metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m204-m205

[μ-Butane-1,4-diylbis(di­phenyl­phos­phane)-κ2P:P′]bis­­{[butane-1,4-diylbis(di­phenyl­phosphane)-κ2P,P′]copper(I)} bis­­(hexa­fluorido­phosphate) di­ethyl ether disolvate

aDepartment of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, Japan
*Correspondence e-mail: tsubomura@st.seikei.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 3 April 2014; accepted 30 April 2014; online 10 May 2014)

In the centrosymmetric dinuclear copper(I) complex cation of the title compound, [Cu2(C28H28P2)3](PF6)2·2C4H10O, the CuI atom is bonded to three P atoms of two butane-1,4-diylbis(di­phenyl­phosphane) (dppb) ligands with a triangular coordination geometry. One of these P atoms belongs to a bridging dppb ligand [Cu—P = 2.2381 (5) Å] and two belong to a chelating dppb ligand [Cu—P = 2.2450 (6) and 2.2628 (5) Å]. The bridging dppb ligand lies on an inversion centre. In the crystal, the cation and the PF6 anion are linked by C—H⋯F inter­actions, forming a tape along [110]. The cation and the diethyl ether solvent mol­ecule are also linked by a C—H⋯O inter­action.

Related literature

For general background to emissive copper(I) complexes, see: McMillin & McNett (1998[McMillin, D. R. & McNett, K. M. (1998). Chem. Rev. 98, 1201-1220.]). For copper(I) complexes bearing dppb ligands, see: Comba et al. (1999[Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777-783.]); Kitagawa et al. (1995[Kitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Megumu, M. (1995). Inorg. Chem. 34, 1455-1465.]). For our previous work related to the photophysical properties of copper(I) complexes bearing dppb and di­imine ligands, see: Saito et al. (2006[Saito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444-4448.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C28H28P2)3](PF6)2·2C4H10O

  • Mr = 1844.61

  • Triclinic, [P \overline 1]

  • a = 12.7912 (13) Å

  • b = 13.7023 (16) Å

  • c = 14.3811 (13) Å

  • α = 105.595 (3)°

  • β = 90.858 (2)°

  • γ = 111.932 (3)°

  • V = 2233.2 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 123 K

  • 0.5 × 0.5 × 0.4 mm

Data collection
  • Rigaku Saturn70 CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.687, Tmax = 0.758

  • 20774 measured reflections

  • 9436 independent reflections

  • 8266 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.06

  • 9436 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C016—H016⋯F006 0.95 2.47 3.318 (3) 149
C018—H018⋯F008i 0.95 2.53 3.286 (3) 137
C043—H04C⋯F006 0.99 2.45 3.345 (3) 150
C043—H04C⋯F009 0.99 2.53 3.458 (3) 156
C049—H049⋯O012ii 0.95 2.46 3.393 (3) 169
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper(I) complexes bearing diphosphane ligands are of much interest for luminescence devices (McMillin & McNett, 1998) and catalysts. The spectroscopic study for the coordination compounds of copper(I) ion and 1,4-bis(diphenylphosphino)butane(dppb) ligand has been reported (Comba et al., 1999). The crystal structure of a copper(I) complex bearing dppb, such as [Cu2(dppb)2(ClO4)2] where two copper atoms are bridged by two dppb unit, has been reported (Kitagawa et al., 1995). We have reported the crystal structure of an emissive dinuclear copper(I) complex bearing dppb and diimine ligands (Saito et al., 2006), in which the copper atoms are also bridged by two dppb ligands.

We describe herein the structure of a dinuclear copper(I) complex cation bearing two types of dppb ligands; one is a bridging ligand which connects two copper atoms using two phosphorus atoms, and the other is the chelating ligand which binds one copper atom using two phosphorus atoms. In other words, two copper atoms in the complex are bridged by one dppb ligand. The centre of inversion lies on the bridging dppb ligand. The asymmetric unit consists of a half of the complex cation, a PF6 anion and a diethylether solvent molecule (Fig. 1). Each copper atom is connected by three phosphorus atoms with a triangle coordination geometry. The bond length between copper and phosphorus atom of the bridging dppb ligand is Cu—P = 2.2381 (5) Å, and those between copper and phosphorus atoms of the chelating ligands are Cu—P = 2.2450 (6) and 2.2628 (5) Å. This finding is useful for strategy for creation of characteristic dinuclear copper(I) complexes which exhibit unique properties.

Related literature top

For general background to emissive copper(I) complexes, see: McMillin & McNett (1998). For copper(I) complexes bearing dppb ligands, see: Comba et al. (1999); Kitagawa et al. (1995). For our previous work related to the photophysical properties of copper(I) complexes bearing dppb and diimine ligands, see: Saito et al. (2006).

Experimental top

Under an argon atmosphere, [Cu(MeCN)4]PF6 (75 mg, 0.20 mmol) was added to dppb (82 mg, 0.30 mmol) in a 5 mL dichloromethane. The reaction mixture was stirred for 30 min at room temperature. Diethyl ether was added to the solution to precipitate the product as a white solid, which was filtered and washed with diethyl ether: yield, 126 mg (0.162 mmol, 81%). Elemental Analysis Calcd. for C84H84F12P8Cu2: C 59.47, H 4.99, found C 58.58, H 4.92. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of diethylether in a dichloromethane solution of the complex.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene groups, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of [Cu2(µ-dppb)(dppb)2](PF6)2·2Et2O, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. Symmetry code (A); –x + 1, –y, –z + 1.
[µ-Butane-1,4-diylbis(diphenylphosphane)-κ2P:P']bis{[butane-1,4-diylbis(diphenylphosphane)-κ2P,P']copper(I)} bis(hexafluoridophosphate) diethyl ether disolvate top
Crystal data top
[Cu2(C28H28P2)3](PF6)2·2C4H10OZ = 1
Mr = 1844.61F(000) = 958
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 12.7912 (13) ÅCell parameters from 5352 reflections
b = 13.7023 (16) Åθ = 3.1–27.5°
c = 14.3811 (13) ŵ = 0.69 mm1
α = 105.595 (3)°T = 123 K
β = 90.858 (2)°Block, colorless
γ = 111.932 (3)°0.5 × 0.5 × 0.4 mm
V = 2233.2 (4) Å3
Data collection top
Rigaku Saturn70 CCD
diffractometer
9436 independent reflections
Graphite monochromator8266 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.024
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1616
Tmin = 0.687, Tmax = 0.758k = 1717
20774 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0437P)2 + 1.0988P]
where P = (Fo2 + 2Fc2)/3
9436 reflections(Δ/σ)max = 0.001
523 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cu2(C28H28P2)3](PF6)2·2C4H10Oγ = 111.932 (3)°
Mr = 1844.61V = 2233.2 (4) Å3
Triclinic, P1Z = 1
a = 12.7912 (13) ÅMo Kα radiation
b = 13.7023 (16) ŵ = 0.69 mm1
c = 14.3811 (13) ÅT = 123 K
α = 105.595 (3)°0.5 × 0.5 × 0.4 mm
β = 90.858 (2)°
Data collection top
Rigaku Saturn70 CCD
diffractometer
9436 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
8266 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.758Rint = 0.024
20774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
9436 reflectionsΔρmin = 0.35 e Å3
523 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu010.736171 (18)0.110853 (17)0.302039 (16)0.01521 (7)
P0020.54853 (4)0.01284 (4)0.26739 (3)0.01428 (10)
P0030.84597 (4)0.28839 (4)0.32139 (3)0.01596 (10)
P0040.83982 (4)0.01424 (4)0.32330 (4)0.01677 (11)
P0050.86536 (5)0.27004 (4)0.66681 (4)0.02525 (12)
F0060.81271 (11)0.20082 (10)0.55514 (9)0.0341 (3)
F0070.81659 (13)0.15823 (12)0.69569 (12)0.0501 (4)
F0080.91334 (11)0.37992 (10)0.63536 (10)0.0366 (3)
F0090.98020 (11)0.25176 (12)0.64561 (11)0.0425 (3)
F0100.74923 (13)0.28665 (13)0.68407 (12)0.0511 (4)
F0110.91859 (15)0.33750 (13)0.77641 (10)0.0540 (4)
O0120.73139 (16)0.56078 (14)0.97322 (12)0.0419 (4)
C0130.34145 (16)0.02452 (16)0.21426 (14)0.0196 (4)
H0130.31060.05370.19470.023*
C0140.45566 (15)0.08317 (15)0.25249 (13)0.0158 (4)
C0150.8519 (2)0.04572 (18)0.12452 (15)0.0298 (5)
H0150.80530.00640.12110.036*
C0160.74237 (17)0.37377 (16)0.47064 (14)0.0222 (4)
H0160.73170.30850.48750.027*
C0170.52540 (15)0.02814 (15)0.46177 (12)0.0164 (4)
H01A0.49920.08820.46440.02*
H01B0.60930.06110.47630.02*
C0180.96731 (19)0.38988 (17)0.18627 (15)0.0269 (4)
H0181.0270.43460.23810.032*
C0190.75556 (17)0.07541 (18)0.47393 (15)0.0252 (4)
H0190.80230.00540.51710.03*
C0200.86868 (17)0.31242 (15)0.20336 (14)0.0198 (4)
C0210.88492 (17)0.05330 (15)0.21397 (14)0.0204 (4)
C0220.27251 (17)0.08035 (18)0.20464 (15)0.0250 (4)
H0220.19480.04010.17820.03*
C0230.7826 (2)0.24778 (18)0.12597 (15)0.0295 (5)
H0230.71470.19430.13650.035*
C0240.79829 (15)0.39306 (15)0.39064 (13)0.0171 (4)
C0250.70245 (18)0.44887 (17)0.52550 (15)0.0265 (4)
H0250.66570.43570.58050.032*
C0260.61412 (19)0.25764 (19)0.44828 (19)0.0346 (5)
H0260.5640.31240.47370.042*
C0270.51341 (16)0.09941 (15)0.15446 (13)0.0173 (4)
C0280.31688 (18)0.19436 (18)0.23353 (15)0.0257 (4)
H0280.26970.23220.22660.031*
C0291.06889 (16)0.17199 (16)0.37292 (15)0.0228 (4)
H02A1.10160.12670.32690.027*
H02B1.12850.21950.42880.027*
C0300.49050 (16)0.05367 (15)0.35987 (13)0.0166 (4)
H03A0.40650.08770.34590.02*
H03B0.51780.1130.35710.02*
C0310.77138 (19)0.56291 (17)0.42141 (16)0.0289 (5)
H0310.78120.62790.40450.035*
C0320.98833 (16)0.32387 (16)0.38117 (14)0.0196 (4)
H03C1.03670.40140.38650.024*
H03D0.98330.31640.44770.024*
C0330.95356 (17)0.11111 (16)0.21745 (15)0.0241 (4)
H0330.97660.11710.27810.029*
C0340.53314 (19)0.15555 (18)0.01643 (15)0.0293 (5)
H0340.55910.13660.07320.035*
C0350.4782 (2)0.26468 (18)0.02033 (15)0.0327 (5)
H0350.46770.3210.07940.039*
C0360.49914 (16)0.19781 (16)0.28186 (13)0.0193 (4)
H0360.57670.23840.30850.023*
C0370.81278 (17)0.48876 (16)0.36653 (15)0.0237 (4)
H0370.8510.50320.31250.028*
C0380.4563 (2)0.21002 (17)0.14908 (15)0.0303 (5)
H0380.42950.22940.20550.036*
C0390.75975 (16)0.09669 (16)0.37369 (15)0.0205 (4)
C0401.04248 (16)0.24690 (16)0.32190 (15)0.0214 (4)
H04A0.99060.19960.26120.026*
H04B1.11410.29310.30310.026*
C0410.68313 (18)0.1564 (2)0.51040 (17)0.0310 (5)
H0410.68110.1420.57860.037*
C0420.9791 (2)0.40231 (19)0.09362 (17)0.0367 (6)
H0421.0470.45520.08230.044*
C0430.96989 (16)0.09423 (16)0.41050 (14)0.0211 (4)
H04C0.9510.13840.46930.025*
H04D0.99560.04220.43040.025*
C0440.71597 (18)0.54341 (18)0.50043 (16)0.0286 (5)
H0440.68730.59440.53730.034*
C0450.98856 (19)0.15988 (18)0.13317 (17)0.0314 (5)
H0451.03580.19870.13640.038*
C0460.42993 (18)0.25338 (17)0.27254 (14)0.0236 (4)
H0460.46020.33160.29290.028*
C0470.55046 (18)0.07349 (17)0.07042 (14)0.0253 (4)
H0470.58820.00150.07250.03*
C0480.9550 (2)0.1523 (2)0.04439 (17)0.0380 (6)
H0480.97870.18620.01340.046*
C0490.4382 (2)0.29210 (19)0.06203 (17)0.0392 (6)
H0490.39830.36720.05890.047*
C0500.6176 (2)0.27972 (18)0.34889 (19)0.0356 (5)
H0500.57010.34970.30620.043*
C0510.8868 (2)0.0953 (2)0.04013 (17)0.0415 (6)
H0510.86360.08990.02070.05*
C0520.69051 (18)0.19939 (17)0.31144 (17)0.0276 (5)
H0520.6930.21480.24320.033*
C0530.8923 (2)0.3379 (2)0.01796 (16)0.0379 (6)
H0530.90030.34730.0450.046*
C0540.7946 (2)0.2605 (2)0.03378 (16)0.0382 (6)
H0540.73540.21560.01840.046*
C0550.7128 (3)0.6010 (2)1.07002 (19)0.0475 (7)
H05A0.63040.57021.07520.057*
H05B0.73960.68221.08870.057*
C0560.6958 (3)0.5383 (3)0.8049 (2)0.0558 (8)
H05C0.65410.55510.75780.084*
H05D0.67110.45830.78990.084*
H05E0.77750.57130.80110.084*
C0570.6727 (3)0.5841 (2)0.90481 (19)0.0464 (6)
H05F0.69680.66490.91980.056*
H05G0.59010.55170.90850.056*
C0580.7755 (3)0.5687 (2)1.1374 (2)0.0533 (7)
H05H0.76220.59661.20440.08*
H05I0.85710.60011.13270.08*
H05J0.74830.48821.11910.08*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu010.01457 (12)0.01581 (12)0.01666 (12)0.00650 (9)0.00247 (8)0.00621 (9)
P0020.0150 (2)0.0165 (2)0.0123 (2)0.00630 (19)0.00294 (17)0.00560 (17)
P0030.0153 (2)0.0153 (2)0.0180 (2)0.00644 (19)0.00140 (18)0.00544 (18)
P0040.0173 (2)0.0177 (2)0.0192 (2)0.00926 (19)0.00360 (18)0.00798 (19)
P0050.0228 (3)0.0251 (3)0.0236 (3)0.0035 (2)0.0038 (2)0.0090 (2)
F0060.0344 (7)0.0299 (7)0.0327 (7)0.0125 (6)0.0080 (6)0.0017 (5)
F0070.0513 (9)0.0383 (8)0.0586 (10)0.0030 (7)0.0066 (7)0.0320 (7)
F0080.0379 (8)0.0276 (7)0.0348 (7)0.0002 (6)0.0031 (6)0.0130 (6)
F0090.0270 (7)0.0575 (9)0.0471 (8)0.0182 (7)0.0010 (6)0.0200 (7)
F0100.0401 (8)0.0523 (9)0.0642 (10)0.0218 (7)0.0275 (8)0.0160 (8)
F0110.0779 (12)0.0463 (9)0.0216 (7)0.0082 (8)0.0026 (7)0.0081 (6)
O0120.0539 (11)0.0360 (9)0.0362 (9)0.0183 (8)0.0060 (8)0.0104 (7)
C0130.0174 (9)0.0223 (9)0.0193 (9)0.0061 (8)0.0041 (7)0.0090 (8)
C0140.0172 (9)0.0218 (9)0.0113 (8)0.0084 (8)0.0057 (7)0.0082 (7)
C0150.0411 (13)0.0323 (11)0.0246 (11)0.0223 (10)0.0048 (9)0.0107 (9)
C0160.0250 (10)0.0217 (10)0.0197 (10)0.0084 (8)0.0014 (8)0.0067 (8)
C0170.0169 (9)0.0200 (9)0.0137 (9)0.0075 (7)0.0036 (7)0.0065 (7)
C0180.0327 (12)0.0247 (10)0.0237 (10)0.0101 (9)0.0090 (9)0.0090 (8)
C0190.0233 (10)0.0330 (11)0.0289 (11)0.0168 (9)0.0070 (8)0.0160 (9)
C0200.0268 (10)0.0170 (9)0.0192 (9)0.0126 (8)0.0038 (8)0.0050 (7)
C0210.0220 (10)0.0183 (9)0.0209 (9)0.0074 (8)0.0043 (8)0.0066 (7)
C0220.0159 (9)0.0374 (12)0.0254 (10)0.0110 (9)0.0052 (8)0.0141 (9)
C0230.0336 (12)0.0300 (11)0.0236 (11)0.0117 (10)0.0012 (9)0.0071 (9)
C0240.0135 (9)0.0183 (9)0.0177 (9)0.0058 (7)0.0020 (7)0.0033 (7)
C0250.0251 (11)0.0317 (11)0.0214 (10)0.0113 (9)0.0054 (8)0.0054 (9)
C0260.0294 (12)0.0351 (12)0.0573 (16)0.0185 (10)0.0195 (11)0.0326 (12)
C0270.0192 (9)0.0202 (9)0.0144 (9)0.0098 (8)0.0018 (7)0.0050 (7)
C0280.0266 (11)0.0379 (12)0.0256 (11)0.0215 (10)0.0111 (8)0.0169 (9)
C0290.0179 (9)0.0253 (10)0.0281 (11)0.0116 (8)0.0025 (8)0.0077 (8)
C0300.0181 (9)0.0187 (9)0.0139 (9)0.0072 (7)0.0027 (7)0.0062 (7)
C0310.0348 (12)0.0238 (10)0.0347 (12)0.0172 (10)0.0054 (9)0.0105 (9)
C0320.0167 (9)0.0207 (9)0.0227 (10)0.0082 (8)0.0016 (7)0.0073 (8)
C0330.0256 (10)0.0250 (10)0.0248 (10)0.0131 (9)0.0046 (8)0.0077 (8)
C0340.0322 (12)0.0371 (12)0.0151 (10)0.0110 (10)0.0079 (8)0.0058 (9)
C0350.0479 (14)0.0306 (11)0.0182 (10)0.0205 (11)0.0014 (9)0.0019 (9)
C0360.0180 (9)0.0232 (10)0.0164 (9)0.0076 (8)0.0030 (7)0.0060 (7)
C0370.0260 (10)0.0222 (10)0.0260 (10)0.0113 (9)0.0051 (8)0.0094 (8)
C0380.0475 (14)0.0224 (10)0.0190 (10)0.0097 (10)0.0038 (9)0.0087 (8)
C0390.0200 (10)0.0226 (10)0.0284 (10)0.0138 (8)0.0077 (8)0.0142 (8)
C0400.0166 (9)0.0238 (10)0.0260 (10)0.0081 (8)0.0049 (8)0.0104 (8)
C0410.0273 (11)0.0471 (14)0.0375 (13)0.0241 (11)0.0152 (10)0.0282 (11)
C0420.0527 (15)0.0316 (12)0.0366 (13)0.0213 (12)0.0243 (12)0.0192 (10)
C0430.0209 (10)0.0241 (10)0.0209 (10)0.0115 (8)0.0017 (8)0.0070 (8)
C0440.0261 (11)0.0292 (11)0.0301 (11)0.0161 (9)0.0022 (9)0.0010 (9)
C0450.0335 (12)0.0292 (11)0.0352 (12)0.0176 (10)0.0106 (10)0.0076 (9)
C0460.0294 (11)0.0237 (10)0.0231 (10)0.0149 (9)0.0073 (8)0.0088 (8)
C0470.0258 (11)0.0248 (10)0.0201 (10)0.0033 (9)0.0063 (8)0.0079 (8)
C0480.0525 (15)0.0363 (13)0.0290 (12)0.0233 (12)0.0167 (11)0.0064 (10)
C0490.0653 (17)0.0211 (11)0.0265 (12)0.0130 (11)0.0015 (11)0.0057 (9)
C0500.0327 (12)0.0226 (11)0.0552 (16)0.0113 (10)0.0122 (11)0.0164 (11)
C0510.0646 (17)0.0483 (15)0.0198 (11)0.0307 (14)0.0071 (11)0.0102 (10)
C0520.0313 (11)0.0231 (10)0.0327 (12)0.0136 (9)0.0082 (9)0.0106 (9)
C0530.0695 (18)0.0430 (14)0.0214 (11)0.0405 (14)0.0166 (11)0.0141 (10)
C0540.0543 (16)0.0433 (14)0.0196 (11)0.0258 (13)0.0025 (10)0.0041 (10)
C0550.0595 (18)0.0430 (15)0.0371 (14)0.0219 (14)0.0069 (12)0.0050 (12)
C0560.080 (2)0.0540 (17)0.0420 (16)0.0326 (17)0.0099 (15)0.0193 (13)
C0570.0589 (17)0.0430 (15)0.0440 (15)0.0261 (14)0.0047 (13)0.0145 (12)
C0580.080 (2)0.0392 (15)0.0381 (15)0.0245 (15)0.0001 (14)0.0071 (12)
Geometric parameters (Å, º) top
Cu01—P0022.2381 (5)C029—H02A0.99
Cu01—P0032.2450 (6)C029—H02B0.99
Cu01—P0042.2628 (5)C030—H03A0.99
P002—C0271.8232 (18)C030—H03B0.99
P002—C0301.8239 (18)C031—C0441.382 (3)
P002—C0141.8287 (19)C031—C0371.385 (3)
P003—C0201.821 (2)C031—H0310.95
P003—C0241.8233 (19)C032—C0401.549 (3)
P003—C0321.8326 (19)C032—H03C0.99
P004—C0211.8179 (19)C032—H03D0.99
P004—C0391.827 (2)C033—C0451.386 (3)
P004—C0431.838 (2)C033—H0330.95
P005—F0111.5865 (15)C034—C0351.379 (3)
P005—F0081.5914 (13)C034—C0471.387 (3)
P005—F0071.5952 (14)C034—H0340.95
P005—F0101.5979 (15)C035—C0491.385 (3)
P005—F0091.6001 (14)C035—H0350.95
P005—F0061.6136 (13)C036—C0461.391 (3)
O012—C0571.400 (3)C036—H0360.95
O012—C0551.412 (3)C037—H0370.95
C013—C0221.393 (3)C038—C0491.388 (3)
C013—C0141.394 (3)C038—H0380.95
C013—H0130.95C039—C0521.391 (3)
C014—C0361.393 (3)C040—H04A0.99
C015—C0511.390 (3)C040—H04B0.99
C015—C0211.390 (3)C041—H0410.95
C015—H0150.95C042—C0531.382 (4)
C016—C0251.382 (3)C042—H0420.95
C016—C0241.397 (3)C043—H04C0.99
C016—H0160.95C043—H04D0.99
C017—C0301.525 (2)C044—H0440.95
C017—C017i1.526 (4)C045—C0481.383 (3)
C017—H01A0.99C045—H0450.95
C017—H01B0.99C046—H0460.95
C018—C0201.388 (3)C047—H0470.95
C018—C0421.391 (3)C048—C0511.382 (4)
C018—H0180.95C048—H0480.95
C019—C0411.388 (3)C049—H0490.95
C019—C0391.398 (3)C050—C0521.392 (3)
C019—H0190.95C050—H0500.95
C020—C0231.393 (3)C051—H0510.95
C021—C0331.393 (3)C052—H0520.95
C022—C0281.384 (3)C053—C0541.374 (4)
C022—H0220.95C053—H0530.95
C023—C0541.386 (3)C054—H0540.95
C023—H0230.95C055—C0581.501 (4)
C024—C0371.393 (3)C055—H05A0.99
C025—C0441.387 (3)C055—H05B0.99
C025—H0250.95C056—C0571.488 (4)
C026—C0411.377 (3)C056—H05C0.98
C026—C0501.384 (4)C056—H05D0.98
C026—H0260.95C056—H05E0.98
C027—C0471.391 (3)C057—H05F0.99
C027—C0381.395 (3)C057—H05G0.99
C028—C0461.385 (3)C058—H05H0.98
C028—H0280.95C058—H05I0.98
C029—C0431.534 (3)C058—H05J0.98
C029—C0401.537 (3)
P002—Cu01—P003133.28 (2)C040—C032—P003110.13 (13)
P002—Cu01—P004114.80 (2)C040—C032—H03C109.6
P003—Cu01—P004111.92 (2)P003—C032—H03C109.6
C027—P002—C030105.01 (8)C040—C032—H03D109.6
C027—P002—C014104.23 (8)P003—C032—H03D109.6
C030—P002—C014103.78 (8)H03C—C032—H03D108.1
C027—P002—Cu01111.49 (6)C045—C033—C021120.5 (2)
C030—P002—Cu01112.37 (6)C045—C033—H033119.7
C014—P002—Cu01118.73 (6)C021—C033—H033119.7
C020—P003—C024106.26 (8)C035—C034—C047120.0 (2)
C020—P003—C032104.91 (9)C035—C034—H034120
C024—P003—C032105.67 (8)C047—C034—H034120
C020—P003—Cu01110.32 (6)C034—C035—C049119.93 (19)
C024—P003—Cu01118.20 (6)C034—C035—H035120
C032—P003—Cu01110.57 (6)C049—C035—H035120
C021—P004—C039104.70 (9)C046—C036—C014120.56 (18)
C021—P004—C043105.34 (9)C046—C036—H036119.7
C039—P004—C043103.73 (9)C014—C036—H036119.7
C021—P004—Cu01115.92 (7)C031—C037—C024119.88 (19)
C039—P004—Cu01111.21 (6)C031—C037—H037120.1
C043—P004—Cu01114.76 (7)C024—C037—H037120.1
F011—P005—F00890.76 (8)C049—C038—C027120.6 (2)
F011—P005—F00790.56 (9)C049—C038—H038119.7
F008—P005—F007178.65 (8)C027—C038—H038119.7
F011—P005—F01091.82 (10)C052—C039—C019119.30 (19)
F008—P005—F01089.62 (8)C052—C039—P004119.75 (16)
F007—P005—F01090.62 (9)C019—C039—P004120.41 (16)
F011—P005—F00990.11 (9)C029—C040—C032116.42 (16)
F008—P005—F00990.01 (8)C029—C040—H04A108.2
F007—P005—F00989.70 (9)C032—C040—H04A108.2
F010—P005—F009178.04 (9)C029—C040—H04B108.2
F011—P005—F006179.17 (9)C032—C040—H04B108.2
F008—P005—F00689.42 (7)H04A—C040—H04B107.3
F007—P005—F00689.25 (8)C026—C041—C019120.4 (2)
F010—P005—F00688.99 (8)C026—C041—H041119.8
F009—P005—F00689.08 (7)C019—C041—H041119.8
C057—O012—C055113.7 (2)C053—C042—C018120.2 (2)
C022—C013—C014120.15 (18)C053—C042—H042119.9
C022—C013—H013119.9C018—C042—H042119.9
C014—C013—H013119.9C029—C043—P004115.32 (14)
C036—C014—C013119.15 (17)C029—C043—H04C108.4
C036—C014—P002119.39 (14)P004—C043—H04C108.4
C013—C014—P002121.44 (14)C029—C043—H04D108.4
C051—C015—C021120.4 (2)P004—C043—H04D108.4
C051—C015—H015119.8H04C—C043—H04D107.5
C021—C015—H015119.8C031—C044—C025119.59 (19)
C025—C016—C024120.52 (19)C031—C044—H044120.2
C025—C016—H016119.7C025—C044—H044120.2
C024—C016—H016119.7C048—C045—C033120.3 (2)
C030—C017—C017i111.06 (19)C048—C045—H045119.8
C030—C017—H01A109.4C033—C045—H045119.8
C017i—C017—H01A109.4C028—C046—C036119.84 (19)
C030—C017—H01B109.4C028—C046—H046120.1
C017i—C017—H01B109.4C036—C046—H046120.1
H01A—C017—H01B108C034—C047—C027120.96 (19)
C020—C018—C042120.3 (2)C034—C047—H047119.5
C020—C018—H018119.8C027—C047—H047119.5
C042—C018—H018119.8C051—C048—C045119.6 (2)
C041—C019—C039120.0 (2)C051—C048—H048120.2
C041—C019—H019120C045—C048—H048120.2
C039—C019—H019120C035—C049—C038120.1 (2)
C018—C020—C023118.60 (19)C035—C049—H049120
C018—C020—P003123.66 (15)C038—C049—H049120
C023—C020—P003117.73 (16)C026—C050—C052120.0 (2)
C015—C021—C033118.84 (18)C026—C050—H050120
C015—C021—P004119.39 (15)C052—C050—H050120
C033—C021—P004121.76 (15)C048—C051—C015120.3 (2)
C028—C022—C013120.17 (19)C048—C051—H051119.9
C028—C022—H022119.9C015—C051—H051119.9
C013—C022—H022119.9C039—C052—C050120.1 (2)
C054—C023—C020120.9 (2)C039—C052—H052119.9
C054—C023—H023119.5C050—C052—H052119.9
C020—C023—H023119.5C054—C053—C042120.0 (2)
C037—C024—C016119.11 (17)C054—C053—H053120
C037—C024—P003123.42 (15)C042—C053—H053120
C016—C024—P003117.45 (14)C053—C054—C023119.9 (2)
C016—C025—C044120.1 (2)C053—C054—H054120
C016—C025—H025120C023—C054—H054120
C044—C025—H025120O012—C055—C058109.8 (2)
C041—C026—C050120.1 (2)O012—C055—H05A109.7
C041—C026—H026119.9C058—C055—H05A109.7
C050—C026—H026119.9O012—C055—H05B109.7
C047—C027—C038118.45 (18)C058—C055—H05B109.7
C047—C027—P002118.10 (15)H05A—C055—H05B108.2
C038—C027—P002123.38 (15)C057—C056—H05C109.5
C022—C028—C046120.12 (18)C057—C056—H05D109.5
C022—C028—H028119.9H05C—C056—H05D109.5
C046—C028—H028119.9C057—C056—H05E109.5
C043—C029—C040117.31 (16)H05C—C056—H05E109.5
C043—C029—H02A108H05D—C056—H05E109.5
C040—C029—H02A108O012—C057—C056110.4 (2)
C043—C029—H02B108O012—C057—H05F109.6
C040—C029—H02B108C056—C057—H05F109.6
H02A—C029—H02B107.2O012—C057—H05G109.6
C017—C030—P002111.60 (12)C056—C057—H05G109.6
C017—C030—H03A109.3H05F—C057—H05G108.1
P002—C030—H03A109.3C055—C058—H05H109.5
C017—C030—H03B109.3C055—C058—H05I109.5
P002—C030—H03B109.3H05H—C058—H05I109.5
H03A—C030—H03B108C055—C058—H05J109.5
C044—C031—C037120.8 (2)H05H—C058—H05J109.5
C044—C031—H031119.6H05I—C058—H05J109.5
C037—C031—H031119.6
P003—Cu01—P002—C027119.57 (7)Cu01—P002—C027—C038120.60 (17)
P004—Cu01—P002—C02760.79 (7)C013—C022—C028—C0460.3 (3)
P003—Cu01—P002—C030122.85 (7)C017i—C017—C030—P002179.00 (16)
P004—Cu01—P002—C03056.79 (7)C027—P002—C030—C017173.01 (13)
P003—Cu01—P002—C0141.56 (7)C014—P002—C030—C01777.86 (14)
P004—Cu01—P002—C014178.07 (6)Cu01—P002—C030—C01751.64 (14)
P002—Cu01—P003—C02079.86 (7)C020—P003—C032—C04062.16 (15)
P004—Cu01—P003—C020100.50 (7)C024—P003—C032—C040174.22 (13)
P002—Cu01—P003—C02442.64 (8)Cu01—P003—C032—C04056.76 (14)
P004—Cu01—P003—C024137.00 (7)C015—C021—C033—C0450.2 (3)
P002—Cu01—P003—C032164.55 (7)P004—C021—C033—C045178.67 (16)
P004—Cu01—P003—C03215.09 (7)C047—C034—C035—C0491.4 (4)
P002—Cu01—P004—C02188.21 (7)C013—C014—C036—C0460.5 (3)
P003—Cu01—P004—C02192.08 (7)P002—C014—C036—C046179.15 (14)
P002—Cu01—P004—C03931.21 (8)C044—C031—C037—C0240.3 (3)
P003—Cu01—P004—C039148.50 (7)C016—C024—C037—C0310.3 (3)
P002—Cu01—P004—C043148.56 (7)P003—C024—C037—C031178.27 (16)
P003—Cu01—P004—C04331.15 (7)C047—C027—C038—C0490.8 (3)
C022—C013—C014—C0360.8 (3)P002—C027—C038—C049176.02 (19)
C022—C013—C014—P002179.38 (15)C041—C019—C039—C0520.2 (3)
C027—P002—C014—C036137.70 (15)C041—C019—C039—P004171.72 (15)
C030—P002—C014—C036112.59 (15)C021—P004—C039—C05237.54 (18)
Cu01—P002—C014—C03612.95 (17)C043—P004—C039—C052147.75 (16)
C027—P002—C014—C01343.71 (17)Cu01—P004—C039—C05288.38 (16)
C030—P002—C014—C01366.00 (16)C021—P004—C039—C019151.01 (15)
Cu01—P002—C014—C013168.45 (12)C043—P004—C039—C01940.79 (17)
C042—C018—C020—C0230.1 (3)Cu01—P004—C039—C01983.08 (16)
C042—C018—C020—P003179.00 (16)C043—C029—C040—C03256.8 (2)
C024—P003—C020—C01882.72 (18)P003—C032—C040—C029116.84 (16)
C032—P003—C020—C01828.92 (19)C050—C026—C041—C0190.8 (3)
Cu01—P003—C020—C018148.02 (15)C039—C019—C041—C0260.8 (3)
C024—P003—C020—C02398.42 (16)C020—C018—C042—C0530.3 (3)
C032—P003—C020—C023149.94 (16)C040—C029—C043—P00448.1 (2)
Cu01—P003—C020—C02330.85 (17)C021—P004—C043—C02952.85 (16)
C051—C015—C021—C0330.2 (3)C039—P004—C043—C029162.59 (14)
C051—C015—C021—P004179.04 (19)Cu01—P004—C043—C02975.88 (14)
C039—P004—C021—C015121.03 (17)C037—C031—C044—C0250.5 (3)
C043—P004—C021—C015129.92 (17)C016—C025—C044—C0311.2 (3)
Cu01—P004—C021—C0151.88 (19)C021—C033—C045—C0480.5 (3)
C039—P004—C021—C03360.12 (18)C022—C028—C046—C0360.6 (3)
C043—P004—C021—C03348.93 (19)C014—C036—C046—C0280.1 (3)
Cu01—P004—C021—C033176.96 (14)C035—C034—C047—C0270.2 (3)
C014—C013—C022—C0280.4 (3)C038—C027—C047—C0341.2 (3)
C018—C020—C023—C0540.2 (3)P002—C027—C047—C034175.70 (17)
P003—C020—C023—C054179.12 (17)C033—C045—C048—C0510.4 (4)
C025—C016—C024—C0370.3 (3)C034—C035—C049—C0381.9 (4)
C025—C016—C024—P003179.02 (15)C027—C038—C049—C0350.8 (4)
C020—P003—C024—C03717.76 (19)C041—C026—C050—C0520.3 (3)
C032—P003—C024—C03793.35 (17)C045—C048—C051—C0150.0 (4)
Cu01—P003—C024—C037142.28 (14)C021—C015—C051—C0480.2 (4)
C020—P003—C024—C016160.86 (15)C019—C039—C052—C0500.3 (3)
C032—P003—C024—C01688.03 (16)P004—C039—C052—C050171.28 (16)
Cu01—P003—C024—C01636.34 (16)C026—C050—C052—C0390.2 (3)
C024—C016—C025—C0441.1 (3)C018—C042—C053—C0540.8 (3)
C030—P002—C027—C047178.12 (15)C042—C053—C054—C0230.8 (4)
C014—P002—C027—C04773.07 (17)C020—C023—C054—C0530.3 (3)
Cu01—P002—C027—C04756.18 (17)C057—O012—C055—C058178.0 (2)
C030—P002—C027—C0381.3 (2)C055—O012—C057—C056179.5 (2)
C014—P002—C027—C038110.14 (18)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C016—H016···F0060.952.473.318 (3)149
C018—H018···F008ii0.952.533.286 (3)137
C043—H04C···F0060.992.453.345 (3)150
C043—H04C···F0090.992.533.458 (3)156
C049—H049···O012i0.952.463.393 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C016—H016···F0060.952.473.318 (3)149
C018—H018···F008i0.952.533.286 (3)137
C043—H04C···F0060.992.453.345 (3)150
C043—H04C···F0090.992.533.458 (3)156
C049—H049···O012ii0.952.463.393 (3)169
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

This work was partially supported by a grant from Seikei University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationComba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKitagawa, S., Kondo, M., Kawata, S., Wada, S., Maekawa, M. & Megumu, M. (1995). Inorg. Chem. 34, 1455–1465.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcMillin, D. R. & McNett, K. M. (1998). Chem. Rev. 98, 1201–1220.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444–4448.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m204-m205
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds