organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 7,7′-di­chloro-4-oxo-4H-[1,4′-bi­quinoline]-3,3′-di­carboxyl­ate

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by S. V. Lindeman, Marquette University, USA (Received 16 April 2014; accepted 6 May 2014; online 10 May 2014)

In the title compound, C24H18Cl2N2O5, the quinoline and quinolinone moieties are nearly perpendicular to each other, forming a dihedral angle of 82.36 (3)°. In the crystal, mol­ecules form a halogen bond between a Cl atom of a quinolinone moiety and the N atom of the quinoline moiety of the inversion equivalent [Cl⋯N = 3.106 (3) Å]. The mol­ecules also form two kinds of C—H⋯O hydrogen-bonded centrosymmetric inversion dimers, making chains along the c-axis direction which are further inter­linked by the halogen bonds into layers parallel to the bc plane.

Related literature

For background to this study, see: Ishikawa & Fujii (2011[Ishikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.]). For a related structure, see: Ishikawa & Yoshida (2014[Ishikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, o523.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18Cl2N2O5

  • Mr = 485.32

  • Triclinic, [P \overline 1]

  • a = 7.631 (4) Å

  • b = 12.416 (5) Å

  • c = 12.461 (5) Å

  • α = 107.99 (3)°

  • β = 101.08 (3)°

  • γ = 94.77 (3)°

  • V = 1089.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 100 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Rigaku AFC-7R diffractometer

  • 6003 measured reflections

  • 4994 independent reflections

  • 4229 reflections with F2 > 2σ(F2)

  • Rint = 0.059

  • 3 standard reflections every 150 reflections intensity decay: 1.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.186

  • S = 1.10

  • 4994 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.95 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H11⋯O1i 0.95 2.35 3.231 (3) 155 (1)
C13—H10⋯O2ii 0.95 2.38 3.301 (4) 162 (1)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

4-Quinolones show inhibition not only to Gram negative and Gram positive bacteria, but also to human immunodeficiency virus (HIV). The inhibition to HIV is derived from their chelating ability to metal ions in the active site of metalloenzyme HIV integrase. According to our inhibitor design targeting metalloenzyme influenza virus RNA polymerase (Ishikawa & Fujii, 2011), we tried to synthesize a 4-quinolone derivative bearing a benzenesulfonyl group. The crystallographic analysis revealed that the reaction of ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate with benzenesulfonyl chloride in the presence of K2CO3 in N,N-dimethylformamide (DMF) at 120 °C provided an unexpected 1,4'-biquinoline derivative, diethyl 4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate (Ishikawa & Yoshida, 2014). 1,4'-Biquinoline derivatives might be potential enzyme inhibitors. Thus, we synthesized the title compound, a dichlorinated 1,4'-biquinoline derivative, by the similar method mentioned above, and herein report its crystal structure.

As shown in Fig.1, the C–N bond formation between the quinolinone and quinoline rings is confirmed. The chloroquinolinone and chloroquinoline moieties are nearly perpendicular to each other [dihedral angle = 97.64 (3)°]. In the crystal, the molecules are linked to each other to give dimers through halogen bond between the Cl atoms of the chloroquinolinone moieties and the N atoms of the chloroquinoline moieties of the inversion equivalentsi [Cl1···N2 = 3.106 (3) Å, i: –x + 1, –y, –z + 1]. Two systems of C–H···O hydrogen-bonded dimers form chains along the c-axis, which are interlinked by the halogen bonds forming layers parallel to the bc plane, as shown in Fig.2. On the other hand, clear-cut ring-ring stacking interaction is not found. These findings are in contrast with those in the crystal packing of diethyl 4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate (Ishikawa & Yoshida, 2014).

Related literature top

For background to this study, see: Ishikawa & Fujii (2011). For a related structure, see: Ishikawa & Yoshida (2014).

Experimental top

In a Schlenk tube under nitrogen atmosphere, the mixture of ethyl 7-chloro-4-oxo-1,4-dihydroquinoline-3-carboxylate (5.00 mmol), benzenesulfonyl chloride (5.00 mmol), K2CO3 (10.0 mmol) in 10 ml of DMF were stirred at 130 °C overnight. After cooling to room temperature ice water was added. The precipitates were collected, and were recrystallized from DMF to give white solids (yield: 18%). 1H NMR (400 MHz, DMSO-d6): δ = 0.90 (t, 3H, J = 7.0 Hz), 1.23 (t, 3H, J = 7.0 Hz), 4.03–4.15 (m, 2H), 4.20 (q, 2H, J = 7.0 Hz), 6.99 (d, 1H, J = 1.4 Hz), 7.52 (dd, 1H, J = 1.4 and 8.3 Hz), 7.74 (br s, 2H), 8.31 (d, 1H, J = 8.3 Hz), 8.43 (s, 1H), 8.70 (s, 1H), 9.57 (s, 1H). DART-MS calcd for [C24H18Cl2N2O5 + H+]: 484.059, found 485.099. Single crystals suitable for X-ray diffraction were obtained by slow evapolation of an ethyl acetate solution of the title compound at room temperature.

Refinement top

The C(sp2)-bound [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)] and methylene [C–H 0.99 Å, Uiso(H) = 1.2Ueq(C)] hydrogen atoms were placed in geometrical positions and refined using a riding model. A rotating group model was applied to the methyl groups with distance constraint [C–H = 0.98 Å, Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999); cell refinement: WinAFC Diffractometer Control Software (Rigaku, 1999); data reduction: WinAFC Diffractometer Control Software (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the intermolecular interactions of the title compound, represented as dashed green lines for Cl···N and dashed black lines for C–H···O interactions.
Diethyl 7,7'-dichloro-4-oxo-4H-[1,4'-biquinoline]-3,3'-dicarboxylate top
Crystal data top
C24H18Cl2N2O5Z = 2
Mr = 485.32F(000) = 500.00
Triclinic, P1Dx = 1.480 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.631 (4) ÅCell parameters from 25 reflections
b = 12.416 (5) Åθ = 15.3–17.4°
c = 12.461 (5) ŵ = 0.34 mm1
α = 107.99 (3)°T = 100 K
β = 101.08 (3)°Plate, colorless
γ = 94.77 (3)°0.35 × 0.25 × 0.10 mm
V = 1089.0 (8) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 99
6003 measured reflectionsk = 1516
4994 independent reflectionsl = 169
4229 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.059 intensity decay: 1.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1156P)2 + 1.0113P]
where P = (Fo2 + 2Fc2)/3
4994 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.95 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C24H18Cl2N2O5γ = 94.77 (3)°
Mr = 485.32V = 1089.0 (8) Å3
Triclinic, P1Z = 2
a = 7.631 (4) ÅMo Kα radiation
b = 12.416 (5) ŵ = 0.34 mm1
c = 12.461 (5) ÅT = 100 K
α = 107.99 (3)°0.35 × 0.25 × 0.10 mm
β = 101.08 (3)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.059
6003 measured reflections3 standard reflections every 150 reflections
4994 independent reflections intensity decay: 1.7%
4229 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.10Δρmax = 0.66 e Å3
4994 reflectionsΔρmin = 0.95 e Å3
300 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.73301 (8)0.03469 (5)0.79333 (5)0.02074 (18)
Cl20.29884 (8)0.05407 (6)0.46908 (5)0.02351 (19)
O10.7561 (3)0.59358 (16)1.06621 (15)0.0228 (4)
O20.4484 (3)0.72976 (15)0.83028 (15)0.0197 (4)
O30.6483 (3)0.77390 (15)1.00077 (15)0.0198 (4)
O40.7338 (3)0.44766 (18)0.47536 (16)0.0261 (5)
O50.8082 (3)0.41909 (16)0.64744 (15)0.0182 (4)
N10.5095 (3)0.39265 (17)0.73369 (16)0.0138 (4)
N20.2732 (3)0.20828 (18)0.37892 (17)0.0174 (5)
C10.5012 (3)0.5061 (2)0.7706 (2)0.0141 (5)
C20.5822 (3)0.5797 (2)0.8794 (2)0.0145 (5)
C30.6857 (4)0.5365 (2)0.9646 (2)0.0163 (5)
C40.8031 (4)0.3633 (3)0.9917 (2)0.0198 (5)
C50.8157 (4)0.2478 (3)0.9544 (3)0.0208 (5)
C60.7215 (4)0.1800 (2)0.8429 (2)0.0175 (5)
C70.6192 (3)0.2257 (2)0.7685 (2)0.0157 (5)
C80.6992 (3)0.4127 (2)0.9191 (2)0.0154 (5)
C90.6093 (3)0.3430 (2)0.80736 (19)0.0142 (5)
C100.5507 (4)0.6999 (2)0.8995 (2)0.0152 (5)
C110.6218 (4)0.8920 (2)1.0198 (3)0.0202 (5)
C120.7347 (4)0.9628 (3)1.1383 (3)0.0272 (6)
C130.4320 (4)0.2725 (3)0.4112 (2)0.0178 (5)
C140.5195 (4)0.3360 (2)0.5282 (2)0.0157 (5)
C150.4338 (3)0.32682 (19)0.61337 (19)0.0141 (5)
C160.1675 (4)0.2425 (3)0.6666 (2)0.0179 (5)
C170.0004 (4)0.1789 (3)0.6309 (3)0.0193 (5)
C180.0794 (4)0.1281 (3)0.5107 (3)0.0190 (5)
C190.0106 (4)0.1366 (2)0.4280 (2)0.0185 (5)
C200.2636 (4)0.2570 (2)0.5836 (2)0.0158 (5)
C210.1866 (4)0.2007 (2)0.4634 (2)0.0156 (5)
C220.6974 (4)0.4081 (2)0.5471 (2)0.0171 (5)
C230.9888 (4)0.4845 (3)0.6723 (3)0.0203 (5)
C240.9854 (4)0.6121 (3)0.7135 (3)0.0259 (6)
H10.43460.53690.71750.0170*
H20.86580.41011.06770.0238*
H30.88730.21511.00370.0250*
H40.55700.17840.69260.0188*
H5A0.49260.89911.01600.0243*
H6B0.65990.91890.95960.0243*
H7A0.69630.93521.19710.0326*
H8B0.71881.04331.15400.0326*
H9C0.86230.95591.14080.0326*
H100.49260.27690.35250.0213*
H110.22050.27710.74700.0215*
H120.06420.16870.68630.0232*
H130.04410.10010.34800.0222*
H14A1.03650.46330.60130.0244*
H15B1.07100.46440.73250.0244*
H16A1.10940.65310.73970.0310*
H17B0.92450.63180.77790.0310*
H18C0.92000.63400.64970.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0250 (4)0.0193 (3)0.0227 (4)0.0070 (3)0.0079 (3)0.0114 (3)
Cl20.0156 (3)0.0274 (4)0.0264 (4)0.0013 (3)0.0043 (3)0.0089 (3)
O10.0318 (11)0.0220 (10)0.0129 (9)0.0056 (8)0.0014 (7)0.0052 (7)
O20.0249 (9)0.0203 (9)0.0161 (9)0.0049 (7)0.0034 (7)0.0094 (7)
O30.0249 (10)0.0147 (9)0.0170 (9)0.0023 (7)0.0005 (7)0.0045 (7)
O40.0241 (10)0.0375 (12)0.0205 (10)0.0052 (8)0.0041 (8)0.0181 (9)
O50.0144 (8)0.0252 (9)0.0180 (9)0.0003 (7)0.0028 (7)0.0126 (7)
N10.0160 (10)0.0165 (10)0.0101 (9)0.0026 (8)0.0030 (7)0.0063 (8)
N20.0204 (10)0.0194 (10)0.0140 (10)0.0037 (8)0.0043 (8)0.0073 (8)
C10.0155 (11)0.0163 (11)0.0130 (10)0.0012 (9)0.0054 (8)0.0074 (9)
C20.0164 (11)0.0154 (11)0.0140 (11)0.0022 (9)0.0059 (9)0.0067 (9)
C30.0183 (11)0.0196 (12)0.0133 (11)0.0029 (9)0.0067 (9)0.0069 (9)
C40.0227 (12)0.0239 (13)0.0145 (11)0.0044 (10)0.0036 (9)0.0087 (10)
C50.0243 (13)0.0254 (13)0.0182 (12)0.0092 (10)0.0053 (10)0.0134 (10)
C60.0194 (12)0.0187 (12)0.0188 (12)0.0059 (9)0.0085 (9)0.0092 (10)
C70.0164 (11)0.0190 (12)0.0149 (11)0.0036 (9)0.0062 (9)0.0083 (9)
C80.0154 (11)0.0201 (12)0.0126 (11)0.0019 (9)0.0047 (9)0.0076 (9)
C90.0145 (11)0.0201 (12)0.0126 (11)0.0036 (9)0.0065 (8)0.0096 (9)
C100.0177 (11)0.0172 (11)0.0128 (11)0.0023 (9)0.0065 (9)0.0060 (9)
C110.0263 (13)0.0153 (12)0.0188 (12)0.0034 (10)0.0033 (10)0.0065 (9)
C120.0307 (15)0.0186 (13)0.0255 (14)0.0033 (11)0.0024 (11)0.0032 (11)
C130.0185 (12)0.0234 (12)0.0157 (11)0.0038 (9)0.0064 (9)0.0108 (10)
C140.0170 (11)0.0180 (11)0.0153 (11)0.0039 (9)0.0040 (9)0.0094 (9)
C150.0166 (11)0.0151 (11)0.0126 (11)0.0044 (9)0.0024 (8)0.0074 (9)
C160.0194 (12)0.0224 (12)0.0156 (11)0.0042 (9)0.0049 (9)0.0106 (10)
C170.0191 (12)0.0249 (13)0.0190 (12)0.0058 (10)0.0085 (9)0.0114 (10)
C180.0134 (11)0.0220 (12)0.0233 (13)0.0011 (9)0.0032 (9)0.0108 (10)
C190.0182 (12)0.0211 (12)0.0170 (12)0.0028 (9)0.0023 (9)0.0085 (10)
C200.0174 (11)0.0193 (12)0.0143 (11)0.0052 (9)0.0043 (9)0.0098 (9)
C210.0162 (11)0.0167 (11)0.0154 (11)0.0023 (9)0.0016 (9)0.0086 (9)
C220.0177 (11)0.0199 (12)0.0157 (11)0.0019 (9)0.0055 (9)0.0078 (9)
C230.0128 (11)0.0272 (13)0.0233 (13)0.0010 (9)0.0032 (9)0.0126 (11)
C240.0223 (13)0.0239 (14)0.0322 (15)0.0027 (10)0.0006 (11)0.0141 (12)
Geometric parameters (Å, º) top
Cl1—C61.733 (3)C14—C221.498 (4)
Cl2—C181.742 (3)C15—C201.416 (4)
O1—C31.231 (3)C16—C171.364 (4)
O2—C101.216 (4)C16—C201.423 (4)
O3—C101.341 (3)C17—C181.418 (4)
O3—C111.450 (4)C18—C191.368 (5)
O4—C221.209 (4)C19—C211.418 (4)
O5—C221.329 (3)C20—C211.422 (3)
O5—C231.466 (3)C23—C241.511 (4)
N1—C11.351 (4)C1—H10.950
N1—C91.400 (4)C4—H20.950
N1—C151.443 (3)C5—H30.950
N2—C131.311 (4)C7—H40.950
N2—C211.368 (4)C11—H5A0.990
C1—C21.369 (3)C11—H6B0.990
C2—C31.462 (4)C12—H7A0.980
C2—C101.483 (4)C12—H8B0.980
C3—C81.484 (4)C12—H9C0.980
C4—C51.383 (4)C13—H100.950
C4—C81.404 (4)C16—H110.950
C5—C61.396 (4)C17—H120.950
C6—C71.382 (4)C19—H130.950
C7—C91.400 (4)C23—H14A0.990
C8—C91.396 (3)C23—H15B0.990
C11—C121.510 (4)C24—H16A0.980
C13—C141.421 (3)C24—H17B0.980
C14—C151.377 (4)C24—H18C0.980
O1···O32.744 (3)N1···H15Bv3.5315
O1···C13.599 (4)N2···H17Biv3.4348
O1···C42.797 (4)N2···H18Civ2.6158
O1···C103.050 (4)C1···H10iv3.4894
O2···C12.730 (4)C1···H15Bv3.1990
O2···C112.608 (3)C3···H2xi3.5544
O3···C13.576 (3)C3···H11iii3.5186
O3···C32.889 (4)C4···H15Bxi3.3403
O4···C132.839 (4)C4···H16Axi3.3578
O4···C232.710 (4)C4···H17Bxi3.1853
O4···C243.174 (4)C5···H5Aiii3.0056
O5···N12.737 (3)C5···H12vii3.5018
O5···C13.129 (4)C5···H16Axi3.5386
O5···C73.552 (4)C5···H17Bxi3.3435
O5···C93.042 (4)C6···H5Aiii2.9375
O5···C133.577 (4)C6···H7Aiii3.2632
O5···C152.888 (4)C6···H12vii2.7567
N1···C32.866 (3)C7···H7Aiii3.1775
N1···C162.894 (4)C7···H12vii2.8588
N1···C223.002 (4)C10···H2iii3.5006
N2···C152.806 (3)C10···H10iv3.1987
C1···C82.756 (4)C10···H16Av3.4673
C1···C143.143 (4)C11···H5Aviii2.9378
C1···C203.358 (4)C11···H6Bviii3.2975
C1···C223.360 (4)C11···H8Bviii3.3685
C2···C92.833 (4)C12···H5Aviii3.3011
C4···C72.791 (4)C12···H13xiii2.7669
C5···C92.788 (4)C13···H1iv3.4318
C6···C82.780 (4)C13···H18Civ3.0680
C7···C152.839 (4)C15···H14Av3.5947
C7···C163.484 (4)C16···H7Aiii3.2940
C7···C203.339 (4)C16···H14Av3.2712
C9···C143.386 (4)C16···H15Bv2.8250
C9···C163.417 (4)C17···H7Aiii3.5354
C9···C203.277 (4)C17···H13ix3.5923
C13···C193.578 (4)C17···H15Bv3.3327
C13···C202.752 (5)C19···H7Axii3.4912
C14···C212.755 (4)C19···H8Bxii3.4869
C16···C192.821 (4)C19···H9Cxii3.4902
C17···C212.809 (5)C19···H18Civ3.3135
C18···C202.780 (4)C20···H14Av3.1857
C22···C243.102 (4)C20···H15Bv3.3105
Cl1···N2i3.106 (3)C21···H14Av3.5795
Cl2···Cl2ii3.5616 (17)C21···H18Civ2.9127
O1···N1iii3.477 (4)C22···H1iv3.5465
O1···C1iii3.494 (4)C22···H14Avi3.5804
O1···C2iii3.521 (4)C23···H1vii3.3137
O1···C3iii3.512 (4)C23···H2xi3.0336
O1···C8iii3.509 (4)C23···H11vii3.4964
O1···C9iii3.487 (4)C24···H2xi2.8503
O1···C16iii3.231 (3)C24···H3xi3.4109
O2···C4iii3.577 (4)H1···O4iv2.5687
O2···C13iv3.301 (4)H1···C13iv3.4318
O2···C24v3.548 (4)H1···C22iv3.5465
O4···C1iv3.476 (4)H1···C23v3.3137
O4···C14iv3.443 (4)H1···H10iv2.7626
O4···C15iv3.558 (4)H1···H14Av3.0313
O4···C23vi3.276 (4)H1···H15Bv2.9039
O4···C24vi3.436 (4)H1···H16Av2.9874
O5···C17vii3.395 (4)H2···O1xi3.5966
N1···O1iii3.477 (4)H2···O2iii3.4958
N2···Cl1i3.106 (3)H2···C3xi3.5544
N2···C24iv3.412 (4)H2···C10iii3.5006
C1···O1iii3.494 (4)H2···C23xi3.0336
C1···O4iv3.476 (4)H2···C24xi2.8503
C2···O1iii3.521 (4)H2···H15Bxi2.4244
C2···C3iii3.578 (5)H2···H16Axi2.7246
C2···C8iii3.589 (4)H2···H17Bxi2.4712
C3···O1iii3.512 (4)H3···O2iii3.5724
C3···C2iii3.578 (5)H3···O3xi3.5471
C3···C3iii3.264 (4)H3···C24xi3.4109
C3···C8iii3.535 (4)H3···H5Aiii3.0498
C4···O2iii3.577 (4)H3···H8Bx3.5569
C4···C10iii3.384 (5)H3···H9Cxi3.3216
C6···C11iii3.587 (5)H3···H16Axi3.1037
C8···O1iii3.509 (4)H3···H17Bxi2.8161
C8···C2iii3.589 (4)H4···Cl2vii3.1862
C8···C3iii3.535 (4)H4···Cl2ix3.1952
C9···O1iii3.487 (4)H4···H7Aiii3.0634
C10···C4iii3.384 (5)H4···H12vii2.9178
C11···C6iii3.587 (5)H5A···Cl1iii3.1443
C11···C11viii3.490 (5)H5A···C5iii3.0056
C13···O2iv3.301 (4)H5A···C6iii2.9375
C14···O4iv3.443 (4)H5A···C11viii2.9378
C15···O4iv3.558 (4)H5A···C12viii3.3011
C16···O1iii3.231 (3)H5A···H3iii3.0498
C16···C23v3.388 (5)H5A···H5Aviii2.6538
C17···O5v3.395 (4)H5A···H6Bviii2.5893
C18···C18ix3.450 (4)H5A···H8Bviii2.7235
C23···O4vi3.276 (4)H6B···Cl1xiv2.9705
C23···C16vii3.388 (5)H6B···C11viii3.2975
C24···O2vii3.548 (4)H6B···H5Aviii2.5893
C24···O4vi3.436 (4)H6B···H6Bviii3.3956
C24···N2iv3.412 (4)H6B···H8Bviii3.1042
Cl1···H32.8323H7A···Cl1iii3.3484
Cl1···H42.7746H7A···Cl2xiii3.2436
Cl2···H122.8089H7A···C6iii3.2632
Cl2···H132.8031H7A···C7iii3.1775
O1···H22.4958H7A···C16iii3.2940
O2···H12.3541H7A···C17iii3.5354
O2···H5A2.5424H7A···C19xiii3.4912
O2···H6B2.5978H7A···H4iii3.0634
O3···H7A2.5759H7A···H11iii3.0133
O3···H8B3.2380H7A···H12iii3.4423
O3···H9C2.5830H7A···H13xiii2.6772
O4···H102.5478H8B···O2viii3.1553
O4···H14A2.4861H8B···C11viii3.3685
O4···H18C2.6932H8B···C19xiii3.4869
O5···H13.4480H8B···H3xiv3.5569
O5···H16A3.2950H8B···H5Aviii2.7235
O5···H17B2.6098H8B···H6Bviii3.1042
O5···H18C2.7231H8B···H13xiii2.5821
N1···H42.6190H9C···Cl1xi3.0218
N1···H112.5903H9C···C19xiii3.4902
N2···H132.5685H9C···H3xi3.3216
C1···H113.3147H9C···H12iii3.2541
C1···H17B3.4411H9C···H13xiii2.5698
C2···H17B3.2151H10···O2iv2.3840
C3···H13.3018H10···C1iv3.4894
C3···H22.6316H10···C10iv3.1987
C5···H43.2843H10···H1iv2.7626
C6···H23.2504H10···H16Avi3.5807
C7···H33.2817H10···H18Civ3.4202
C7···H113.1390H11···O1iii2.3474
C8···H33.2855H11···O3iii3.3776
C8···H43.2917H11···C3iii3.5186
C9···H13.2331H11···C23v3.4964
C9···H23.2661H11···H7Aiii3.0133
C9···H112.8974H11···H14Av3.5728
C10···H12.4741H11···H15Bv2.7129
C10···H5A2.5743H12···Cl1v2.9460
C10···H6B2.6022H12···O5v3.4785
C10···H17B3.5241H12···C5v3.5018
C14···H13.0701H12···C6v2.7567
C14···H43.2328H12···C7v2.8588
C15···H12.5282H12···H4v2.9178
C15···H42.5115H12···H7Aiii3.4423
C15···H103.2423H12···H9Ciii3.2541
C15···H112.7043H12···H13ix3.4222
C16···H43.1231H12···H15Bv3.5653
C17···H133.2952H13···Cl1i3.4612
C18···H113.2670H13···C12xii2.7669
C19···H123.2857H13···C17ix3.5923
C20···H13.3755H13···H7Axii2.6772
C20···H42.7971H13···H8Bxii2.5821
C20···H123.2767H13···H9Cxii2.5698
C20···H133.3143H13···H12ix3.4222
C21···H103.1520H13···H16Aiv3.5989
C21···H113.3155H13···H18Civ3.3482
C22···H13.3402H14A···O4vi2.4859
C22···H102.5803H14A···C15vii3.5947
C22···H14A2.5239H14A···C16vii3.2712
C22···H15B3.1771H14A···C20vii3.1857
C22···H17B3.3676H14A···C21vii3.5795
C22···H18C2.9232H14A···C22vi3.5804
H2···H32.3340H14A···H1vii3.0313
H4···H113.0391H14A···H11vii3.5728
H5A···H7A2.3705H14A···H14Avi2.9112
H5A···H8B2.3637H14A···H18Cvi3.0792
H5A···H9C2.8598H15B···O1xi2.9240
H6B···H7A2.8598H15B···N1vii3.5315
H6B···H8B2.3689H15B···C1vii3.1990
H6B···H9C2.3653H15B···C4xi3.3403
H11···H122.3146H15B···C16vii2.8250
H14A···H16A2.3955H15B···C17vii3.3327
H14A···H17B2.8510H15B···C20vii3.3105
H14A···H18C2.3186H15B···H1vii2.9039
H15B···H16A2.3082H15B···H2xi2.4244
H15B···H17B2.4072H15B···H11vii2.7129
H15B···H18C2.8493H15B···H12vii3.5653
Cl1···H5Aiii3.1443H16A···O2vii2.5834
Cl1···H6Bx2.9705H16A···O4vi3.0967
Cl1···H7Aiii3.3484H16A···C4xi3.3578
Cl1···H9Cxi3.0218H16A···C5xi3.5386
Cl1···H12vii2.9460H16A···C10vii3.4673
Cl1···H13i3.4612H16A···H1vii2.9874
Cl2···H4v3.1862H16A···H2xi2.7246
Cl2···H4ix3.1952H16A···H3xi3.1037
Cl2···H7Axii3.2436H16A···H10vi3.5807
O1···H2xi3.5966H16A···H13iv3.5989
O1···H11iii2.3474H17B···N2iv3.4348
O1···H15Bxi2.9240H17B···C4xi3.1853
O2···H2iii3.4958H17B···C5xi3.3435
O2···H3iii3.5724H17B···H2xi2.4712
O2···H8Bviii3.1553H17B···H3xi2.8161
O2···H10iv2.3840H18C···O4vi3.3897
O2···H16Av2.5834H18C···N2iv2.6158
O3···H3xi3.5471H18C···C13iv3.0680
O3···H11iii3.3776H18C···C19iv3.3135
O4···H1iv2.5687H18C···C21iv2.9127
O4···H14Avi2.4859H18C···H10iv3.4202
O4···H16Avi3.0967H18C···H13iv3.3482
O4···H18Cvi3.3897H18C···H14Avi3.0792
O5···H12vii3.4785
C10—O3—C11114.2 (2)N2—C21—C19117.8 (2)
C22—O5—C23116.9 (3)N2—C21—C20122.8 (2)
C1—N1—C9120.29 (18)C19—C21—C20119.4 (3)
C1—N1—C15118.8 (3)O4—C22—O5125.3 (3)
C9—N1—C15120.4 (2)O4—C22—C14122.1 (3)
C13—N2—C21117.9 (2)O5—C22—C14112.7 (3)
N1—C1—C2124.4 (3)O5—C23—C24111.6 (3)
C1—C2—C3119.9 (3)N1—C1—H1117.786
C1—C2—C10114.2 (3)C2—C1—H1117.790
C3—C2—C10125.88 (19)C5—C4—H2119.465
O1—C3—C2125.3 (3)C8—C4—H2119.451
O1—C3—C8120.6 (3)C4—C5—H3120.608
C2—C3—C8114.06 (19)C6—C5—H3120.608
C5—C4—C8121.1 (2)C6—C7—H4120.721
C4—C5—C6118.8 (3)C9—C7—H4120.707
Cl1—C6—C5120.1 (3)O3—C11—H5A110.202
Cl1—C6—C7118.02 (17)O3—C11—H6B110.200
C5—C6—C7121.9 (3)C12—C11—H5A110.211
C6—C7—C9118.6 (2)C12—C11—H6B110.205
C3—C8—C4118.94 (19)H5A—C11—H6B108.490
C3—C8—C9122.3 (3)C11—C12—H7A109.471
C4—C8—C9118.7 (3)C11—C12—H8B109.470
N1—C9—C7120.18 (19)C11—C12—H9C109.479
N1—C9—C8118.8 (3)H7A—C12—H8B109.465
C7—C9—C8121.0 (3)H7A—C12—H9C109.468
O2—C10—O3122.7 (3)H8B—C12—H9C109.475
O2—C10—C2123.53 (19)N2—C13—H10117.798
O3—C10—C2113.8 (3)C14—C13—H10117.799
O3—C11—C12107.5 (3)C17—C16—H11119.933
N2—C13—C14124.4 (3)C20—C16—H11119.934
C13—C14—C15117.7 (3)C16—C17—H12120.148
C13—C14—C22116.4 (3)C18—C17—H12120.160
C15—C14—C22125.9 (2)C18—C19—H13120.507
N1—C15—C14121.1 (2)C21—C19—H13120.503
N1—C15—C20118.5 (3)O5—C23—H14A109.305
C14—C15—C20120.3 (2)O5—C23—H15B109.313
C17—C16—C20120.1 (3)C24—C23—H14A109.316
C16—C17—C18119.7 (3)C24—C23—H15B109.312
Cl2—C18—C17118.1 (3)H14A—C23—H15B107.959
Cl2—C18—C19119.79 (18)C23—C24—H16A109.468
C17—C18—C19122.1 (3)C23—C24—H17B109.468
C18—C19—C21119.0 (2)C23—C24—H18C109.468
C15—C20—C16123.6 (2)H16A—C24—H17B109.471
C15—C20—C21116.9 (3)H16A—C24—H18C109.475
C16—C20—C21119.5 (2)H17B—C24—H18C109.478
C10—O3—C11—C12177.9 (2)C3—C8—C9—N13.0 (4)
C10—O3—C11—H5A57.8C3—C8—C9—C7177.6 (3)
C10—O3—C11—H6B61.9C4—C8—C9—N1178.3 (3)
C11—O3—C10—O20.4 (4)C4—C8—C9—C71.1 (4)
C11—O3—C10—C2178.5 (2)O3—C11—C12—H7A59.5
C22—O5—C23—C2479.0 (3)O3—C11—C12—H8B179.5
C22—O5—C23—H14A42.1O3—C11—C12—H9C60.5
C22—O5—C23—H15B160.0H5A—C11—C12—H7A60.6
C23—O5—C22—O40.1 (4)H5A—C11—C12—H8B59.4
C23—O5—C22—C14177.69 (18)H5A—C11—C12—H9C179.4
C1—N1—C9—C7179.3 (2)H6B—C11—C12—H7A179.7
C1—N1—C9—C80.1 (4)H6B—C11—C12—H8B60.3
C9—N1—C1—C21.5 (4)H6B—C11—C12—H9C59.7
C9—N1—C1—H1178.5N2—C13—C14—C151.9 (4)
C1—N1—C15—C1473.6 (3)N2—C13—C14—C22177.6 (3)
C1—N1—C15—C20102.8 (3)H10—C13—C14—C15178.1
C15—N1—C1—C2173.7 (2)H10—C13—C14—C222.4
C15—N1—C1—H16.3C13—C14—C15—N1177.0 (2)
C9—N1—C15—C1498.5 (3)C13—C14—C15—C200.7 (4)
C9—N1—C15—C2085.0 (3)C13—C14—C22—O428.4 (4)
C15—N1—C9—C77.3 (4)C13—C14—C22—O5149.5 (3)
C15—N1—C9—C8172.1 (2)C15—C14—C22—O4151.1 (3)
C13—N2—C21—C19176.4 (3)C15—C14—C22—O531.0 (4)
C13—N2—C21—C201.5 (4)C22—C14—C15—N12.5 (4)
C21—N2—C13—C140.8 (4)C22—C14—C15—C20178.8 (3)
C21—N2—C13—H10179.2N1—C15—C20—C164.0 (4)
N1—C1—C2—C30.2 (4)N1—C15—C20—C21175.0 (2)
N1—C1—C2—C10179.0 (2)C14—C15—C20—C16179.5 (3)
H1—C1—C2—C3179.8C14—C15—C20—C211.4 (4)
H1—C1—C2—C101.0C17—C16—C20—C15176.3 (3)
C1—C2—C3—O1176.1 (3)C17—C16—C20—C212.7 (4)
C1—C2—C3—C83.0 (4)C20—C16—C17—C180.5 (4)
C1—C2—C10—O26.7 (4)C20—C16—C17—H12179.5
C1—C2—C10—O3172.1 (2)H11—C16—C17—C18179.5
C3—C2—C10—O2172.0 (3)H11—C16—C17—H120.5
C3—C2—C10—O39.1 (4)H11—C16—C20—C153.7
C10—C2—C3—O12.5 (5)H11—C16—C20—C21177.3
C10—C2—C3—C8178.3 (3)C16—C17—C18—Cl2176.6 (3)
O1—C3—C8—C44.0 (4)C16—C17—C18—C192.8 (5)
O1—C3—C8—C9174.8 (3)H12—C17—C18—Cl23.4
C2—C3—C8—C4176.8 (2)H12—C17—C18—C19177.2
C2—C3—C8—C94.5 (4)Cl2—C18—C19—C21177.74 (17)
C5—C4—C8—C3178.2 (3)Cl2—C18—C19—H132.3
C5—C4—C8—C90.6 (4)C17—C18—C19—C211.7 (4)
C8—C4—C5—C60.6 (5)C17—C18—C19—H13178.3
C8—C4—C5—H3179.4C18—C19—C21—N2179.7 (3)
H2—C4—C5—C6179.4C18—C19—C21—C201.6 (4)
H2—C4—C5—H30.6H13—C19—C21—N20.3
H2—C4—C8—C31.8H13—C19—C21—C20178.4
H2—C4—C8—C9179.4C15—C20—C21—N22.6 (4)
C4—C5—C6—Cl1179.6 (3)C15—C20—C21—C19175.3 (2)
C4—C5—C6—C71.3 (5)C16—C20—C21—N2178.2 (3)
H3—C5—C6—Cl10.3C16—C20—C21—C193.8 (4)
H3—C5—C6—C7178.7O5—C23—C24—H16A172.0
Cl1—C6—C7—C9179.81 (17)O5—C23—C24—H17B52.0
Cl1—C6—C7—H40.2O5—C23—C24—H18C68.0
C5—C6—C7—C90.7 (4)H14A—C23—C24—H16A67.0
C5—C6—C7—H4179.3H14A—C23—C24—H17B173.1
C6—C7—C9—N1178.9 (3)H14A—C23—C24—H18C53.0
C6—C7—C9—C80.5 (4)H15B—C23—C24—H16A51.0
H4—C7—C9—N11.1H15B—C23—C24—H17B69.0
H4—C7—C9—C8179.5H15B—C23—C24—H18C171.0
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x+2, y+1, z+1; (vii) x+1, y, z; (viii) x+1, y+2, z+2; (ix) x, y, z+1; (x) x, y1, z; (xi) x+2, y+1, z+2; (xii) x1, y1, z1; (xiii) x+1, y+1, z+1; (xiv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H11···O1iii0.952.353.231 (3)155 (1)
C13—H10···O2iv0.952.383.301 (4)162 (1)
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H11···O1i0.952.3473.231 (3)154.60 (18)
C13—H10···O2ii0.952.3843.301 (4)162.26 (14)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was partly supported by Grants-in-Aid (No. 24590141 to YI) for Scientific Research from the Japan Society for the Promotion of Science. We acknowledge the University of Shizuoka for instrumental support.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIshikawa, Y. & Fujii, S. (2011). Bioinformation, 6, 221-225.  CrossRef PubMed Google Scholar
First citationIshikawa, Y. & Yoshida, N. (2014). Acta Cryst. E70, o523.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds