metal-organic compounds
(2,2′-Bipyridine-κ2N,N′)dichloridopalladium(II) 1,4-dioxane hemisolvate
aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, c.p. 04510, México, DF, Mexico
*Correspondence e-mail: carmelacrisostomo@yahoo.com.mx
The 2(C10H8N2)]·0.5C4H8O2, consists of one PdII complex molecule and a half-molecule of 1,4-dioxane, the complete molecule being generated by inversion symmetry. The PdII atom has an almost square-planar coordination formed by the 2,2′-bipyridine ligand and two chloride ligands. Two intramolecular C—H⋯Cl hydrogen bonds occur. In the crystal, the PdII complex and 1,4-dioxane molecules are connected by C—H⋯O hydrogen bonds, forming a layer parallel to (10-1). Within the layer, weak π–π interactions [centroid–centroid distance = 3.817 (4) Å] are observed between the pyridine rings.
of the title compound, [PdClCCDC reference: 999627
Related literature
For related structures, see: Maekawa et al. (1991); Vicente et al. (1997); Kim et al. (2009). For palladium complexes with chelate ligands, see: Pointillart et al. (2007); Pazderski et al. (2006); Ferbinteanu et al. (1998). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
CCDC reference: 999627
10.1107/S1600536814009507/is5358sup1.cif
contains datablocks I, New_Global_publ_block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009507/is5358Isup2.hkl
To a solution of [Pd(MeCN)2Cl2] (0.13 g, 0.638 mmol) in acetone (10 ml), 2,2'-bipyridine (0.1 g, 0.64 mmol) was added under stirring. The resulting orange solution was allowed to react for 2 h under stirring at room temperature. After this time the solution was filtered and the solvent taken off under vacuum to produce a yellow solid of [(bipy)PdCl2]. Crystals suitable for X-ray diffraction experiments were obtained from a dimethylformamide/dioxane solvent system at room temperature. 1H NMR (DMSO-d6): δ 7.83 (t, 1H, CH), 8.38 (t, 1H, CH), 8.60 (d, 1H, CH), 9.14 (d, 1H, CH); 13C{1H}NMR (DMSO-D6): δ 124.3 (s, CH), 127.8 (s, CH), 141.7 (s, CH). 150.1 (s, CH). 156.9 (s, C).
H atoms were included in calculated positions (C—H = 0.97 Å for methylene and C—H = 0.96 Å for aromatic ring), and refined using a riding model with Uiso(H) = 1.2Ueq(C). 4 reflections were omitted from the final refinement.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The structure of the title compound, the displacement ellipsoids are drawn at the 40% of probability. Only the hydrogen atom involved in intermolecular interaction are drawn. | |
Fig. 2. Crystal packing diagram of the title compound. Hydrogen bonds are drawn as dashed lines. |
[PdCl(C10H8N2)2]·0.5C4H8O2 | F(000) = 744 |
Mr = 377.54 | Dx = 1.896 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2416 (5) Å | Cell parameters from 4271 reflections |
b = 14.6215 (10) Å | θ = 2.8–25.4° |
c = 12.9562 (9) Å | µ = 1.80 mm−1 |
β = 105.423 (2)° | T = 298 K |
V = 1322.44 (16) Å3 | Prism, yellow |
Z = 4 | 0.40 × 0.07 × 0.06 mm |
Bruker APEXII CCD area-detector diffractometer | 1813 reflections with I > 2σ(I) |
Detector resolution: 0.83 pixels mm-1 | Rint = 0.055 |
ω scans | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −8→8 |
Tmin = 0.365, Tmax = 0.906 | k = −17→16 |
7244 measured reflections | l = −14→15 |
2414 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0933P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2414 reflections | Δρmax = 1.49 e Å−3 |
163 parameters | Δρmin = −1.13 e Å−3 |
[PdCl(C10H8N2)2]·0.5C4H8O2 | V = 1322.44 (16) Å3 |
Mr = 377.54 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2416 (5) Å | µ = 1.80 mm−1 |
b = 14.6215 (10) Å | T = 298 K |
c = 12.9562 (9) Å | 0.40 × 0.07 × 0.06 mm |
β = 105.423 (2)° |
Bruker APEXII CCD area-detector diffractometer | 2414 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1813 reflections with I > 2σ(I) |
Tmin = 0.365, Tmax = 0.906 | Rint = 0.055 |
7244 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.49 e Å−3 |
2414 reflections | Δρmin = −1.13 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.16709 (6) | 0.48172 (3) | −0.14236 (4) | 0.0377 (2) | |
Cl1 | 0.1430 (3) | 0.56553 (14) | −0.29371 (14) | 0.0636 (5) | |
Cl2 | 0.0446 (3) | 0.35687 (14) | −0.24462 (15) | 0.0657 (5) | |
N1 | 0.1942 (6) | 0.4175 (3) | −0.0003 (4) | 0.0376 (12) | |
C2 | 0.2757 (9) | 0.4690 (4) | 0.0871 (5) | 0.0387 (15) | |
C3 | 0.3108 (10) | 0.4325 (5) | 0.1885 (5) | 0.0487 (16) | |
H3 | 0.3678 | 0.4679 | 0.2481 | 0.058* | |
C4 | 0.2607 (10) | 0.3433 (5) | 0.2008 (6) | 0.0542 (18) | |
H4 | 0.2840 | 0.3179 | 0.2688 | 0.065* | |
C5 | 0.1779 (9) | 0.2927 (5) | 0.1140 (5) | 0.0512 (17) | |
H5 | 0.1436 | 0.2324 | 0.1221 | 0.061* | |
C6 | 0.1439 (9) | 0.3305 (5) | 0.0125 (6) | 0.0496 (16) | |
H6 | 0.0858 | 0.2955 | −0.0472 | 0.060* | |
N7 | 0.2849 (7) | 0.5840 (3) | −0.0419 (4) | 0.0401 (12) | |
C8 | 0.3249 (8) | 0.5628 (4) | 0.0654 (5) | 0.0382 (14) | |
C9 | 0.4075 (9) | 0.6253 (5) | 0.1418 (5) | 0.0493 (16) | |
H9 | 0.4329 | 0.6098 | 0.2138 | 0.059* | |
C10 | 0.4534 (10) | 0.7111 (5) | 0.1131 (6) | 0.0587 (19) | |
H10 | 0.5092 | 0.7541 | 0.1650 | 0.070* | |
C11 | 0.4154 (10) | 0.7319 (5) | 0.0072 (7) | 0.059 (2) | |
H11 | 0.4461 | 0.7894 | −0.0139 | 0.071* | |
C12 | 0.3315 (9) | 0.6679 (4) | −0.0688 (6) | 0.0468 (16) | |
H12 | 0.3064 | 0.6833 | −0.1408 | 0.056* | |
O1 | 0.4638 (7) | 0.5658 (4) | 0.4170 (4) | 0.0603 (13) | |
C13 | 0.6526 (11) | 0.5477 (6) | 0.4826 (6) | 0.0583 (19) | |
H13A | 0.6822 | 0.5899 | 0.5426 | 0.070* | |
H13B | 0.7444 | 0.5577 | 0.4413 | 0.070* | |
C14 | 0.6707 (11) | 0.4527 (6) | 0.5235 (6) | 0.062 (2) | |
H14A | 0.6504 | 0.4105 | 0.4637 | 0.075* | |
H14B | 0.7994 | 0.4432 | 0.5688 | 0.075* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.0384 (3) | 0.0347 (4) | 0.0405 (4) | 0.00612 (19) | 0.0114 (2) | −0.0008 (2) |
Cl1 | 0.0829 (13) | 0.0635 (13) | 0.0483 (10) | 0.0124 (10) | 0.0241 (9) | 0.0100 (9) |
Cl2 | 0.0785 (12) | 0.0538 (12) | 0.0561 (11) | −0.0033 (9) | 0.0025 (9) | −0.0138 (9) |
N1 | 0.034 (2) | 0.035 (3) | 0.047 (3) | 0.004 (2) | 0.016 (2) | 0.000 (2) |
C2 | 0.038 (3) | 0.036 (4) | 0.048 (4) | 0.006 (3) | 0.023 (3) | −0.003 (3) |
C3 | 0.053 (4) | 0.054 (5) | 0.041 (4) | 0.000 (3) | 0.017 (3) | 0.002 (3) |
C4 | 0.062 (4) | 0.056 (5) | 0.050 (4) | 0.006 (3) | 0.024 (3) | 0.008 (4) |
C5 | 0.058 (4) | 0.034 (4) | 0.069 (5) | 0.000 (3) | 0.029 (4) | 0.009 (4) |
C6 | 0.048 (4) | 0.041 (4) | 0.061 (4) | 0.001 (3) | 0.018 (3) | 0.000 (3) |
N7 | 0.036 (3) | 0.037 (3) | 0.051 (3) | 0.004 (2) | 0.016 (2) | −0.002 (3) |
C8 | 0.034 (3) | 0.033 (3) | 0.051 (4) | 0.000 (3) | 0.019 (3) | −0.009 (3) |
C9 | 0.054 (4) | 0.046 (4) | 0.051 (4) | −0.002 (3) | 0.020 (3) | −0.010 (3) |
C10 | 0.065 (4) | 0.044 (4) | 0.070 (5) | −0.008 (3) | 0.023 (4) | −0.025 (4) |
C11 | 0.055 (4) | 0.025 (3) | 0.108 (6) | 0.002 (3) | 0.043 (4) | 0.000 (4) |
C12 | 0.051 (4) | 0.034 (4) | 0.060 (4) | 0.003 (3) | 0.022 (3) | 0.005 (3) |
O1 | 0.078 (3) | 0.055 (3) | 0.052 (3) | 0.013 (3) | 0.023 (3) | 0.013 (3) |
C13 | 0.066 (5) | 0.058 (5) | 0.055 (4) | −0.007 (4) | 0.022 (4) | −0.006 (4) |
C14 | 0.062 (5) | 0.062 (5) | 0.064 (5) | 0.008 (4) | 0.018 (4) | 0.014 (4) |
Pd1—N7 | 2.017 (5) | C8—C9 | 1.363 (9) |
Pd1—N1 | 2.029 (5) | C9—C10 | 1.374 (10) |
Pd1—Cl1 | 2.2793 (18) | C9—H9 | 0.9300 |
Pd1—Cl2 | 2.2912 (19) | C10—C11 | 1.360 (11) |
N1—C6 | 1.345 (8) | C10—H10 | 0.9300 |
N1—C2 | 1.357 (8) | C11—C12 | 1.376 (9) |
C2—C3 | 1.377 (9) | C11—H11 | 0.9300 |
C2—C8 | 1.463 (9) | C12—H12 | 0.9300 |
C3—C4 | 1.375 (10) | O1—C14i | 1.420 (8) |
C3—H3 | 0.9300 | O1—C13 | 1.430 (9) |
C4—C5 | 1.346 (10) | C13—C14 | 1.479 (11) |
C4—H4 | 0.9300 | C13—H13A | 0.9700 |
C5—C6 | 1.387 (9) | C13—H13B | 0.9700 |
C5—H5 | 0.9300 | C14—O1i | 1.420 (8) |
C6—H6 | 0.9300 | C14—H14A | 0.9700 |
N7—C12 | 1.344 (8) | C14—H14B | 0.9700 |
N7—C8 | 1.377 (8) | ||
N7—Pd1—N1 | 80.5 (2) | C9—C8—C2 | 124.8 (6) |
N7—Pd1—Cl1 | 94.55 (16) | N7—C8—C2 | 114.1 (5) |
N1—Pd1—Cl1 | 174.96 (15) | C8—C9—C10 | 120.4 (7) |
N7—Pd1—Cl2 | 175.00 (15) | C8—C9—H9 | 119.8 |
N1—Pd1—Cl2 | 94.89 (15) | C10—C9—H9 | 119.8 |
Cl1—Pd1—Cl2 | 90.09 (7) | C11—C10—C9 | 118.5 (7) |
C6—N1—C2 | 119.6 (5) | C11—C10—H10 | 120.7 |
C6—N1—Pd1 | 125.8 (5) | C9—C10—H10 | 120.7 |
C2—N1—Pd1 | 114.6 (4) | C10—C11—C12 | 120.2 (7) |
N1—C2—C3 | 120.6 (6) | C10—C11—H11 | 119.9 |
N1—C2—C8 | 115.7 (5) | C12—C11—H11 | 119.9 |
C3—C2—C8 | 123.7 (6) | N7—C12—C11 | 121.9 (6) |
C4—C3—C2 | 119.4 (6) | N7—C12—H12 | 119.0 |
C4—C3—H3 | 120.3 | C11—C12—H12 | 119.0 |
C2—C3—H3 | 120.3 | C14i—O1—C13 | 109.1 (6) |
C5—C4—C3 | 119.8 (7) | O1—C13—C14 | 111.5 (6) |
C5—C4—H4 | 120.1 | O1—C13—H13A | 109.3 |
C3—C4—H4 | 120.1 | C14—C13—H13A | 109.3 |
C4—C5—C6 | 120.0 (6) | O1—C13—H13B | 109.3 |
C4—C5—H5 | 120.0 | C14—C13—H13B | 109.3 |
C6—C5—H5 | 120.0 | H13A—C13—H13B | 108.0 |
N1—C6—C5 | 120.6 (6) | O1i—C14—C13 | 111.4 (6) |
N1—C6—H6 | 119.7 | O1i—C14—H14A | 109.3 |
C5—C6—H6 | 119.7 | C13—C14—H14A | 109.3 |
C12—N7—C8 | 117.8 (5) | O1i—C14—H14B | 109.3 |
C12—N7—Pd1 | 127.0 (5) | C13—C14—H14B | 109.3 |
C8—N7—Pd1 | 115.1 (4) | H14A—C14—H14B | 108.0 |
C9—C8—N7 | 121.1 (6) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.93 | 2.55 | 3.471 (9) | 170 |
C5—H5···O1ii | 0.93 | 2.57 | 3.464 (8) | 163 |
C9—H9···O1 | 0.93 | 2.66 | 3.587 (8) | 174 |
C6—H6···Cl2 | 0.93 | 2.65 | 3.239 (7) | 122 |
C12—H12···Cl1 | 0.93 | 2.65 | 3.238 (7) | 122 |
Symmetry code: (ii) −x+1/2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1 | 0.93 | 2.55 | 3.471 (9) | 170 |
C5—H5···O1i | 0.93 | 2.57 | 3.464 (8) | 163 |
C9—H9···O1 | 0.93 | 2.66 | 3.587 (8) | 174 |
C6—H6···Cl2 | 0.93 | 2.65 | 3.239 (7) | 122 |
C12—H12···Cl1 | 0.93 | 2.65 | 3.238 (7) | 122 |
Symmetry code: (i) −x+1/2, y−1/2, −z+1/2. |
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferbinteanu, M., Cimpoesu, F., Andruh, M. & Rochon, F. (1998). Polyhedron, 17, 3671–3679. Web of Science CSD CrossRef CAS Google Scholar
Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m615–m616. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Maekawa, M., Munakata, M., Kitagawa, S. & Nakamura, M. (1991). Anal. Sci. 7, 521–522. CrossRef CAS Web of Science Google Scholar
Pazderski, L., Szlyk, E., Sitkowski, J., Kamienski, B., Kozerski, L., Tousek, J. & Marek, R. (2006). Magn. Reson. Chem. 44, 163–170. Web of Science CrossRef PubMed CAS Google Scholar
Pointillart, F., Train, C., Villain, F., Cartier dit Moulin, C., Gredin, P., Chamoreau, L., Gruselle, M., Aullon, G., Alvarez, S. & Verdaguer, M. (2007). J. Am. Chem. Soc. 129, 1327–1334. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicente, J., Abad, J. A., Rink, B. & Arellano, M. C. R. (1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years the use of chelate ligands of the type N—N has been of great interest due to the versatility of its applications. This is particularly true in the case of supramolecular chemistry and crystal engineering, where these kind of chelates are often used as blocking ligands and the study of their metallic derivatives in the solid state has revealed the tremendous importance of non-covalent interactions and advanced the understanding of the reactivity of these species (Pointillart et al., 2007; Pazderski et al., 2006). Complexes of group 10 elements with these ligands often present square planar geometries, and in some cases, they can exhibit interesting dimeric and trimeric structures (Ferbinteanu et al. 1998). The coordination complex [PdCl2(C10H8N2)] has been described before (Maekawa et al., 1991), and as CH2Cl2 solvate (Vicente et al., 1997; Kim et al., 2009). Here, we describe the structure of the title complex and its interaction with 1,4-dioxane as solvate.
The Pd complex crystallizes as 1,4-dioxane solvate and the solvent is determined as a half-molecule in the asymmetric unit; the symmetry operation 1 - x, 1 - y, 1 - z is necessary to generate the whole molecule. The title compound has similar values of bond distances and angles to the previously described CH2Cl2 solvate (Maekawa et al., 1991; Vicente et al., 1997; Kim et al., 2009). According to the Cremer & Pople puckering parameters (Cremer & Pople, 1975), the dioxane molecule has a chair conformation [Q=0.553 (8), θ=180.00 (1)°, ϕ =0°]. In the asymmetric unit, the O atom is bonded to H3—C3 and H9—C9 in a bifurcated fashion (Fig. 1). When the symmetry code (1 - x, 1 - y, 1 - z) is applied, a centrosymmetric structure of Pd complex–1,4-dioxane (2/1) is generated. In addition, the O atom is linked by O···H5—C5(bipy) (Table 1 and Fig. 2). As a result of these interactions, the bipyridine complexes are bonded by a weak π–π stacking interaction [Cg1(N1/C2–C6)···Cg2(N7/C8–C12) 3.817 (4) Å].