metal-organic compounds
[μ-Butane-1,4-diylbis(diphenylphosphane)-κ2P:P′]bis{[butane-1,4-diylbis(diphenylphosphane)-κ2P,P′]copper(I)} bis(hexafluoridophosphate) diethyl ether disolvate
aDepartment of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, Japan
*Correspondence e-mail: tsubomura@st.seikei.ac.jp
In the centrosymmetric dinuclear copper(I) complex cation of the title compound, [Cu2(C28H28P2)3](PF6)2·2C4H10O, the CuI atom is bonded to three P atoms of two butane-1,4-diylbis(diphenylphosphane) (dppb) ligands with a triangular coordination geometry. One of these P atoms belongs to a bridging dppb ligand [Cu—P = 2.2381 (5) Å] and two belong to a chelating dppb ligand [Cu—P = 2.2450 (6) and 2.2628 (5) Å]. The bridging dppb ligand lies on an inversion centre. In the crystal, the cation and the PF6− anion are linked by C—H⋯F interactions, forming a tape along [110]. The cation and the diethyl ether solvent molecule are also linked by a C—H⋯O interaction.
CCDC reference: 1000315
Related literature
For general background to emissive copper(I) complexes, see: McMillin & McNett (1998). For copper(I) complexes bearing dppb ligands, see: Comba et al. (1999); Kitagawa et al. (1995). For our previous work related to the photophysical properties of copper(I) complexes bearing dppb and diimine ligands, see: Saito et al. (2006).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2000); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1000315
10.1107/S1600536814009763/is5355sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009763/is5355Isup2.hkl
Under an argon atmosphere, [Cu(MeCN)4]PF6 (75 mg, 0.20 mmol) was added to dppb (82 mg, 0.30 mmol) in a 5 mL dichloromethane. The reaction mixture was stirred for 30 min at room temperature. Diethyl ether was added to the solution to precipitate the product as a white solid, which was filtered and washed with diethyl ether: yield, 126 mg (0.162 mmol, 81%). Elemental Analysis Calcd. for C84H84F12P8Cu2: C 59.47, H 4.99, found C 58.58, H 4.92. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethylether in a dichloromethane solution of the complex.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups.
Data collection: CrystalClear (Rigaku, 2000); cell
CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. ORTEP drawing of [Cu2(µ-dppb)(dppb)2](PF6)2·2Et2O, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry code (A); –x + 1, –y, –z + 1. |
[Cu2(C28H28P2)3](PF6)2·2C4H10O | Z = 1 |
Mr = 1844.61 | F(000) = 958 |
Triclinic, P1 | Dx = 1.372 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 12.7912 (13) Å | Cell parameters from 5352 reflections |
b = 13.7023 (16) Å | θ = 3.1–27.5° |
c = 14.3811 (13) Å | µ = 0.69 mm−1 |
α = 105.595 (3)° | T = 123 K |
β = 90.858 (2)° | Block, colorless |
γ = 111.932 (3)° | 0.5 × 0.5 × 0.4 mm |
V = 2233.2 (4) Å3 |
Rigaku Saturn70 CCD diffractometer | 9436 independent reflections |
Graphite monochromator | 8266 reflections with I > 2σ(I) |
Detector resolution: 28.5714 pixels mm-1 | Rint = 0.024 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −16→16 |
Tmin = 0.687, Tmax = 0.758 | k = −17→17 |
20774 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0437P)2 + 1.0988P] where P = (Fo2 + 2Fc2)/3 |
9436 reflections | (Δ/σ)max = 0.001 |
523 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
[Cu2(C28H28P2)3](PF6)2·2C4H10O | γ = 111.932 (3)° |
Mr = 1844.61 | V = 2233.2 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 12.7912 (13) Å | Mo Kα radiation |
b = 13.7023 (16) Å | µ = 0.69 mm−1 |
c = 14.3811 (13) Å | T = 123 K |
α = 105.595 (3)° | 0.5 × 0.5 × 0.4 mm |
β = 90.858 (2)° |
Rigaku Saturn70 CCD diffractometer | 9436 independent reflections |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | 8266 reflections with I > 2σ(I) |
Tmin = 0.687, Tmax = 0.758 | Rint = 0.024 |
20774 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.41 e Å−3 |
9436 reflections | Δρmin = −0.35 e Å−3 |
523 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu01 | 0.736171 (18) | 0.110853 (17) | 0.302039 (16) | 0.01521 (7) | |
P002 | 0.54853 (4) | 0.01284 (4) | 0.26739 (3) | 0.01428 (10) | |
P003 | 0.84597 (4) | 0.28839 (4) | 0.32139 (3) | 0.01596 (10) | |
P004 | 0.83982 (4) | 0.01424 (4) | 0.32330 (4) | 0.01677 (11) | |
P005 | 0.86536 (5) | 0.27004 (4) | 0.66681 (4) | 0.02525 (12) | |
F006 | 0.81271 (11) | 0.20082 (10) | 0.55514 (9) | 0.0341 (3) | |
F007 | 0.81659 (13) | 0.15823 (12) | 0.69569 (12) | 0.0501 (4) | |
F008 | 0.91334 (11) | 0.37992 (10) | 0.63536 (10) | 0.0366 (3) | |
F009 | 0.98020 (11) | 0.25176 (12) | 0.64561 (11) | 0.0425 (3) | |
F010 | 0.74923 (13) | 0.28665 (13) | 0.68407 (12) | 0.0511 (4) | |
F011 | 0.91859 (15) | 0.33750 (13) | 0.77641 (10) | 0.0540 (4) | |
O012 | 0.73139 (16) | 0.56078 (14) | 0.97322 (12) | 0.0419 (4) | |
C013 | 0.34145 (16) | 0.02452 (16) | 0.21426 (14) | 0.0196 (4) | |
H013 | 0.3106 | −0.0537 | 0.1947 | 0.023* | |
C014 | 0.45566 (15) | 0.08317 (15) | 0.25249 (13) | 0.0158 (4) | |
C015 | 0.8519 (2) | −0.04572 (18) | 0.12452 (15) | 0.0298 (5) | |
H015 | 0.8053 | −0.0064 | 0.1211 | 0.036* | |
C016 | 0.74237 (17) | 0.37377 (16) | 0.47064 (14) | 0.0222 (4) | |
H016 | 0.7317 | 0.3085 | 0.4875 | 0.027* | |
C017 | 0.52540 (15) | 0.02814 (15) | 0.46177 (12) | 0.0164 (4) | |
H01A | 0.4992 | 0.0882 | 0.4644 | 0.02* | |
H01B | 0.6093 | 0.0611 | 0.4763 | 0.02* | |
C018 | 0.96731 (19) | 0.38988 (17) | 0.18627 (15) | 0.0269 (4) | |
H018 | 1.027 | 0.4346 | 0.2381 | 0.032* | |
C019 | 0.75556 (17) | −0.07541 (18) | 0.47393 (15) | 0.0252 (4) | |
H019 | 0.8023 | −0.0054 | 0.5171 | 0.03* | |
C020 | 0.86868 (17) | 0.31242 (15) | 0.20336 (14) | 0.0198 (4) | |
C021 | 0.88492 (17) | −0.05330 (15) | 0.21397 (14) | 0.0204 (4) | |
C022 | 0.27251 (17) | 0.08035 (18) | 0.20464 (15) | 0.0250 (4) | |
H022 | 0.1948 | 0.0401 | 0.1782 | 0.03* | |
C023 | 0.7826 (2) | 0.24778 (18) | 0.12597 (15) | 0.0295 (5) | |
H023 | 0.7147 | 0.1943 | 0.1365 | 0.035* | |
C024 | 0.79829 (15) | 0.39306 (15) | 0.39064 (13) | 0.0171 (4) | |
C025 | 0.70245 (18) | 0.44887 (17) | 0.52550 (15) | 0.0265 (4) | |
H025 | 0.6657 | 0.4357 | 0.5805 | 0.032* | |
C026 | 0.61412 (19) | −0.25764 (19) | 0.44828 (19) | 0.0346 (5) | |
H026 | 0.564 | −0.3124 | 0.4737 | 0.042* | |
C027 | 0.51341 (16) | −0.09941 (15) | 0.15446 (13) | 0.0173 (4) | |
C028 | 0.31688 (18) | 0.19436 (18) | 0.23353 (15) | 0.0257 (4) | |
H028 | 0.2697 | 0.2322 | 0.2266 | 0.031* | |
C029 | 1.06889 (16) | 0.17199 (16) | 0.37292 (15) | 0.0228 (4) | |
H02A | 1.1016 | 0.1267 | 0.3269 | 0.027* | |
H02B | 1.1285 | 0.2195 | 0.4288 | 0.027* | |
C030 | 0.49050 (16) | −0.05367 (15) | 0.35987 (13) | 0.0166 (4) | |
H03A | 0.4065 | −0.0877 | 0.3459 | 0.02* | |
H03B | 0.5178 | −0.113 | 0.3571 | 0.02* | |
C031 | 0.77138 (19) | 0.56291 (17) | 0.42141 (16) | 0.0289 (5) | |
H031 | 0.7812 | 0.6279 | 0.4045 | 0.035* | |
C032 | 0.98833 (16) | 0.32387 (16) | 0.38117 (14) | 0.0196 (4) | |
H03C | 1.0367 | 0.4014 | 0.3865 | 0.024* | |
H03D | 0.9833 | 0.3164 | 0.4477 | 0.024* | |
C033 | 0.95356 (17) | −0.11111 (16) | 0.21745 (15) | 0.0241 (4) | |
H033 | 0.9766 | −0.1171 | 0.2781 | 0.029* | |
C034 | 0.53314 (19) | −0.15555 (18) | −0.01643 (15) | 0.0293 (5) | |
H034 | 0.5591 | −0.1366 | −0.0732 | 0.035* | |
C035 | 0.4782 (2) | −0.26468 (18) | −0.02033 (15) | 0.0327 (5) | |
H035 | 0.4677 | −0.321 | −0.0794 | 0.039* | |
C036 | 0.49914 (16) | 0.19781 (16) | 0.28186 (13) | 0.0193 (4) | |
H036 | 0.5767 | 0.2384 | 0.3085 | 0.023* | |
C037 | 0.81278 (17) | 0.48876 (16) | 0.36653 (15) | 0.0237 (4) | |
H037 | 0.851 | 0.5032 | 0.3125 | 0.028* | |
C038 | 0.4563 (2) | −0.21002 (17) | 0.14908 (15) | 0.0303 (5) | |
H038 | 0.4295 | −0.2294 | 0.2055 | 0.036* | |
C039 | 0.75975 (16) | −0.09669 (16) | 0.37369 (15) | 0.0205 (4) | |
C040 | 1.04248 (16) | 0.24690 (16) | 0.32190 (15) | 0.0214 (4) | |
H04A | 0.9906 | 0.1996 | 0.2612 | 0.026* | |
H04B | 1.1141 | 0.2931 | 0.3031 | 0.026* | |
C041 | 0.68313 (18) | −0.1564 (2) | 0.51040 (17) | 0.0310 (5) | |
H041 | 0.6811 | −0.142 | 0.5786 | 0.037* | |
C042 | 0.9791 (2) | 0.40231 (19) | 0.09362 (17) | 0.0367 (6) | |
H042 | 1.047 | 0.4552 | 0.0823 | 0.044* | |
C043 | 0.96989 (16) | 0.09423 (16) | 0.41050 (14) | 0.0211 (4) | |
H04C | 0.951 | 0.1384 | 0.4693 | 0.025* | |
H04D | 0.9956 | 0.0422 | 0.4304 | 0.025* | |
C044 | 0.71597 (18) | 0.54341 (18) | 0.50043 (16) | 0.0286 (5) | |
H044 | 0.6873 | 0.5944 | 0.5373 | 0.034* | |
C045 | 0.98856 (19) | −0.15988 (18) | 0.13317 (17) | 0.0314 (5) | |
H045 | 1.0358 | −0.1987 | 0.1364 | 0.038* | |
C046 | 0.42993 (18) | 0.25338 (17) | 0.27254 (14) | 0.0236 (4) | |
H046 | 0.4602 | 0.3316 | 0.2929 | 0.028* | |
C047 | 0.55046 (18) | −0.07349 (17) | 0.07042 (14) | 0.0253 (4) | |
H047 | 0.5882 | 0.0015 | 0.0725 | 0.03* | |
C048 | 0.9550 (2) | −0.1523 (2) | 0.04439 (17) | 0.0380 (6) | |
H048 | 0.9787 | −0.1862 | −0.0134 | 0.046* | |
C049 | 0.4382 (2) | −0.29210 (19) | 0.06203 (17) | 0.0392 (6) | |
H049 | 0.3983 | −0.3672 | 0.0589 | 0.047* | |
C050 | 0.6176 (2) | −0.27972 (18) | 0.34889 (19) | 0.0356 (5) | |
H050 | 0.5701 | −0.3497 | 0.3062 | 0.043* | |
C051 | 0.8868 (2) | −0.0953 (2) | 0.04013 (17) | 0.0415 (6) | |
H051 | 0.8636 | −0.0899 | −0.0207 | 0.05* | |
C052 | 0.69051 (18) | −0.19939 (17) | 0.31144 (17) | 0.0276 (5) | |
H052 | 0.693 | −0.2148 | 0.2432 | 0.033* | |
C053 | 0.8923 (2) | 0.3379 (2) | 0.01796 (16) | 0.0379 (6) | |
H053 | 0.9003 | 0.3473 | −0.045 | 0.046* | |
C054 | 0.7946 (2) | 0.2605 (2) | 0.03378 (16) | 0.0382 (6) | |
H054 | 0.7354 | 0.2156 | −0.0184 | 0.046* | |
C055 | 0.7128 (3) | 0.6010 (2) | 1.07002 (19) | 0.0475 (7) | |
H05A | 0.6304 | 0.5702 | 1.0752 | 0.057* | |
H05B | 0.7396 | 0.6822 | 1.0887 | 0.057* | |
C056 | 0.6958 (3) | 0.5383 (3) | 0.8049 (2) | 0.0558 (8) | |
H05C | 0.6541 | 0.5551 | 0.7578 | 0.084* | |
H05D | 0.6711 | 0.4583 | 0.7899 | 0.084* | |
H05E | 0.7775 | 0.5713 | 0.8011 | 0.084* | |
C057 | 0.6727 (3) | 0.5841 (2) | 0.90481 (19) | 0.0464 (6) | |
H05F | 0.6968 | 0.6649 | 0.9198 | 0.056* | |
H05G | 0.5901 | 0.5517 | 0.9085 | 0.056* | |
C058 | 0.7755 (3) | 0.5687 (2) | 1.1374 (2) | 0.0533 (7) | |
H05H | 0.7622 | 0.5966 | 1.2044 | 0.08* | |
H05I | 0.8571 | 0.6001 | 1.1327 | 0.08* | |
H05J | 0.7483 | 0.4882 | 1.1191 | 0.08* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu01 | 0.01457 (12) | 0.01581 (12) | 0.01666 (12) | 0.00650 (9) | 0.00247 (8) | 0.00621 (9) |
P002 | 0.0150 (2) | 0.0165 (2) | 0.0123 (2) | 0.00630 (19) | 0.00294 (17) | 0.00560 (17) |
P003 | 0.0153 (2) | 0.0153 (2) | 0.0180 (2) | 0.00644 (19) | 0.00140 (18) | 0.00544 (18) |
P004 | 0.0173 (2) | 0.0177 (2) | 0.0192 (2) | 0.00926 (19) | 0.00360 (18) | 0.00798 (19) |
P005 | 0.0228 (3) | 0.0251 (3) | 0.0236 (3) | 0.0035 (2) | 0.0038 (2) | 0.0090 (2) |
F006 | 0.0344 (7) | 0.0299 (7) | 0.0327 (7) | 0.0125 (6) | −0.0080 (6) | 0.0017 (5) |
F007 | 0.0513 (9) | 0.0383 (8) | 0.0586 (10) | 0.0030 (7) | 0.0066 (7) | 0.0320 (7) |
F008 | 0.0379 (8) | 0.0276 (7) | 0.0348 (7) | 0.0002 (6) | −0.0031 (6) | 0.0130 (6) |
F009 | 0.0270 (7) | 0.0575 (9) | 0.0471 (8) | 0.0182 (7) | 0.0010 (6) | 0.0200 (7) |
F010 | 0.0401 (8) | 0.0523 (9) | 0.0642 (10) | 0.0218 (7) | 0.0275 (8) | 0.0160 (8) |
F011 | 0.0779 (12) | 0.0463 (9) | 0.0216 (7) | 0.0082 (8) | −0.0026 (7) | 0.0081 (6) |
O012 | 0.0539 (11) | 0.0360 (9) | 0.0362 (9) | 0.0183 (8) | 0.0060 (8) | 0.0104 (7) |
C013 | 0.0174 (9) | 0.0223 (9) | 0.0193 (9) | 0.0061 (8) | 0.0041 (7) | 0.0090 (8) |
C014 | 0.0172 (9) | 0.0218 (9) | 0.0113 (8) | 0.0084 (8) | 0.0057 (7) | 0.0082 (7) |
C015 | 0.0411 (13) | 0.0323 (11) | 0.0246 (11) | 0.0223 (10) | 0.0048 (9) | 0.0107 (9) |
C016 | 0.0250 (10) | 0.0217 (10) | 0.0197 (10) | 0.0084 (8) | 0.0014 (8) | 0.0067 (8) |
C017 | 0.0169 (9) | 0.0200 (9) | 0.0137 (9) | 0.0075 (7) | 0.0036 (7) | 0.0065 (7) |
C018 | 0.0327 (12) | 0.0247 (10) | 0.0237 (10) | 0.0101 (9) | 0.0090 (9) | 0.0090 (8) |
C019 | 0.0233 (10) | 0.0330 (11) | 0.0289 (11) | 0.0168 (9) | 0.0070 (8) | 0.0160 (9) |
C020 | 0.0268 (10) | 0.0170 (9) | 0.0192 (9) | 0.0126 (8) | 0.0038 (8) | 0.0050 (7) |
C021 | 0.0220 (10) | 0.0183 (9) | 0.0209 (9) | 0.0074 (8) | 0.0043 (8) | 0.0066 (7) |
C022 | 0.0159 (9) | 0.0374 (12) | 0.0254 (10) | 0.0110 (9) | 0.0052 (8) | 0.0141 (9) |
C023 | 0.0336 (12) | 0.0300 (11) | 0.0236 (11) | 0.0117 (10) | −0.0012 (9) | 0.0071 (9) |
C024 | 0.0135 (9) | 0.0183 (9) | 0.0177 (9) | 0.0058 (7) | −0.0020 (7) | 0.0033 (7) |
C025 | 0.0251 (11) | 0.0317 (11) | 0.0214 (10) | 0.0113 (9) | 0.0054 (8) | 0.0054 (9) |
C026 | 0.0294 (12) | 0.0351 (12) | 0.0573 (16) | 0.0185 (10) | 0.0195 (11) | 0.0326 (12) |
C027 | 0.0192 (9) | 0.0202 (9) | 0.0144 (9) | 0.0098 (8) | 0.0018 (7) | 0.0050 (7) |
C028 | 0.0266 (11) | 0.0379 (12) | 0.0256 (11) | 0.0215 (10) | 0.0111 (8) | 0.0169 (9) |
C029 | 0.0179 (9) | 0.0253 (10) | 0.0281 (11) | 0.0116 (8) | 0.0025 (8) | 0.0077 (8) |
C030 | 0.0181 (9) | 0.0187 (9) | 0.0139 (9) | 0.0072 (7) | 0.0027 (7) | 0.0062 (7) |
C031 | 0.0348 (12) | 0.0238 (10) | 0.0347 (12) | 0.0172 (10) | 0.0054 (9) | 0.0105 (9) |
C032 | 0.0167 (9) | 0.0207 (9) | 0.0227 (10) | 0.0082 (8) | 0.0016 (7) | 0.0073 (8) |
C033 | 0.0256 (10) | 0.0250 (10) | 0.0248 (10) | 0.0131 (9) | 0.0046 (8) | 0.0077 (8) |
C034 | 0.0322 (12) | 0.0371 (12) | 0.0151 (10) | 0.0110 (10) | 0.0079 (8) | 0.0058 (9) |
C035 | 0.0479 (14) | 0.0306 (11) | 0.0182 (10) | 0.0205 (11) | 0.0014 (9) | −0.0019 (9) |
C036 | 0.0180 (9) | 0.0232 (10) | 0.0164 (9) | 0.0076 (8) | 0.0030 (7) | 0.0060 (7) |
C037 | 0.0260 (10) | 0.0222 (10) | 0.0260 (10) | 0.0113 (9) | 0.0051 (8) | 0.0094 (8) |
C038 | 0.0475 (14) | 0.0224 (10) | 0.0190 (10) | 0.0097 (10) | 0.0038 (9) | 0.0087 (8) |
C039 | 0.0200 (10) | 0.0226 (10) | 0.0284 (10) | 0.0138 (8) | 0.0077 (8) | 0.0142 (8) |
C040 | 0.0166 (9) | 0.0238 (10) | 0.0260 (10) | 0.0081 (8) | 0.0049 (8) | 0.0104 (8) |
C041 | 0.0273 (11) | 0.0471 (14) | 0.0375 (13) | 0.0241 (11) | 0.0152 (10) | 0.0282 (11) |
C042 | 0.0527 (15) | 0.0316 (12) | 0.0366 (13) | 0.0213 (12) | 0.0243 (12) | 0.0192 (10) |
C043 | 0.0209 (10) | 0.0241 (10) | 0.0209 (10) | 0.0115 (8) | 0.0017 (8) | 0.0070 (8) |
C044 | 0.0261 (11) | 0.0292 (11) | 0.0301 (11) | 0.0161 (9) | 0.0022 (9) | 0.0010 (9) |
C045 | 0.0335 (12) | 0.0292 (11) | 0.0352 (12) | 0.0176 (10) | 0.0106 (10) | 0.0076 (9) |
C046 | 0.0294 (11) | 0.0237 (10) | 0.0231 (10) | 0.0149 (9) | 0.0073 (8) | 0.0088 (8) |
C047 | 0.0258 (11) | 0.0248 (10) | 0.0201 (10) | 0.0033 (9) | 0.0063 (8) | 0.0079 (8) |
C048 | 0.0525 (15) | 0.0363 (13) | 0.0290 (12) | 0.0233 (12) | 0.0167 (11) | 0.0064 (10) |
C049 | 0.0653 (17) | 0.0211 (11) | 0.0265 (12) | 0.0130 (11) | 0.0015 (11) | 0.0057 (9) |
C050 | 0.0327 (12) | 0.0226 (11) | 0.0552 (16) | 0.0113 (10) | 0.0122 (11) | 0.0164 (11) |
C051 | 0.0646 (17) | 0.0483 (15) | 0.0198 (11) | 0.0307 (14) | 0.0071 (11) | 0.0102 (10) |
C052 | 0.0313 (11) | 0.0231 (10) | 0.0327 (12) | 0.0136 (9) | 0.0082 (9) | 0.0106 (9) |
C053 | 0.0695 (18) | 0.0430 (14) | 0.0214 (11) | 0.0405 (14) | 0.0166 (11) | 0.0141 (10) |
C054 | 0.0543 (16) | 0.0433 (14) | 0.0196 (11) | 0.0258 (13) | −0.0025 (10) | 0.0041 (10) |
C055 | 0.0595 (18) | 0.0430 (15) | 0.0371 (14) | 0.0219 (14) | 0.0069 (12) | 0.0050 (12) |
C056 | 0.080 (2) | 0.0540 (17) | 0.0420 (16) | 0.0326 (17) | 0.0099 (15) | 0.0193 (13) |
C057 | 0.0589 (17) | 0.0430 (15) | 0.0440 (15) | 0.0261 (14) | 0.0047 (13) | 0.0145 (12) |
C058 | 0.080 (2) | 0.0392 (15) | 0.0381 (15) | 0.0245 (15) | 0.0001 (14) | 0.0071 (12) |
Cu01—P002 | 2.2381 (5) | C029—H02A | 0.99 |
Cu01—P003 | 2.2450 (6) | C029—H02B | 0.99 |
Cu01—P004 | 2.2628 (5) | C030—H03A | 0.99 |
P002—C027 | 1.8232 (18) | C030—H03B | 0.99 |
P002—C030 | 1.8239 (18) | C031—C044 | 1.382 (3) |
P002—C014 | 1.8287 (19) | C031—C037 | 1.385 (3) |
P003—C020 | 1.821 (2) | C031—H031 | 0.95 |
P003—C024 | 1.8233 (19) | C032—C040 | 1.549 (3) |
P003—C032 | 1.8326 (19) | C032—H03C | 0.99 |
P004—C021 | 1.8179 (19) | C032—H03D | 0.99 |
P004—C039 | 1.827 (2) | C033—C045 | 1.386 (3) |
P004—C043 | 1.838 (2) | C033—H033 | 0.95 |
P005—F011 | 1.5865 (15) | C034—C035 | 1.379 (3) |
P005—F008 | 1.5914 (13) | C034—C047 | 1.387 (3) |
P005—F007 | 1.5952 (14) | C034—H034 | 0.95 |
P005—F010 | 1.5979 (15) | C035—C049 | 1.385 (3) |
P005—F009 | 1.6001 (14) | C035—H035 | 0.95 |
P005—F006 | 1.6136 (13) | C036—C046 | 1.391 (3) |
O012—C057 | 1.400 (3) | C036—H036 | 0.95 |
O012—C055 | 1.412 (3) | C037—H037 | 0.95 |
C013—C022 | 1.393 (3) | C038—C049 | 1.388 (3) |
C013—C014 | 1.394 (3) | C038—H038 | 0.95 |
C013—H013 | 0.95 | C039—C052 | 1.391 (3) |
C014—C036 | 1.393 (3) | C040—H04A | 0.99 |
C015—C051 | 1.390 (3) | C040—H04B | 0.99 |
C015—C021 | 1.390 (3) | C041—H041 | 0.95 |
C015—H015 | 0.95 | C042—C053 | 1.382 (4) |
C016—C025 | 1.382 (3) | C042—H042 | 0.95 |
C016—C024 | 1.397 (3) | C043—H04C | 0.99 |
C016—H016 | 0.95 | C043—H04D | 0.99 |
C017—C030 | 1.525 (2) | C044—H044 | 0.95 |
C017—C017i | 1.526 (4) | C045—C048 | 1.383 (3) |
C017—H01A | 0.99 | C045—H045 | 0.95 |
C017—H01B | 0.99 | C046—H046 | 0.95 |
C018—C020 | 1.388 (3) | C047—H047 | 0.95 |
C018—C042 | 1.391 (3) | C048—C051 | 1.382 (4) |
C018—H018 | 0.95 | C048—H048 | 0.95 |
C019—C041 | 1.388 (3) | C049—H049 | 0.95 |
C019—C039 | 1.398 (3) | C050—C052 | 1.392 (3) |
C019—H019 | 0.95 | C050—H050 | 0.95 |
C020—C023 | 1.393 (3) | C051—H051 | 0.95 |
C021—C033 | 1.393 (3) | C052—H052 | 0.95 |
C022—C028 | 1.384 (3) | C053—C054 | 1.374 (4) |
C022—H022 | 0.95 | C053—H053 | 0.95 |
C023—C054 | 1.386 (3) | C054—H054 | 0.95 |
C023—H023 | 0.95 | C055—C058 | 1.501 (4) |
C024—C037 | 1.393 (3) | C055—H05A | 0.99 |
C025—C044 | 1.387 (3) | C055—H05B | 0.99 |
C025—H025 | 0.95 | C056—C057 | 1.488 (4) |
C026—C041 | 1.377 (3) | C056—H05C | 0.98 |
C026—C050 | 1.384 (4) | C056—H05D | 0.98 |
C026—H026 | 0.95 | C056—H05E | 0.98 |
C027—C047 | 1.391 (3) | C057—H05F | 0.99 |
C027—C038 | 1.395 (3) | C057—H05G | 0.99 |
C028—C046 | 1.385 (3) | C058—H05H | 0.98 |
C028—H028 | 0.95 | C058—H05I | 0.98 |
C029—C043 | 1.534 (3) | C058—H05J | 0.98 |
C029—C040 | 1.537 (3) | ||
P002—Cu01—P003 | 133.28 (2) | C040—C032—P003 | 110.13 (13) |
P002—Cu01—P004 | 114.80 (2) | C040—C032—H03C | 109.6 |
P003—Cu01—P004 | 111.92 (2) | P003—C032—H03C | 109.6 |
C027—P002—C030 | 105.01 (8) | C040—C032—H03D | 109.6 |
C027—P002—C014 | 104.23 (8) | P003—C032—H03D | 109.6 |
C030—P002—C014 | 103.78 (8) | H03C—C032—H03D | 108.1 |
C027—P002—Cu01 | 111.49 (6) | C045—C033—C021 | 120.5 (2) |
C030—P002—Cu01 | 112.37 (6) | C045—C033—H033 | 119.7 |
C014—P002—Cu01 | 118.73 (6) | C021—C033—H033 | 119.7 |
C020—P003—C024 | 106.26 (8) | C035—C034—C047 | 120.0 (2) |
C020—P003—C032 | 104.91 (9) | C035—C034—H034 | 120 |
C024—P003—C032 | 105.67 (8) | C047—C034—H034 | 120 |
C020—P003—Cu01 | 110.32 (6) | C034—C035—C049 | 119.93 (19) |
C024—P003—Cu01 | 118.20 (6) | C034—C035—H035 | 120 |
C032—P003—Cu01 | 110.57 (6) | C049—C035—H035 | 120 |
C021—P004—C039 | 104.70 (9) | C046—C036—C014 | 120.56 (18) |
C021—P004—C043 | 105.34 (9) | C046—C036—H036 | 119.7 |
C039—P004—C043 | 103.73 (9) | C014—C036—H036 | 119.7 |
C021—P004—Cu01 | 115.92 (7) | C031—C037—C024 | 119.88 (19) |
C039—P004—Cu01 | 111.21 (6) | C031—C037—H037 | 120.1 |
C043—P004—Cu01 | 114.76 (7) | C024—C037—H037 | 120.1 |
F011—P005—F008 | 90.76 (8) | C049—C038—C027 | 120.6 (2) |
F011—P005—F007 | 90.56 (9) | C049—C038—H038 | 119.7 |
F008—P005—F007 | 178.65 (8) | C027—C038—H038 | 119.7 |
F011—P005—F010 | 91.82 (10) | C052—C039—C019 | 119.30 (19) |
F008—P005—F010 | 89.62 (8) | C052—C039—P004 | 119.75 (16) |
F007—P005—F010 | 90.62 (9) | C019—C039—P004 | 120.41 (16) |
F011—P005—F009 | 90.11 (9) | C029—C040—C032 | 116.42 (16) |
F008—P005—F009 | 90.01 (8) | C029—C040—H04A | 108.2 |
F007—P005—F009 | 89.70 (9) | C032—C040—H04A | 108.2 |
F010—P005—F009 | 178.04 (9) | C029—C040—H04B | 108.2 |
F011—P005—F006 | 179.17 (9) | C032—C040—H04B | 108.2 |
F008—P005—F006 | 89.42 (7) | H04A—C040—H04B | 107.3 |
F007—P005—F006 | 89.25 (8) | C026—C041—C019 | 120.4 (2) |
F010—P005—F006 | 88.99 (8) | C026—C041—H041 | 119.8 |
F009—P005—F006 | 89.08 (7) | C019—C041—H041 | 119.8 |
C057—O012—C055 | 113.7 (2) | C053—C042—C018 | 120.2 (2) |
C022—C013—C014 | 120.15 (18) | C053—C042—H042 | 119.9 |
C022—C013—H013 | 119.9 | C018—C042—H042 | 119.9 |
C014—C013—H013 | 119.9 | C029—C043—P004 | 115.32 (14) |
C036—C014—C013 | 119.15 (17) | C029—C043—H04C | 108.4 |
C036—C014—P002 | 119.39 (14) | P004—C043—H04C | 108.4 |
C013—C014—P002 | 121.44 (14) | C029—C043—H04D | 108.4 |
C051—C015—C021 | 120.4 (2) | P004—C043—H04D | 108.4 |
C051—C015—H015 | 119.8 | H04C—C043—H04D | 107.5 |
C021—C015—H015 | 119.8 | C031—C044—C025 | 119.59 (19) |
C025—C016—C024 | 120.52 (19) | C031—C044—H044 | 120.2 |
C025—C016—H016 | 119.7 | C025—C044—H044 | 120.2 |
C024—C016—H016 | 119.7 | C048—C045—C033 | 120.3 (2) |
C030—C017—C017i | 111.06 (19) | C048—C045—H045 | 119.8 |
C030—C017—H01A | 109.4 | C033—C045—H045 | 119.8 |
C017i—C017—H01A | 109.4 | C028—C046—C036 | 119.84 (19) |
C030—C017—H01B | 109.4 | C028—C046—H046 | 120.1 |
C017i—C017—H01B | 109.4 | C036—C046—H046 | 120.1 |
H01A—C017—H01B | 108 | C034—C047—C027 | 120.96 (19) |
C020—C018—C042 | 120.3 (2) | C034—C047—H047 | 119.5 |
C020—C018—H018 | 119.8 | C027—C047—H047 | 119.5 |
C042—C018—H018 | 119.8 | C051—C048—C045 | 119.6 (2) |
C041—C019—C039 | 120.0 (2) | C051—C048—H048 | 120.2 |
C041—C019—H019 | 120 | C045—C048—H048 | 120.2 |
C039—C019—H019 | 120 | C035—C049—C038 | 120.1 (2) |
C018—C020—C023 | 118.60 (19) | C035—C049—H049 | 120 |
C018—C020—P003 | 123.66 (15) | C038—C049—H049 | 120 |
C023—C020—P003 | 117.73 (16) | C026—C050—C052 | 120.0 (2) |
C015—C021—C033 | 118.84 (18) | C026—C050—H050 | 120 |
C015—C021—P004 | 119.39 (15) | C052—C050—H050 | 120 |
C033—C021—P004 | 121.76 (15) | C048—C051—C015 | 120.3 (2) |
C028—C022—C013 | 120.17 (19) | C048—C051—H051 | 119.9 |
C028—C022—H022 | 119.9 | C015—C051—H051 | 119.9 |
C013—C022—H022 | 119.9 | C039—C052—C050 | 120.1 (2) |
C054—C023—C020 | 120.9 (2) | C039—C052—H052 | 119.9 |
C054—C023—H023 | 119.5 | C050—C052—H052 | 119.9 |
C020—C023—H023 | 119.5 | C054—C053—C042 | 120.0 (2) |
C037—C024—C016 | 119.11 (17) | C054—C053—H053 | 120 |
C037—C024—P003 | 123.42 (15) | C042—C053—H053 | 120 |
C016—C024—P003 | 117.45 (14) | C053—C054—C023 | 119.9 (2) |
C016—C025—C044 | 120.1 (2) | C053—C054—H054 | 120 |
C016—C025—H025 | 120 | C023—C054—H054 | 120 |
C044—C025—H025 | 120 | O012—C055—C058 | 109.8 (2) |
C041—C026—C050 | 120.1 (2) | O012—C055—H05A | 109.7 |
C041—C026—H026 | 119.9 | C058—C055—H05A | 109.7 |
C050—C026—H026 | 119.9 | O012—C055—H05B | 109.7 |
C047—C027—C038 | 118.45 (18) | C058—C055—H05B | 109.7 |
C047—C027—P002 | 118.10 (15) | H05A—C055—H05B | 108.2 |
C038—C027—P002 | 123.38 (15) | C057—C056—H05C | 109.5 |
C022—C028—C046 | 120.12 (18) | C057—C056—H05D | 109.5 |
C022—C028—H028 | 119.9 | H05C—C056—H05D | 109.5 |
C046—C028—H028 | 119.9 | C057—C056—H05E | 109.5 |
C043—C029—C040 | 117.31 (16) | H05C—C056—H05E | 109.5 |
C043—C029—H02A | 108 | H05D—C056—H05E | 109.5 |
C040—C029—H02A | 108 | O012—C057—C056 | 110.4 (2) |
C043—C029—H02B | 108 | O012—C057—H05F | 109.6 |
C040—C029—H02B | 108 | C056—C057—H05F | 109.6 |
H02A—C029—H02B | 107.2 | O012—C057—H05G | 109.6 |
C017—C030—P002 | 111.60 (12) | C056—C057—H05G | 109.6 |
C017—C030—H03A | 109.3 | H05F—C057—H05G | 108.1 |
P002—C030—H03A | 109.3 | C055—C058—H05H | 109.5 |
C017—C030—H03B | 109.3 | C055—C058—H05I | 109.5 |
P002—C030—H03B | 109.3 | H05H—C058—H05I | 109.5 |
H03A—C030—H03B | 108 | C055—C058—H05J | 109.5 |
C044—C031—C037 | 120.8 (2) | H05H—C058—H05J | 109.5 |
C044—C031—H031 | 119.6 | H05I—C058—H05J | 109.5 |
C037—C031—H031 | 119.6 | ||
P003—Cu01—P002—C027 | 119.57 (7) | Cu01—P002—C027—C038 | 120.60 (17) |
P004—Cu01—P002—C027 | −60.79 (7) | C013—C022—C028—C046 | −0.3 (3) |
P003—Cu01—P002—C030 | −122.85 (7) | C017i—C017—C030—P002 | 179.00 (16) |
P004—Cu01—P002—C030 | 56.79 (7) | C027—P002—C030—C017 | 173.01 (13) |
P003—Cu01—P002—C014 | −1.56 (7) | C014—P002—C030—C017 | −77.86 (14) |
P004—Cu01—P002—C014 | 178.07 (6) | Cu01—P002—C030—C017 | 51.64 (14) |
P002—Cu01—P003—C020 | −79.86 (7) | C020—P003—C032—C040 | −62.16 (15) |
P004—Cu01—P003—C020 | 100.50 (7) | C024—P003—C032—C040 | −174.22 (13) |
P002—Cu01—P003—C024 | 42.64 (8) | Cu01—P003—C032—C040 | 56.76 (14) |
P004—Cu01—P003—C024 | −137.00 (7) | C015—C021—C033—C045 | 0.2 (3) |
P002—Cu01—P003—C032 | 164.55 (7) | P004—C021—C033—C045 | −178.67 (16) |
P004—Cu01—P003—C032 | −15.09 (7) | C047—C034—C035—C049 | 1.4 (4) |
P002—Cu01—P004—C021 | 88.21 (7) | C013—C014—C036—C046 | −0.5 (3) |
P003—Cu01—P004—C021 | −92.08 (7) | P002—C014—C036—C046 | −179.15 (14) |
P002—Cu01—P004—C039 | −31.21 (8) | C044—C031—C037—C024 | 0.3 (3) |
P003—Cu01—P004—C039 | 148.50 (7) | C016—C024—C037—C031 | −0.3 (3) |
P002—Cu01—P004—C043 | −148.56 (7) | P003—C024—C037—C031 | 178.27 (16) |
P003—Cu01—P004—C043 | 31.15 (7) | C047—C027—C038—C049 | 0.8 (3) |
C022—C013—C014—C036 | 0.8 (3) | P002—C027—C038—C049 | −176.02 (19) |
C022—C013—C014—P002 | 179.38 (15) | C041—C019—C039—C052 | 0.2 (3) |
C027—P002—C014—C036 | −137.70 (15) | C041—C019—C039—P004 | 171.72 (15) |
C030—P002—C014—C036 | 112.59 (15) | C021—P004—C039—C052 | −37.54 (18) |
Cu01—P002—C014—C036 | −12.95 (17) | C043—P004—C039—C052 | −147.75 (16) |
C027—P002—C014—C013 | 43.71 (17) | Cu01—P004—C039—C052 | 88.38 (16) |
C030—P002—C014—C013 | −66.00 (16) | C021—P004—C039—C019 | 151.01 (15) |
Cu01—P002—C014—C013 | 168.45 (12) | C043—P004—C039—C019 | 40.79 (17) |
C042—C018—C020—C023 | 0.1 (3) | Cu01—P004—C039—C019 | −83.08 (16) |
C042—C018—C020—P003 | 179.00 (16) | C043—C029—C040—C032 | 56.8 (2) |
C024—P003—C020—C018 | 82.72 (18) | P003—C032—C040—C029 | −116.84 (16) |
C032—P003—C020—C018 | −28.92 (19) | C050—C026—C041—C019 | 0.8 (3) |
Cu01—P003—C020—C018 | −148.02 (15) | C039—C019—C041—C026 | −0.8 (3) |
C024—P003—C020—C023 | −98.42 (16) | C020—C018—C042—C053 | 0.3 (3) |
C032—P003—C020—C023 | 149.94 (16) | C040—C029—C043—P004 | 48.1 (2) |
Cu01—P003—C020—C023 | 30.85 (17) | C021—P004—C043—C029 | 52.85 (16) |
C051—C015—C021—C033 | 0.2 (3) | C039—P004—C043—C029 | 162.59 (14) |
C051—C015—C021—P004 | 179.04 (19) | Cu01—P004—C043—C029 | −75.88 (14) |
C039—P004—C021—C015 | 121.03 (17) | C037—C031—C044—C025 | 0.5 (3) |
C043—P004—C021—C015 | −129.92 (17) | C016—C025—C044—C031 | −1.2 (3) |
Cu01—P004—C021—C015 | −1.88 (19) | C021—C033—C045—C048 | −0.5 (3) |
C039—P004—C021—C033 | −60.12 (18) | C022—C028—C046—C036 | 0.6 (3) |
C043—P004—C021—C033 | 48.93 (19) | C014—C036—C046—C028 | −0.1 (3) |
Cu01—P004—C021—C033 | 176.96 (14) | C035—C034—C047—C027 | 0.2 (3) |
C014—C013—C022—C028 | −0.4 (3) | C038—C027—C047—C034 | −1.2 (3) |
C018—C020—C023—C054 | −0.2 (3) | P002—C027—C047—C034 | 175.70 (17) |
P003—C020—C023—C054 | −179.12 (17) | C033—C045—C048—C051 | 0.4 (4) |
C025—C016—C024—C037 | −0.3 (3) | C034—C035—C049—C038 | −1.9 (4) |
C025—C016—C024—P003 | −179.02 (15) | C027—C038—C049—C035 | 0.8 (4) |
C020—P003—C024—C037 | −17.76 (19) | C041—C026—C050—C052 | −0.3 (3) |
C032—P003—C024—C037 | 93.35 (17) | C045—C048—C051—C015 | 0.0 (4) |
Cu01—P003—C024—C037 | −142.28 (14) | C021—C015—C051—C048 | −0.2 (4) |
C020—P003—C024—C016 | 160.86 (15) | C019—C039—C052—C050 | 0.3 (3) |
C032—P003—C024—C016 | −88.03 (16) | P004—C039—C052—C050 | −171.28 (16) |
Cu01—P003—C024—C016 | 36.34 (16) | C026—C050—C052—C039 | −0.2 (3) |
C024—C016—C025—C044 | 1.1 (3) | C018—C042—C053—C054 | −0.8 (3) |
C030—P002—C027—C047 | −178.12 (15) | C042—C053—C054—C023 | 0.8 (4) |
C014—P002—C027—C047 | 73.07 (17) | C020—C023—C054—C053 | −0.3 (3) |
Cu01—P002—C027—C047 | −56.18 (17) | C057—O012—C055—C058 | 178.0 (2) |
C030—P002—C027—C038 | −1.3 (2) | C055—O012—C057—C056 | −179.5 (2) |
C014—P002—C027—C038 | −110.14 (18) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C016—H016···F006 | 0.95 | 2.47 | 3.318 (3) | 149 |
C018—H018···F008ii | 0.95 | 2.53 | 3.286 (3) | 137 |
C043—H04C···F006 | 0.99 | 2.45 | 3.345 (3) | 150 |
C043—H04C···F009 | 0.99 | 2.53 | 3.458 (3) | 156 |
C049—H049···O012i | 0.95 | 2.46 | 3.393 (3) | 169 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C016—H016···F006 | 0.95 | 2.47 | 3.318 (3) | 149 |
C018—H018···F008i | 0.95 | 2.53 | 3.286 (3) | 137 |
C043—H04C···F006 | 0.99 | 2.45 | 3.345 (3) | 150 |
C043—H04C···F009 | 0.99 | 2.53 | 3.458 (3) | 156 |
C049—H049···O012ii | 0.95 | 2.46 | 3.393 (3) | 169 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
This work was partially supported by a grant from Seikei University.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Megumu, M. (1995). Inorg. Chem. 34, 1455–1465. CSD CrossRef CAS Web of Science Google Scholar
McMillin, D. R. & McNett, K. M. (1998). Chem. Rev. 98, 1201–1220. Web of Science CrossRef PubMed Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Saito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444–4448. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper(I) complexes bearing diphosphane ligands are of much interest for luminescence devices (McMillin & McNett, 1998) and catalysts. The spectroscopic study for the coordination compounds of copper(I) ion and 1,4-bis(diphenylphosphino)butane(dppb) ligand has been reported (Comba et al., 1999). The crystal structure of a copper(I) complex bearing dppb, such as [Cu2(dppb)2(ClO4)2] where two copper atoms are bridged by two dppb unit, has been reported (Kitagawa et al., 1995). We have reported the crystal structure of an emissive dinuclear copper(I) complex bearing dppb and diimine ligands (Saito et al., 2006), in which the copper atoms are also bridged by two dppb ligands.
We describe herein the structure of a dinuclear copper(I) complex cation bearing two types of dppb ligands; one is a bridging ligand which connects two copper atoms using two phosphorus atoms, and the other is the chelating ligand which binds one copper atom using two phosphorus atoms. In other words, two copper atoms in the complex are bridged by one dppb ligand. The centre of inversion lies on the bridging dppb ligand. The asymmetric unit consists of a half of the complex cation, a PF6 anion and a diethylether solvent molecule (Fig. 1). Each copper atom is connected by three phosphorus atoms with a triangle coordination geometry. The bond length between copper and phosphorus atom of the bridging dppb ligand is Cu—P = 2.2381 (5) Å, and those between copper and phosphorus atoms of the chelating ligands are Cu—P = 2.2450 (6) and 2.2628 (5) Å. This finding is useful for strategy for creation of characteristic dinuclear copper(I) complexes which exhibit unique properties.