organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Hy­dr­oxy­phen­yl)imidazolidine-2,4-dione

aDepartment of Chemistry and Chemical Engineering, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China, and bLaboratory of Medicinal Chemistry, Lvliang University, Lvliang, Shanxi 033001, People's Republic of China
*Correspondence e-mail: qinyq2003@163.com

Edited by V. Khrustalev, Russian Academy of Sciences, Russia (Received 10 April 2014; accepted 5 May 2014; online 10 May 2014)

The title compound, C9H8N2O3, was prepared by reaction of phenol, glyoxylic acid and urea in water. The imidazolidine ring adopts an almost planar conformation (r.m.s. deviation = 0.012 Å) and is twisted by 89.3 (1)° relative to the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional framework.

Related literature

For general background to the synthesis and applications of hydantoin derivatives, see: Liu & Zhao (2001[Liu, J. & Zhao, Y. (2001). Chin. J. Disinfect. 18, 218-222.]); Dhar et al. (2002[Dhar, T. G., Iwanowicz, E., Launay, M., Maillet, M., Nicolai, E. & Potin, D. (2002). Hydantoin compounds useful as anti-inflammatory agents. US Patent US2002/0143035A1[P].]); Goodnow & Kang (2003[Goodnow, J. R. & Kang, L. (2003). Hydantoin-containing glucokinase activators. US Patent US2003/0225286A1[P].]). For related compounds, see: Ji et al. (2002[Ji, B. M., Du, C. X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252-255.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O3

  • Mr = 192.17

  • Monoclinic, P 21 /c

  • a = 10.3694 (11) Å

  • b = 6.9914 (8) Å

  • c = 12.3857 (13) Å

  • β = 105.619 (2)°

  • V = 864.76 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 4721 measured reflections

  • 1558 independent reflections

  • 1100 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.02

  • 1558 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.883 (18) 1.952 (19) 2.8180 (19) 166.7 (17)
N1—H1⋯O4ii 0.85 (2) 2.535 (19) 3.204 (2) 136.5 (16)
N1—H1⋯O6iii 0.85 (2) 2.36 (2) 3.067 (2) 141.1 (17)
O6—H6⋯O5iv 0.95 (2) 1.78 (2) 2.7223 (18) 169.0 (18)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydantoin derivatives can be used as intermediates in pharmaceutical products, pesticides and photosensitive material. It is very important to the development of hydantoins compounds. Pharmacological functions of hydantoin derivatives are mainly shown in antibacterial (Liu & Zhao, 2001), diminishing inflammation (Dhar et al., 2002), relieving cough and asthma, lowering blood sugar (Goodnow & Kang, 2003), and inhibiting agent of uremic toxin. Different substituted hydantoin and its derivatives show good application future, such as the treatment of diabetes, kidney disease, autoimmune disease and blood disease. The spectrum of hydantoin derivatives is broad as bacterial disinfectant. They are widely used in aquaculture, pest and disease control, disinfection treatment of health equipment, mildew prevention and control of crops, preservation of vegetable & Fruit, and mildew anti-corrosion of industrial products and living goods.

In the molecule of the title compound, C9H8N2O3, I (Fig. 1) bond lengths and angles are generally normal (Ji et al., 2002). The imidazolidine ring adopts a planar conformation (r.m.s. deviation is 0.012 Å) and is twisted by 89.3 (1)° relative to the benzene plane.

In the crystal, molecules are bound by intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) into three-dimensional framework (Fig. 2).

Related literature top

For general background to the synthesis and applications of hydantoin derivatives, see: Liu & Zhao (2001); Dhar et al. (2002); Goodnow & Kang (2003). For related compounds, see: Ji et al. (2002).

Experimental top

The title compound was prepared by reaction of phenol (0.05 mol), glyoxylic acid (0.06 mol) and urea (0.06 mol) in hydrochloric acid (37%, 80 ml) at 370 K for 6 h, cooling, filtering, affording the tile compound by recrystallization in water. Single crystals of the title compound suitable for X-ray measurements was obtained by recrystallization from ethanol at room temperature.

Refinement top

The hydroxyl and amino hydrogen atoms were objectively localized in the difference-Fourier map and refined isotropically with fixed displacement parameters. The other hydrogen atoms were placed in the calculated positions with C—H distances = 0.93–0.98 Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are presented at the 40% probability level. H atoms are depicted as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal structure of I viewed along [001]. The intermolecular hydrogen bonding interactions are depicted by dashed lines.
5-(4-Hydroxyphenyl)imidazolidine-2,4-dione top
Crystal data top
C9H8N2O3F(000) = 400
Mr = 192.17Dx = 1.476 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.3694 (11) ÅCell parameters from 933 reflections
b = 6.9914 (8) Åθ = 2.0–25.0°
c = 12.3857 (13) ŵ = 0.11 mm1
β = 105.619 (2)°T = 296 K
V = 864.76 (16) Å3Rectangle, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
phi and ω scansh = 1212
4721 measured reflectionsk = 88
1558 independent reflectionsl = 714
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.0206P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1558 reflectionsΔρmax = 0.15 e Å3
137 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C9H8N2O3V = 864.76 (16) Å3
Mr = 192.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3694 (11) ŵ = 0.11 mm1
b = 6.9914 (8) ÅT = 296 K
c = 12.3857 (13) Å0.30 × 0.20 × 0.20 mm
β = 105.619 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1100 reflections with I > 2σ(I)
4721 measured reflectionsRint = 0.035
1558 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
1558 reflectionsΔρmin = 0.14 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36582 (16)0.1852 (2)0.60788 (13)0.0438 (4)
H10.3651 (18)0.070 (3)0.6298 (15)0.053*
N20.39496 (14)0.4952 (2)0.61795 (12)0.0394 (4)
H20.4272 (18)0.605 (3)0.6494 (15)0.047*
O40.46179 (12)0.32043 (18)0.78108 (10)0.0464 (4)
O50.32237 (12)0.58433 (19)0.43383 (10)0.0508 (4)
O60.23743 (12)0.1408 (2)0.29172 (11)0.0512 (4)
H60.2595 (19)0.108 (3)0.2145 (17)0.061*
C10.41256 (16)0.3268 (3)0.67946 (15)0.0360 (4)
C20.34366 (16)0.4631 (3)0.50733 (15)0.0362 (4)
C30.31532 (17)0.2501 (2)0.49270 (14)0.0385 (5)
H30.36910.19430.44660.046*
C40.16868 (17)0.2098 (2)0.43983 (14)0.0353 (4)
C50.07338 (17)0.2567 (3)0.49525 (15)0.0410 (5)
H50.10090.30600.56760.049*
C60.06081 (18)0.2319 (3)0.44558 (15)0.0417 (5)
H6A0.12330.26330.48420.050*
C70.10245 (17)0.1601 (2)0.33802 (14)0.0366 (4)
C80.00956 (17)0.1091 (3)0.28186 (14)0.0413 (5)
H80.03740.05830.20990.050*
C90.12569 (18)0.1341 (3)0.33336 (14)0.0414 (5)
H90.18830.09920.29550.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0489 (10)0.0338 (9)0.0412 (10)0.0001 (8)0.0011 (7)0.0047 (7)
N20.0423 (9)0.0360 (9)0.0336 (9)0.0046 (7)0.0009 (7)0.0005 (7)
O40.0472 (8)0.0544 (9)0.0312 (8)0.0075 (6)0.0002 (6)0.0051 (6)
O50.0534 (9)0.0547 (9)0.0394 (8)0.0061 (7)0.0038 (6)0.0111 (7)
O60.0360 (8)0.0701 (10)0.0427 (8)0.0081 (6)0.0023 (6)0.0054 (7)
C10.0277 (9)0.0427 (11)0.0348 (11)0.0036 (8)0.0035 (8)0.0016 (8)
C20.0281 (9)0.0437 (11)0.0340 (11)0.0025 (8)0.0036 (8)0.0027 (9)
C30.0357 (10)0.0431 (11)0.0342 (10)0.0011 (8)0.0054 (8)0.0028 (8)
C40.0374 (10)0.0326 (10)0.0338 (10)0.0025 (8)0.0063 (8)0.0021 (8)
C50.0433 (12)0.0468 (11)0.0310 (10)0.0035 (9)0.0068 (8)0.0100 (8)
C60.0394 (11)0.0483 (12)0.0385 (11)0.0017 (9)0.0126 (8)0.0076 (9)
C70.0330 (10)0.0377 (11)0.0359 (10)0.0036 (8)0.0040 (8)0.0007 (8)
C80.0460 (11)0.0463 (11)0.0297 (10)0.0078 (9)0.0071 (8)0.0090 (8)
C90.0399 (11)0.0489 (12)0.0368 (11)0.0028 (9)0.0124 (8)0.0078 (9)
Geometric parameters (Å, º) top
N1—C11.330 (2)C3—H30.9800
N1—C31.454 (2)C4—C91.379 (2)
N1—H10.85 (2)C4—C51.386 (3)
N2—C21.348 (2)C5—C61.373 (2)
N2—C11.387 (2)C5—H50.9300
N2—H20.883 (18)C6—C71.380 (2)
O4—C11.2251 (18)C6—H6A0.9300
O5—C21.220 (2)C7—C81.378 (3)
O6—C71.3690 (19)C8—C91.387 (2)
O6—H60.95 (2)C8—H80.9300
C2—C31.519 (2)C9—H90.9300
C3—C41.511 (2)
C1—N1—C3113.08 (15)C9—C4—C5118.33 (16)
C1—N1—H1121.6 (13)C9—C4—C3120.95 (17)
C3—N1—H1125.3 (13)C5—C4—C3120.65 (16)
C2—N2—C1111.98 (15)C6—C5—C4121.34 (17)
C2—N2—H2126.3 (12)C6—C5—H5119.3
C1—N2—H2121.0 (12)C4—C5—H5119.3
C7—O6—H6112.8 (12)C5—C6—C7119.65 (17)
O4—C1—N1129.33 (17)C5—C6—H6A120.2
O4—C1—N2123.50 (17)C7—C6—H6A120.2
N1—C1—N2107.17 (15)O6—C7—C8122.53 (16)
O5—C2—N2125.82 (17)O6—C7—C6117.33 (16)
O5—C2—C3127.01 (16)C8—C7—C6120.13 (15)
N2—C2—C3107.16 (15)C7—C8—C9119.54 (16)
N1—C3—C4114.94 (15)C7—C8—H8120.2
N1—C3—C2100.48 (13)C9—C8—H8120.2
C4—C3—C2111.97 (14)C4—C9—C8120.98 (17)
N1—C3—H3109.7C4—C9—H9119.5
C4—C3—H3109.7C8—C9—H9119.5
C2—C3—H3109.7
C3—N1—C1—O4179.77 (17)C2—C3—C4—C9112.19 (19)
C3—N1—C1—N20.8 (2)N1—C3—C4—C549.1 (2)
C2—N2—C1—O4177.58 (16)C2—C3—C4—C564.7 (2)
C2—N2—C1—N13.0 (2)C9—C4—C5—C61.0 (3)
C1—N2—C2—O5177.36 (17)C3—C4—C5—C6175.96 (17)
C1—N2—C2—C33.78 (19)C4—C5—C6—C70.5 (3)
C1—N1—C3—C4119.10 (17)C5—C6—C7—O6179.04 (16)
C1—N1—C3—C21.27 (19)C5—C6—C7—C81.6 (3)
O5—C2—C3—N1178.20 (17)O6—C7—C8—C9179.43 (16)
N2—C2—C3—N12.96 (17)C6—C7—C8—C91.3 (3)
O5—C2—C3—C459.3 (2)C5—C4—C9—C81.4 (3)
N2—C2—C3—C4119.51 (16)C3—C4—C9—C8175.60 (17)
N1—C3—C4—C9133.99 (17)C7—C8—C9—C40.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.883 (18)1.952 (19)2.8180 (19)166.7 (17)
N1—H1···O4ii0.85 (2)2.535 (19)3.204 (2)136.5 (16)
N1—H1···O6iii0.85 (2)2.36 (2)3.067 (2)141.1 (17)
O6—H6···O5iv0.95 (2)1.78 (2)2.7223 (18)169.0 (18)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.883 (18)1.952 (19)2.8180 (19)166.7 (17)
N1—H1···O4ii0.85 (2)2.535 (19)3.204 (2)136.5 (16)
N1—H1···O6iii0.85 (2)2.36 (2)3.067 (2)141.1 (17)
O6—H6···O5iv0.95 (2)1.78 (2)2.7223 (18)169.0 (18)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x, y, z+1; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Colleges and Universities Technology Project of Shanxi Provine (20121033), and the Natural Science Fund of Lvliang University (contracts ZRXN201206 and ZRXN201210).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, T. G., Iwanowicz, E., Launay, M., Maillet, M., Nicolai, E. & Potin, D. (2002). Hydantoin compounds useful as anti-inflammatory agents. US Patent US2002/0143035A1[P].  Google Scholar
First citationGoodnow, J. R. & Kang, L. (2003). Hydantoin-containing glucokinase activators. US Patent US2003/0225286A1[P].  Google Scholar
First citationJi, B. M., Du, C. X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252–255.  CAS Google Scholar
First citationLiu, J. & Zhao, Y. (2001). Chin. J. Disinfect. 18, 218–222.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds