organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o657-o658

9-Amino­acridin-10-ium 4-amino­benzo­ate dihydrate

aDepartment of Chemistry, Roever College of Engineering and Technology, Elambalur, Perambalur 621 212, Tamil Nadu, India, bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, St.Josephs College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: chemdhanabalan@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 24 March 2014; accepted 6 May 2014; online 17 May 2014)

The asymmetric unit of the title hydrated salt, C13H11N2+·C7H6NO2·2H2O, consists of two independent 9-amino­acridinium cations, two 4-amino­benzoate anions and four water mol­ecules. Both 9-amino­acridinium cations are essentially planar, with maximum deviations of 0.034 (1) and 0.025 (2) Å, and are protonated at the pyridine N atoms. The 4-amino­benzoate anions are approximately planar, with dihedral angles of 9.16 (19) and 5.4 (2)° between the benzene ring and the carboxyl­ate group. In the crystal, the two independent anions are connected by N—H⋯O hydrogen bonds, forming a layer parallel to (100). The layers are connected through the cations by N—H⋯N and N—H⋯O hydrogen bonds. The water mol­ecules, which form O—H⋯O hydrogen-bonded chains along the b-axis direction, connect the anions and the cations by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds. The crystal structure also features ππ inter­actions [centroid–centroid distances = 3.6343 (9)–3.8366 (10) Å] and a C—H⋯π inter­action.

Related literature

For background to and the biological activity of acridine derivatives, see: Shubber et al. (1986[Shubber, E. K., Jacobson-Kram, D. & Williams, J. R. (1986). Cell Biol. Toxicol. 3, 379-399.]); Sondhi et al. (2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]); Salamanca & Khalil (2005[Salamanca, D. A. & Khalil, R. A. (2005). Biochem. Pharmacol. 70, 1537-1547.]). For related structures, see: Aghabozorg et al. (2010[Aghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318-m1319.]); Mei & Wolf (2004[Mei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099-1103.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11N2+·C7H6NO2·2H2O

  • Mr = 367.40

  • Monoclinic, P 21 /c

  • a = 25.6891 (9) Å

  • b = 7.2800 (2) Å

  • c = 21.6485 (6) Å

  • β = 114.865 (1)°

  • V = 3673.32 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.64 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.990

  • 39382 measured reflections

  • 10114 independent reflections

  • 7214 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.128

  • S = 1.04

  • 10114 reflections

  • 559 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg13 is the centroid of the C1A–C6A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3W 0.84 (3) 1.92 (3) 2.758 (2) 179 (5)
O1W—H2W1⋯O1B 0.86 (3) 1.90 (3) 2.767 (2) 177 (2)
O2W—H1W2⋯O2Ai 0.88 (3) 1.92 (3) 2.8066 (19) 176 (3)
O3W—H2W3⋯O1Wi 0.96 (3) 1.72 (3) 2.676 (2) 174 (2)
O3W—H1W3⋯O2Bii 0.90 (3) 1.79 (3) 2.674 (2) 166 (3)
O4W—H2W4⋯O1A 0.87 (3) 1.84 (3) 2.688 (2) 164 (3)
N1A—H1NA⋯O2Bi 0.92 (2) 2.09 (2) 2.946 (2) 156.0 (19)
N1A—H2NA⋯O1Biii 0.92 (3) 2.12 (3) 2.983 (2) 158 (2)
N2A—H3NA⋯O2Ai 0.90 (2) 1.98 (2) 2.882 (2) 173 (2)
N2B—H3NB⋯O1Biv 0.98 (2) 1.93 (2) 2.8695 (18) 160 (2)
N3A—H4NA⋯O4Wv 0.93 (2) 1.93 (2) 2.8227 (19) 161.6 (18)
N3A—H5NA⋯N1Bvi 0.91 (2) 2.20 (2) 3.031 (2) 151.4 (18)
N3B—H5NB⋯O3W 0.90 (2) 1.94 (2) 2.819 (2) 165 (2)
N3B—H4NB⋯N1Ai 1.00 (3) 2.16 (2) 3.067 (2) 151.3 (19)
C12A—H12A⋯O4Wv 0.95 2.55 3.4756 (19) 164
C16B—H16B⋯O3W 0.95 2.51 3.438 (2) 164
C11A—H11ACg13iv 0.95 2.95 3.6659 (19) 133
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-Aminoacridine (9-AA) and its derivatives present a very interesting object of research. This group of compounds exhibits a wide spectrum of biological activities: antibacterial, mutagenic, antitumor and antiinflammatory (Shubber et al., 1986; Sondhi et al., 2006; Salamanca & Khalil, 2005) In the viewpoint of crystal engineering, acridine and its 9-amino derivative are very interesting because of their capability for hydrogen bonding via N atom of the ring and ππ stacking since they possess three rings (Aghabozorg et al., 2010; Mei & Wolf, 2004). In order to study potential hydrogen bonding interactions the crystal structure determination of the title compound (I) was carried out.

The asymmetric unit of the title salt contains two 9-aminoacridinium cations (A and B), two 4-aminobenzoate anions (A and B) and four water molecules (Fig. 1). Each 9-aminoaciridinium cation is essentially planar, with a maximum deviation of 0.034 (1) Å for atom C9A (molecule A) and 0.025 (2) Å for atom C11B (molecule B). The protonation of atoms N2A and N2B lead to a slight increase in C8A—N2A—C20A [122.22 (14)°] and C8B—N2B—C20B [121.86 (14)°] angles. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the cations and anions are linked by N1A—H1NA···O2Bi, N1A—H2NA···01Bii, N3A—H5NA···N1Biv, N3B—H4NB···N1Ai, N2A—H3NA···O2Ai and N2B—H3NB···O1Bv hydrogen bonds (symmetry code in Table 1). In addition, the water molecules are connected via O1W—H1W1···O3W and O3W—H2W3···O1Wi hydrogen bonds to form a one-dimensional supramolecular chain along the b-axis. Furthermore, the chains formed by water molecules and the ions [cations (A & B) and anions (A & B)] are connected via O1W—H2W1···O1B, O4W—H2W4···O1A, N3B—H5NB···O3W, N3A—H4NA···O4Wiii, O2W—H1W2···O2Ai, O3W—H1W3···O2Bvi, C16A—H16B···O3W and C12A—H12A···O4Wiii hydrogen bonds (symmetry code in Table 1), forming a three-dimensional supramolecular network. Further, the cations (A & B) can establish several ππ interactions, with centroid···centroid distances in the range from 3.6343 (9) to 3.8366 (10) Å (Cg1–Cg3 = 3.6343 (9) Å, Cg1=N2A/C8A/C20A/C13A–C15A and Cg3 = C15A–C20A; Cg1–Cg1 = 3.7520 (9) Å; Cg2–Cg3 = 3.7822 (10) Å, Cg2 = C8A–C13A; Cg7–Cg7 = 3.7441 (9) Å, Cg7 = N2B/C8B/C20B/C13B–C15B; Cg7–Cg9 = 3.7434 (10) Å, Cg9 = C15B–C20B; Cg8–Cg9 = 3.8193 (10) Å, Cg8 = C8B–C13B; Cg7–Cg8 = 3.8366 (10) Å) and C—H···π interactions (Table 1) involving the C1A–C6A (centroid Cg13) ring.

Related literature top

For background to and the biological activity of acridine derivatives, see: Shubber et al. (1986); Sondhi et al. (2006); Salamanca & Khalil (2005). For related structures, see: Aghabozorg et al. (2010); Mei & Wolf (2004). For bond-length data, see: Allen et al. (1987). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 9-aminoacridine (48 mg, Aldrich) and 4-aminobenzoic acid (34 mg, Loba) was warmed for a half an hour over a water bath. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

O- and N-bound H atoms were located in a difference Fourier maps and were refined freely, except for atom H5NB which was refined with a bond length restraint N—H = 0.87 (1) Å [refined distances: O—H = 0.84 (3)–0.96 (3) Å and N—H = 0.86 (2)–0.99 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.95 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
9-Aminoacridin-10-ium 4-aminobenzoate dihydrate top
Crystal data top
C13H11N2+·C7H6NO2·2H2OF(000) = 1552
Mr = 367.40Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 25.6891 (9) Åθ = 2.6–30.0°
b = 7.2800 (2) ŵ = 0.09 mm1
c = 21.6485 (6) ÅT = 100 K
β = 114.865 (1)°Needle, yellow
V = 3673.32 (19) Å30.64 × 0.14 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10114 independent reflections
Radiation source: fine-focus sealed tube7214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3435
Tmin = 0.942, Tmax = 0.990k = 1010
39382 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.9401P]
where P = (Fo2 + 2Fc2)/3
10114 reflections(Δ/σ)max = 0.001
559 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C13H11N2+·C7H6NO2·2H2OV = 3673.32 (19) Å3
Mr = 367.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 25.6891 (9) ŵ = 0.09 mm1
b = 7.2800 (2) ÅT = 100 K
c = 21.6485 (6) Å0.64 × 0.14 × 0.11 mm
β = 114.865 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7214 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.990Rint = 0.047
39382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
10114 reflectionsΔρmin = 0.25 e Å3
559 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.86360 (5)0.58428 (18)0.11715 (7)0.0268 (3)
O2A0.87227 (5)0.88589 (17)0.10751 (6)0.0222 (3)
N1A0.67465 (6)0.8427 (2)0.21685 (8)0.0242 (3)
N2A0.05332 (5)0.2784 (2)0.45535 (7)0.0180 (3)
N3A0.04990 (6)0.2128 (2)0.55740 (7)0.0199 (3)
C1A0.72048 (6)0.8241 (2)0.19910 (8)0.0199 (3)
C2A0.74005 (7)0.9733 (3)0.17409 (9)0.0235 (4)
H2AA0.72431.09190.17320.028*
C3A0.78230 (7)0.9496 (3)0.15049 (9)0.0222 (4)
H3AA0.79541.05290.13420.027*
C4A0.80575 (6)0.7776 (2)0.15040 (8)0.0182 (3)
C5A0.78674 (6)0.6297 (2)0.17669 (8)0.0193 (3)
H5AA0.80250.51120.17760.023*
C6A0.74549 (6)0.6517 (2)0.20143 (8)0.0195 (3)
H6AA0.73410.54950.22010.023*
C7A0.85012 (6)0.7471 (2)0.12315 (8)0.0193 (3)
C8A0.07687 (6)0.2119 (2)0.52023 (8)0.0169 (3)
C9A0.13552 (7)0.1634 (2)0.55063 (9)0.0214 (3)
H9AA0.15790.17340.52530.026*
C10A0.16021 (7)0.1021 (3)0.61654 (9)0.0239 (4)
H10A0.19980.07170.63680.029*
C11A0.12751 (7)0.0835 (3)0.65452 (9)0.0226 (4)
H11A0.14520.04250.70040.027*
C12A0.07030 (7)0.1245 (2)0.62534 (8)0.0193 (3)
H12A0.04830.10910.65090.023*
C13A0.04320 (6)0.1901 (2)0.55725 (8)0.0162 (3)
C14A0.01692 (6)0.2343 (2)0.52463 (8)0.0166 (3)
C15A0.04016 (6)0.3026 (2)0.45590 (8)0.0167 (3)
C16A0.09877 (6)0.3509 (2)0.41950 (8)0.0195 (3)
H16A0.12420.33810.44090.023*
C17A0.11937 (7)0.4155 (2)0.35427 (8)0.0217 (3)
H17A0.15870.44800.33080.026*
C18A0.08208 (7)0.4338 (3)0.32192 (8)0.0229 (4)
H18A0.09660.47770.27640.028*
C19A0.02525 (7)0.3891 (2)0.35517 (8)0.0208 (3)
H19A0.00050.40280.33290.025*
C20A0.00344 (6)0.3226 (2)0.42261 (8)0.0171 (3)
O1B0.37845 (5)0.68571 (17)0.26050 (6)0.0230 (3)
O2B0.36397 (5)0.98772 (18)0.25207 (6)0.0261 (3)
N1B0.17296 (6)0.7568 (2)0.03882 (8)0.0229 (3)
N2B0.54393 (6)0.2571 (2)0.59970 (7)0.0202 (3)
N3B0.44631 (6)0.2602 (2)0.39185 (7)0.0220 (3)
C1B0.21918 (6)0.7727 (2)0.02383 (8)0.0194 (3)
C2B0.23209 (7)0.9435 (3)0.05693 (9)0.0245 (4)
H2BA0.21121.04940.03430.029*
C3B0.27492 (7)0.9592 (3)0.12218 (9)0.0239 (4)
H3BA0.28301.07610.14370.029*
C4B0.30656 (6)0.8068 (2)0.15708 (8)0.0190 (3)
C5B0.29449 (6)0.6376 (2)0.12345 (8)0.0190 (3)
H5BA0.31580.53210.14600.023*
C6B0.25205 (7)0.6210 (2)0.05779 (9)0.0203 (3)
H6BA0.24520.50510.03560.024*
C7B0.35265 (6)0.8283 (2)0.22785 (8)0.0197 (3)
C8B0.48841 (7)0.3151 (2)0.57499 (8)0.0198 (3)
C9B0.46617 (7)0.3731 (3)0.62140 (9)0.0239 (4)
H9BA0.48990.37290.66890.029*
C10B0.41040 (7)0.4296 (3)0.59768 (9)0.0260 (4)
H10B0.39560.46750.62910.031*
C11B0.37436 (7)0.4325 (3)0.52712 (9)0.0227 (4)
H11B0.33560.47200.51130.027*
C12B0.39578 (7)0.3779 (2)0.48192 (9)0.0225 (4)
H12B0.37160.38080.43450.027*
C13B0.45352 (6)0.3169 (2)0.50437 (8)0.0193 (3)
C14B0.47737 (6)0.2568 (2)0.45815 (8)0.0173 (3)
C15B0.53592 (6)0.1946 (2)0.48670 (8)0.0161 (3)
C16B0.56309 (7)0.1301 (2)0.44572 (8)0.0204 (3)
H16B0.54220.12780.39760.025*
C17B0.61859 (7)0.0714 (3)0.47412 (9)0.0238 (4)
H17B0.63600.02850.44590.029*
C18B0.64998 (7)0.0744 (3)0.54509 (9)0.0246 (4)
H18B0.68880.03440.56460.030*
C19B0.62536 (7)0.1343 (2)0.58664 (9)0.0225 (4)
H19B0.64680.13400.63470.027*
C20B0.56781 (6)0.1966 (2)0.55777 (8)0.0176 (3)
O1W0.43871 (6)0.4726 (2)0.20699 (7)0.0283 (3)
O2W0.06211 (6)0.5855 (2)0.27425 (7)0.0285 (3)
O3W0.46498 (6)0.14630 (19)0.27833 (6)0.0279 (3)
O4W0.96560 (6)0.42092 (19)0.18638 (7)0.0246 (3)
H1NA0.6681 (9)0.745 (3)0.2392 (11)0.034 (6)*
H2NA0.6685 (9)0.956 (4)0.2310 (11)0.043 (7)*
H3NA0.0766 (9)0.302 (3)0.4345 (10)0.033 (5)*
H4NA0.0364 (9)0.170 (3)0.6019 (11)0.037 (6)*
H5NA0.0885 (9)0.234 (3)0.5365 (10)0.030 (5)*
H1NB0.1604 (9)0.851 (3)0.0650 (11)0.035 (6)*
H2NB0.1705 (9)0.659 (3)0.0644 (11)0.038 (6)*
H3NB0.5628 (10)0.266 (3)0.6495 (12)0.051 (7)*
H4NB0.4051 (10)0.296 (3)0.3709 (11)0.044 (6)*
H5NB0.4588 (9)0.224 (3)0.3608 (9)0.041 (6)*
H1W10.4462 (11)0.373 (4)0.2282 (13)0.053 (8)*
H2W10.4187 (11)0.536 (4)0.2230 (13)0.055 (8)*
H1W20.0841 (11)0.525 (4)0.3115 (14)0.060 (8)*
H2W20.0538 (11)0.692 (4)0.2861 (13)0.055 (8)*
H1W30.4345 (12)0.077 (4)0.2731 (14)0.073 (9)*
H2W30.4977 (11)0.079 (4)0.2807 (12)0.052 (7)*
H1W40.9960 (10)0.486 (4)0.2157 (12)0.048 (7)*
H2W40.9360 (11)0.492 (4)0.1677 (12)0.050 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0245 (6)0.0221 (7)0.0370 (7)0.0003 (5)0.0161 (5)0.0081 (6)
O2A0.0229 (5)0.0225 (7)0.0252 (6)0.0014 (5)0.0140 (5)0.0016 (5)
N1A0.0249 (7)0.0214 (9)0.0320 (8)0.0004 (6)0.0176 (6)0.0004 (7)
N2A0.0198 (6)0.0182 (8)0.0200 (7)0.0004 (5)0.0124 (6)0.0002 (5)
N3A0.0181 (6)0.0240 (8)0.0192 (7)0.0002 (5)0.0093 (6)0.0018 (6)
C1A0.0162 (7)0.0235 (9)0.0186 (8)0.0002 (6)0.0059 (6)0.0001 (7)
C2A0.0243 (8)0.0178 (9)0.0309 (9)0.0042 (7)0.0141 (7)0.0020 (7)
C3A0.0233 (8)0.0199 (9)0.0260 (9)0.0005 (7)0.0128 (7)0.0033 (7)
C4A0.0158 (7)0.0203 (9)0.0177 (8)0.0000 (6)0.0064 (6)0.0024 (6)
C5A0.0163 (7)0.0168 (9)0.0207 (8)0.0011 (6)0.0036 (6)0.0022 (6)
C6A0.0177 (7)0.0176 (9)0.0215 (8)0.0022 (6)0.0064 (6)0.0005 (7)
C7A0.0157 (7)0.0239 (10)0.0160 (8)0.0005 (6)0.0045 (6)0.0035 (7)
C8A0.0192 (7)0.0134 (8)0.0191 (8)0.0001 (6)0.0091 (6)0.0016 (6)
C9A0.0195 (7)0.0208 (9)0.0278 (9)0.0012 (6)0.0139 (7)0.0009 (7)
C10A0.0184 (7)0.0256 (10)0.0270 (9)0.0041 (7)0.0089 (7)0.0003 (7)
C11A0.0249 (8)0.0223 (10)0.0191 (8)0.0031 (7)0.0078 (7)0.0012 (7)
C12A0.0229 (7)0.0180 (9)0.0196 (8)0.0001 (6)0.0115 (6)0.0002 (6)
C13A0.0188 (7)0.0126 (8)0.0188 (8)0.0004 (6)0.0094 (6)0.0024 (6)
C14A0.0200 (7)0.0117 (8)0.0204 (8)0.0020 (6)0.0107 (6)0.0034 (6)
C15A0.0199 (7)0.0122 (8)0.0189 (8)0.0007 (6)0.0090 (6)0.0019 (6)
C16A0.0191 (7)0.0182 (9)0.0230 (8)0.0012 (6)0.0107 (6)0.0021 (7)
C17A0.0208 (7)0.0217 (10)0.0207 (8)0.0013 (6)0.0069 (6)0.0012 (7)
C18A0.0284 (8)0.0227 (10)0.0168 (8)0.0008 (7)0.0086 (7)0.0007 (7)
C19A0.0258 (8)0.0190 (9)0.0211 (8)0.0009 (6)0.0133 (7)0.0013 (7)
C20A0.0203 (7)0.0135 (8)0.0193 (8)0.0016 (6)0.0101 (6)0.0022 (6)
O1B0.0241 (6)0.0221 (7)0.0224 (6)0.0018 (5)0.0094 (5)0.0003 (5)
O2B0.0246 (6)0.0209 (7)0.0302 (7)0.0014 (5)0.0089 (5)0.0067 (5)
N1B0.0218 (7)0.0222 (9)0.0235 (8)0.0007 (6)0.0084 (6)0.0014 (7)
N2B0.0231 (7)0.0204 (8)0.0160 (7)0.0007 (6)0.0072 (6)0.0002 (6)
N3B0.0188 (6)0.0276 (9)0.0182 (7)0.0006 (6)0.0063 (6)0.0009 (6)
C1B0.0154 (7)0.0233 (9)0.0221 (8)0.0014 (6)0.0105 (6)0.0002 (7)
C2B0.0245 (8)0.0179 (9)0.0296 (9)0.0019 (7)0.0098 (7)0.0005 (7)
C3B0.0242 (8)0.0178 (9)0.0288 (9)0.0012 (7)0.0103 (7)0.0046 (7)
C4B0.0171 (7)0.0194 (9)0.0233 (8)0.0024 (6)0.0112 (6)0.0019 (7)
C5B0.0181 (7)0.0180 (9)0.0232 (8)0.0005 (6)0.0107 (6)0.0008 (7)
C6B0.0208 (7)0.0171 (9)0.0281 (9)0.0035 (6)0.0152 (7)0.0044 (7)
C7B0.0175 (7)0.0218 (9)0.0238 (8)0.0009 (6)0.0127 (6)0.0021 (7)
C8B0.0241 (8)0.0141 (9)0.0229 (8)0.0028 (6)0.0115 (7)0.0003 (6)
C9B0.0275 (8)0.0246 (10)0.0199 (8)0.0012 (7)0.0103 (7)0.0004 (7)
C10B0.0274 (8)0.0259 (10)0.0285 (9)0.0002 (7)0.0154 (7)0.0017 (8)
C11B0.0199 (7)0.0226 (10)0.0262 (9)0.0025 (6)0.0104 (7)0.0013 (7)
C12B0.0208 (7)0.0214 (10)0.0227 (8)0.0012 (6)0.0067 (7)0.0012 (7)
C13B0.0169 (7)0.0149 (9)0.0258 (9)0.0012 (6)0.0087 (6)0.0009 (7)
C14B0.0183 (7)0.0131 (8)0.0175 (8)0.0036 (6)0.0045 (6)0.0018 (6)
C15B0.0168 (7)0.0133 (8)0.0173 (7)0.0008 (6)0.0063 (6)0.0022 (6)
C16B0.0230 (7)0.0202 (9)0.0193 (8)0.0020 (6)0.0099 (6)0.0007 (7)
C17B0.0228 (8)0.0239 (10)0.0294 (9)0.0007 (7)0.0156 (7)0.0019 (7)
C18B0.0154 (7)0.0244 (10)0.0322 (10)0.0019 (6)0.0082 (7)0.0042 (8)
C19B0.0197 (7)0.0226 (10)0.0189 (8)0.0009 (6)0.0021 (6)0.0027 (7)
C20B0.0185 (7)0.0147 (8)0.0184 (8)0.0024 (6)0.0065 (6)0.0007 (6)
O1W0.0313 (7)0.0254 (8)0.0297 (7)0.0064 (6)0.0143 (6)0.0006 (6)
O2W0.0336 (7)0.0227 (8)0.0252 (7)0.0030 (6)0.0085 (6)0.0018 (6)
O3W0.0266 (6)0.0280 (8)0.0281 (7)0.0028 (6)0.0104 (5)0.0018 (6)
O4W0.0265 (6)0.0227 (7)0.0247 (7)0.0024 (5)0.0110 (5)0.0016 (5)
Geometric parameters (Å, º) top
O1A—C7A1.257 (2)N1B—H2NB0.89 (2)
O2A—C7A1.273 (2)N2B—C8B1.363 (2)
N1A—C1A1.390 (2)N2B—C20B1.365 (2)
N1A—H1NA0.91 (2)N2B—H3NB0.98 (2)
N1A—H2NA0.92 (3)N3B—C14B1.317 (2)
N2A—C8A1.363 (2)N3B—H4NB0.99 (2)
N2A—C20A1.365 (2)N3B—H5NB0.898 (9)
N2A—H3NA0.90 (2)C1B—C6B1.396 (2)
N3A—C14A1.3234 (19)C1B—C2B1.404 (2)
N3A—H4NA0.93 (2)C2B—C3B1.383 (2)
N3A—H5NA0.91 (2)C2B—H2BA0.9500
C1A—C2A1.398 (2)C3B—C4B1.395 (2)
C1A—C6A1.401 (2)C3B—H3BA0.9500
C2A—C3A1.391 (2)C4B—C5B1.398 (2)
C2A—H2AA0.9500C4B—C7B1.500 (2)
C3A—C4A1.390 (2)C5B—C6B1.386 (2)
C3A—H3AA0.9500C5B—H5BA0.9500
C4A—C5A1.398 (2)C6B—H6BA0.9500
C4A—C7A1.504 (2)C8B—C13B1.410 (2)
C5A—C6A1.383 (2)C8B—C9B1.413 (2)
C5A—H5AA0.9500C9B—C10B1.366 (2)
C6A—H6AA0.9500C9B—H9BA0.9500
C8A—C9A1.412 (2)C10B—C11B1.415 (2)
C8A—C13A1.414 (2)C10B—H10B0.9500
C9A—C10A1.370 (2)C11B—C12B1.368 (2)
C9A—H9AA0.9500C11B—H11B0.9500
C10A—C11A1.407 (2)C12B—C13B1.424 (2)
C10A—H10A0.9500C12B—H12B0.9500
C11A—C12A1.367 (2)C13B—C14B1.443 (2)
C11A—H11A0.9500C14B—C15B1.438 (2)
C12A—C13A1.422 (2)C15B—C20B1.407 (2)
C12A—H12A0.9500C15B—C16B1.420 (2)
C13A—C14A1.439 (2)C16B—C17B1.362 (2)
C14A—C15A1.439 (2)C16B—H16B0.9500
C15A—C20A1.415 (2)C17B—C18B1.403 (2)
C15A—C16A1.419 (2)C17B—H17B0.9500
C16A—C17A1.366 (2)C18B—C19B1.370 (2)
C16A—H16A0.9500C18B—H18B0.9500
C17A—C18A1.411 (2)C19B—C20B1.416 (2)
C17A—H17A0.9500C19B—H19B0.9500
C18A—C19A1.368 (2)O1W—H1W10.84 (3)
C18A—H18A0.9500O1W—H2W10.87 (3)
C19A—C20A1.411 (2)O2W—H1W20.88 (3)
C19A—H19A0.9500O2W—H2W20.87 (3)
O1B—C7B1.273 (2)O3W—H1W30.90 (3)
O2B—C7B1.256 (2)O3W—H2W30.96 (3)
N1B—C1B1.381 (2)O4W—H1W40.91 (3)
N1B—H1NB0.86 (2)O4W—H2W40.87 (3)
C1A—N1A—H1NA115.8 (13)H1NB—N1B—H2NB109 (2)
C1A—N1A—H2NA117.7 (14)C8B—N2B—C20B121.86 (14)
H1NA—N1A—H2NA115.3 (19)C8B—N2B—H3NB111.3 (13)
C8A—N2A—C20A122.22 (13)C20B—N2B—H3NB126.9 (14)
C8A—N2A—H3NA118.9 (13)C14B—N3B—H4NB122.9 (13)
C20A—N2A—H3NA118.7 (13)C14B—N3B—H5NB124.5 (14)
C14A—N3A—H4NA123.4 (13)H4NB—N3B—H5NB112.5 (19)
C14A—N3A—H5NA121.4 (13)N1B—C1B—C6B122.06 (16)
H4NA—N3A—H5NA115.1 (18)N1B—C1B—C2B119.75 (16)
N1A—C1A—C2A121.01 (16)C6B—C1B—C2B118.08 (15)
N1A—C1A—C6A120.43 (16)C3B—C2B—C1B120.71 (17)
C2A—C1A—C6A118.41 (14)C3B—C2B—H2BA119.6
C3A—C2A—C1A120.60 (16)C1B—C2B—H2BA119.6
C3A—C2A—H2AA119.7C2B—C3B—C4B121.29 (17)
C1A—C2A—H2AA119.7C2B—C3B—H3BA119.4
C4A—C3A—C2A121.16 (16)C4B—C3B—H3BA119.4
C4A—C3A—H3AA119.4C3B—C4B—C5B117.89 (15)
C2A—C3A—H3AA119.4C3B—C4B—C7B120.02 (16)
C3A—C4A—C5A117.87 (14)C5B—C4B—C7B122.08 (15)
C3A—C4A—C7A122.25 (15)C6B—C5B—C4B121.15 (16)
C5A—C4A—C7A119.88 (15)C6B—C5B—H5BA119.4
C6A—C5A—C4A121.61 (16)C4B—C5B—H5BA119.4
C6A—C5A—H5AA119.2C5B—C6B—C1B120.81 (16)
C4A—C5A—H5AA119.2C5B—C6B—H6BA119.6
C5A—C6A—C1A120.28 (16)C1B—C6B—H6BA119.6
C5A—C6A—H6AA119.9O2B—C7B—O1B123.11 (15)
C1A—C6A—H6AA119.9O2B—C7B—C4B117.87 (15)
O1A—C7A—O2A123.20 (14)O1B—C7B—C4B119.02 (15)
O1A—C7A—C4A117.83 (15)N2B—C8B—C13B120.76 (14)
O2A—C7A—C4A118.97 (15)N2B—C8B—C9B118.87 (15)
N2A—C8A—C9A119.55 (14)C13B—C8B—C9B120.36 (15)
N2A—C8A—C13A120.78 (13)C10B—C9B—C8B119.75 (16)
C9A—C8A—C13A119.67 (14)C10B—C9B—H9BA120.1
C10A—C9A—C8A120.19 (14)C8B—C9B—H9BA120.1
C10A—C9A—H9AA119.9C9B—C10B—C11B121.14 (16)
C8A—C9A—H9AA119.9C9B—C10B—H10B119.4
C9A—C10A—C11A120.74 (15)C11B—C10B—H10B119.4
C9A—C10A—H10A119.6C12B—C11B—C10B119.38 (15)
C11A—C10A—H10A119.6C12B—C11B—H11B120.3
C12A—C11A—C10A119.94 (15)C10B—C11B—H11B120.3
C12A—C11A—H11A120.0C11B—C12B—C13B121.41 (16)
C10A—C11A—H11A120.0C11B—C12B—H12B119.3
C11A—C12A—C13A121.01 (14)C13B—C12B—H12B119.3
C11A—C12A—H12A119.5C8B—C13B—C12B117.95 (15)
C13A—C12A—H12A119.5C8B—C13B—C14B119.16 (14)
C8A—C13A—C12A118.41 (14)C12B—C13B—C14B122.88 (15)
C8A—C13A—C14A118.87 (14)N3B—C14B—C15B121.28 (15)
C12A—C13A—C14A122.72 (13)N3B—C14B—C13B120.70 (14)
N3A—C14A—C15A120.96 (14)C15B—C14B—C13B118.02 (14)
N3A—C14A—C13A120.49 (14)C20B—C15B—C16B118.28 (14)
C15A—C14A—C13A118.55 (13)C20B—C15B—C14B119.32 (14)
C20A—C15A—C16A118.08 (14)C16B—C15B—C14B122.40 (14)
C20A—C15A—C14A119.11 (13)C17B—C16B—C15B121.18 (15)
C16A—C15A—C14A122.81 (14)C17B—C16B—H16B119.4
C17A—C16A—C15A121.24 (14)C15B—C16B—H16B119.4
C17A—C16A—H16A119.4C16B—C17B—C18B119.99 (15)
C15A—C16A—H16A119.4C16B—C17B—H17B120.0
C16A—C17A—C18A119.80 (15)C18B—C17B—H17B120.0
C16A—C17A—H17A120.1C19B—C18B—C17B120.81 (15)
C18A—C17A—H17A120.1C19B—C18B—H18B119.6
C19A—C18A—C17A120.89 (15)C17B—C18B—H18B119.6
C19A—C18A—H18A119.6C18B—C19B—C20B119.78 (15)
C17A—C18A—H18A119.6C18B—C19B—H19B120.1
C18A—C19A—C20A119.83 (15)C20B—C19B—H19B120.1
C18A—C19A—H19A120.1N2B—C20B—C15B120.86 (14)
C20A—C19A—H19A120.1N2B—C20B—C19B119.18 (14)
N2A—C20A—C19A119.40 (13)C15B—C20B—C19B119.96 (14)
N2A—C20A—C15A120.45 (14)H1W1—O1W—H2W1107 (2)
C19A—C20A—C15A120.15 (14)H1W2—O2W—H2W2108 (2)
C1B—N1B—H1NB120.6 (15)H1W3—O3W—H2W3114 (2)
C1B—N1B—H2NB119.1 (14)H1W4—O4W—H2W4110 (2)
N1A—C1A—C2A—C3A173.95 (16)N1B—C1B—C2B—C3B174.26 (15)
C6A—C1A—C2A—C3A1.6 (2)C6B—C1B—C2B—C3B2.1 (2)
C1A—C2A—C3A—C4A0.7 (3)C1B—C2B—C3B—C4B0.0 (3)
C2A—C3A—C4A—C5A1.9 (2)C2B—C3B—C4B—C5B1.4 (2)
C2A—C3A—C4A—C7A178.03 (15)C2B—C3B—C4B—C7B179.87 (15)
C3A—C4A—C5A—C6A0.7 (2)C3B—C4B—C5B—C6B0.7 (2)
C7A—C4A—C5A—C6A179.19 (14)C7B—C4B—C5B—C6B179.40 (14)
C4A—C5A—C6A—C1A1.6 (2)C4B—C5B—C6B—C1B1.4 (2)
N1A—C1A—C6A—C5A172.84 (15)N1B—C1B—C6B—C5B173.47 (14)
C2A—C1A—C6A—C5A2.8 (2)C2B—C1B—C6B—C5B2.8 (2)
C3A—C4A—C7A—O1A171.22 (15)C3B—C4B—C7B—O2B4.6 (2)
C5A—C4A—C7A—O1A8.7 (2)C5B—C4B—C7B—O2B174.05 (14)
C3A—C4A—C7A—O2A9.0 (2)C3B—C4B—C7B—O1B175.43 (14)
C5A—C4A—C7A—O2A171.12 (14)C5B—C4B—C7B—O1B5.9 (2)
C20A—N2A—C8A—C9A178.09 (16)C20B—N2B—C8B—C13B0.8 (2)
C20A—N2A—C8A—C13A1.6 (2)C20B—N2B—C8B—C9B178.96 (16)
N2A—C8A—C9A—C10A177.90 (16)N2B—C8B—C9B—C10B179.17 (17)
C13A—C8A—C9A—C10A2.5 (3)C13B—C8B—C9B—C10B0.6 (3)
C8A—C9A—C10A—C11A1.1 (3)C8B—C9B—C10B—C11B0.5 (3)
C9A—C10A—C11A—C12A0.9 (3)C9B—C10B—C11B—C12B0.0 (3)
C10A—C11A—C12A—C13A1.4 (3)C10B—C11B—C12B—C13B0.5 (3)
N2A—C8A—C13A—C12A178.44 (15)N2B—C8B—C13B—C12B179.58 (15)
C9A—C8A—C13A—C12A1.9 (2)C9B—C8B—C13B—C12B0.2 (2)
N2A—C8A—C13A—C14A1.7 (2)N2B—C8B—C13B—C14B0.2 (2)
C9A—C8A—C13A—C14A177.91 (15)C9B—C8B—C13B—C14B179.97 (16)
C11A—C12A—C13A—C8A0.0 (2)C11B—C12B—C13B—C8B0.3 (3)
C11A—C12A—C13A—C14A179.83 (16)C11B—C12B—C13B—C14B179.42 (17)
C8A—C13A—C14A—N3A178.94 (16)C8B—C13B—C14B—N3B178.63 (16)
C12A—C13A—C14A—N3A0.9 (2)C12B—C13B—C14B—N3B1.6 (3)
C8A—C13A—C14A—C15A1.2 (2)C8B—C13B—C14B—C15B1.0 (2)
C12A—C13A—C14A—C15A178.99 (15)C12B—C13B—C14B—C15B178.80 (15)
N3A—C14A—C15A—C20A179.66 (16)N3B—C14B—C15B—C20B178.81 (16)
C13A—C14A—C15A—C20A0.5 (2)C13B—C14B—C15B—C20B0.8 (2)
N3A—C14A—C15A—C16A0.2 (2)N3B—C14B—C15B—C16B1.4 (2)
C13A—C14A—C15A—C16A179.69 (15)C13B—C14B—C15B—C16B179.00 (15)
C20A—C15A—C16A—C17A0.2 (2)C20B—C15B—C16B—C17B0.0 (2)
C14A—C15A—C16A—C17A179.94 (16)C14B—C15B—C16B—C17B179.77 (16)
C15A—C16A—C17A—C18A0.4 (3)C15B—C16B—C17B—C18B0.1 (3)
C16A—C17A—C18A—C19A0.6 (3)C16B—C17B—C18B—C19B0.6 (3)
C17A—C18A—C19A—C20A0.4 (3)C17B—C18B—C19B—C20B0.9 (3)
C8A—N2A—C20A—C19A179.39 (15)C8B—N2B—C20B—C15B1.0 (2)
C8A—N2A—C20A—C15A0.8 (2)C8B—N2B—C20B—C19B178.62 (16)
C18A—C19A—C20A—N2A179.99 (16)C16B—C15B—C20B—N2B179.97 (15)
C18A—C19A—C20A—C15A0.2 (2)C14B—C15B—C20B—N2B0.2 (2)
C16A—C15A—C20A—N2A179.90 (15)C16B—C15B—C20B—C19B0.3 (2)
C14A—C15A—C20A—N2A0.3 (2)C14B—C15B—C20B—C19B179.44 (15)
C16A—C15A—C20A—C19A0.1 (2)C18B—C19B—C20B—N2B179.56 (16)
C14A—C15A—C20A—C19A179.93 (15)C18B—C19B—C20B—C15B0.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg13 is the centroid of the C1A–C6A ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3W0.84 (3)1.92 (3)2.758 (2)179 (5)
O1W—H2W1···O1B0.86 (3)1.90 (3)2.767 (2)177 (2)
O2W—H1W2···O2Ai0.88 (3)1.92 (3)2.8066 (19)176 (3)
O3W—H2W3···O1Wi0.96 (3)1.72 (3)2.676 (2)174 (2)
O3W—H1W3···O2Bii0.90 (3)1.79 (3)2.674 (2)166 (3)
O4W—H2W4···O1A0.87 (3)1.84 (3)2.688 (2)164 (3)
N1A—H1NA···O2Bi0.92 (2)2.09 (2)2.946 (2)156.0 (19)
N1A—H2NA···O1Biii0.92 (3)2.12 (3)2.983 (2)158 (2)
N2A—H3NA···O2Ai0.90 (2)1.98 (2)2.882 (2)173 (2)
N2B—H3NB···O1Biv0.98 (2)1.93 (2)2.8695 (18)160 (2)
N3A—H4NA···O4Wv0.93 (2)1.93 (2)2.8227 (19)161.6 (18)
N3A—H5NA···N1Bvi0.91 (2)2.20 (2)3.031 (2)151.4 (18)
N3B—H5NB···O3W0.90 (2)1.94 (2)2.819 (2)165 (2)
N3B—H4NB···N1Ai1.00 (3)2.16 (2)3.067 (2)151.3 (19)
C12A—H12A···O4Wv0.952.553.4756 (19)164
C16B—H16B···O3W0.952.513.438 (2)164
C11A—H11A···Cg13iv0.952.953.6659 (19)133
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y+1/2, z+1/2; (vi) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg13 is the centroid of the C1A–C6A ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3W0.84 (3)1.92 (3)2.758 (2)179 (5)
O1W—H2W1···O1B0.86 (3)1.90 (3)2.767 (2)177 (2)
O2W—H1W2···O2Ai0.88 (3)1.92 (3)2.8066 (19)176 (3)
O3W—H2W3···O1Wi0.96 (3)1.72 (3)2.676 (2)174 (2)
O3W—H1W3···O2Bii0.90 (3)1.79 (3)2.674 (2)166 (3)
O4W—H2W4···O1A0.87 (3)1.84 (3)2.688 (2)164 (3)
N1A—H1NA···O2Bi0.92 (2)2.09 (2)2.946 (2)156.0 (19)
N1A—H2NA···O1Biii0.92 (3)2.12 (3)2.983 (2)158 (2)
N2A—H3NA···O2Ai0.90 (2)1.98 (2)2.882 (2)173 (2)
N2B—H3NB···O1Biv0.98 (2)1.93 (2)2.8695 (18)160 (2)
N3A—H4NA···O4Wv0.93 (2)1.93 (2)2.8227 (19)161.6 (18)
N3A—H5NA···N1Bvi0.91 (2)2.20 (2)3.031 (2)151.4 (18)
N3B—H5NB···O3W0.90 (2)1.94 (2)2.819 (2)165 (2)
N3B—H4NB···N1Ai1.00 (3)2.16 (2)3.067 (2)151.3 (19)
C12A—H12A···O4Wv0.952.553.4756 (19)164
C16B—H16B···O3W0.952.513.438 (2)164
C11A—H11A···Cg13iv0.952.953.6659 (19)133
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y+1/2, z+1/2; (vi) x, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant, No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318–m1319.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMei, X. & Wolf, C. (2004). Cryst. Growth Des. 4, 1099–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalamanca, D. A. & Khalil, R. A. (2005). Biochem. Pharmacol. 70, 1537–1547.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShubber, E. K., Jacobson-Kram, D. & Williams, J. R. (1986). Cell Biol. Toxicol. 3, 379–399.  CrossRef Web of Science Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o657-o658
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds