C6105.2 (3)C4—C5—C9—C837.9 (3)
C10—O1—C1—O28.1 (4)C6—C5—C9—C883.9 (3)
C10—O1—C1—C2124.2 (3)C4—C5—C9—C1289.6 (2)
C10—O1—C1—C6112.4 (3)C6—C5—C9—C12148.6 (2)
O2—C1—C2—C376.3 (3)C1—O1—C10—C110.8 (5)
O1—C1—C2—C3168.8 (2)C1—O2—C11—C1014.8 (4)
C6—C1—C2—C346.9 (3)O1—C10—C11—O29.6 (5)
C1—C2—C3—C453.7 (3)C8—C9—C12—O4170.56 (19)
C1—C2—C3—C769.2 (3)C5—C9—C12—O459.4 (3)
C7—C3—C4—C564.1 (3)C8—C9—C12—C1366.4 (2)
C2—C3—C4—C561.5 (3)C5—C9—C12—C1363.6 (3)
C3—C4—C5—C662.2 (3)O4—C12—C13—C14154.8 (2)
C3—C4—C5—C961.7 (3)C9—C12—C13—C1482.3 (3)
O2—C1—C6—C572.3 (3)O4—C12—C13—C1826.0 (3)
O1—C1—C6—C5170.5 (2)C9—C12—C13—C1896.9 (3)
C2—C1—C6—C549.1 (3)C18—C13—C14—C151.1 (4)
C4—C5—C6—C156.8 (3)C12—C13—C14—C15178.2 (2)
C9—C5—C6—C167.8 (3)C13—C14—C15—C160.5 (4)
C4—C3—C7—C845.7 (3)C14—C15—C16—C170.0 (4)
C2—C3—C7—C877.9 (3)C15—C16—C17—C180.0 (4)
C3—C7—C8—O3161.2 (2)C16—C17—C18—C130.6 (4)
C3—C7—C8—C924.0 (3)C14—C13—C18—C171.1 (4)
O3—C8—C9—C5165.8 (2)C12—C13—C18—C17178.1 (2)
C7—C8—C9—C519.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.86 (4)2.03 (4)2.857 (3)163 (3)
C16—H16···O3ii0.932.593.473 (4)159
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.86 (4)2.03 (4)2.857 (3)163 (3)
C16—H16···O3ii0.932.593.473 (4)159
Symmetry codes: (i) x1/2, y1/2, z+1; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 21206147, 21376224).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, W., LaCour, T. G. & Fuchs, P. L. (2002). J. Am. Chem. Soc. 124, 4548–4549.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLopez-Alvarado, P., Garcia-Granda, S., Alvarez-Rua, C. & Avendano, C. (2002). Eur. J. Org. Chem. pp. 1702–1707.  Google Scholar
First citationShallard-Brown, H. A., Watkin, D. J. & Cowley, A. R. (2005). Acta Cryst. E61, o2424–o2425.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomizawa, M., Shibuya, M. & Iwabuchi, Y. (2009). Org. Lett. 11, 1829–1831.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds