organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o707-o708

3-Bromo­methyl-4-meth­­oxy-2-(2-nitro­phen­yl)-9-phenyl­sulfonyl-9H-carbazole

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 2 May 2014; accepted 17 May 2014; online 24 May 2014)

In the title compound, C26H19BrN2O5S, the carbazole tricycle is essentially planar, with the largest deviation being 0.126 (3) Å for the C atom connected to the nitro­phenyl group. The carbazole moiety is almost orthogonal to the benzene rings of the adjacent phenyl­sulfonyl and nitro­phenyl groups, making dihedral angles of 85.43 (15) and 88.62 (12)°, respectively. The mol­ecular conformation is stabilized by two C—H⋯O hydrogen bonds involving the sulfone group, which form similar six-membered rings. In the crystal, mol­ecules symmetrically related by a glide plane are linked in C(6) chains parallel to [001] by C—H⋯O hydrogen bonds formed with the participation of the nitro group. The chains are reinforced by additional C—H⋯π inter­actions.

Related literature

For the uses and biological importance of carbazoles, see: Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Starsburg, G. M., Dewitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444—447.]). For electronic properties and applications, see: Friend et al. (1999[Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos SAntos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121-127.]); Zhang et al. (2004[Zhang, Q., Chen, J. Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem, 14, 895-900.]). For related structures, see: Narayanan et al. (2014[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o230-o231.]); Gopinath et al. (2014[Gopinath, S., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o273-o274.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry ch. 1, p. 11. New York: John Wiley and Sons.]). For bond-length distortions, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H19BrN2O5S

  • Mr = 551.40

  • Monoclinic, P 21 /c

  • a = 10.3176 (4) Å

  • b = 14.4431 (6) Å

  • c = 15.4901 (6) Å

  • β = 92.329 (2)°

  • V = 2306.40 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.905

  • 28756 measured reflections

  • 6652 independent reflections

  • 3939 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.161

  • S = 1.03

  • 6652 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3 0.93 2.34 2.941 (4) 122
C9—H9⋯O4 0.93 2.32 2.925 (4) 122
C23—H23⋯O1i 0.93 2.53 3.264 (4) 136
C22—H22⋯Cg1ii 0.93 2.95 3.810 (4) 155
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exihibit various biological activities such as antitumor and antioxidative (Itoigawa, et al. 2000), and anti- inflammatory and anti-mutagenic (Ramsewak, et al. 1999). They also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic, semi- conductors, laser and solar cells (Friend, et al. 1999; Zhang et al. 2004).

The title compound, Fig. 1, comprises a carbazole ring system which is attached to a phenylsulfonyl group, a nitrophenyl, a methoxy and a bromomethyl group. The carbazole ring system is essentially planar with maximum deviation of -0.126 (3) Å for the carbon atom C10. The oxygen atom O5 significantly deviates from the carbazole ring by 0.1560 (22) Å. The carbazole ring is almost orthagonal to phenyl ring attached to sulfonyl group and nitrophenyl ring with dihedral angles of 85.43 (15)° and 88.62 (12)°, respectively.

As a result of electron-withdrawing character of phenysulfonyl group, the bond lengths N1–C1 = 1.424 (4) Å and N1–C8 = 1.430 (3) Å in the molecule are longer than the mean value of 1.355 (14) Å (Allen, et al. 1987). The atom S1 has a distorted tetrahedral configuration. The widening of angle O3—S1—O4 [120.22 (15)°] and narrowing angle N1—S1—C14 [104.44 (13)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, et al. 1984).

The sum of the bond angles around N1 [353.6°] indicate the sp2 hybridization. The nitrogen atom N2 is almost in the plane of phenyl ring with the torsional angle of C21–C20–C25–N2 = -179.6 (3)°. The bromine atom forms the torsional angle of C10– C11–C26–Br1 = 88.1 (3)°.

The molecular structure is stabilized by C—H···O hydrogen bonds (Table 1 Fig. 1), which generate two S(6) ring motifs. In the crystal packing, molecules are linked via C23—H23···O1i intermolecular hydrogen bonding, which generate C(6) infinite chains running parallel to the base vector [0 0 1]. The crystal packing is further stabilized by C22—H22···Cg1ii intermolecular interaction, where the Cg1 is the centre of gravity of the benzene ring(C7–C12) (Bernstein, et al. 1995). The packing view of the title compound shown in the Fig-2 and Fig-3. The symmetry codes are: (i) x, -y + 1/2 + 1, +z - 1/2 (ii) x, 3/2 - y, -1/2 + z

Related literature top

For the uses and biological importance of carbazoles, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Narayanan et al. (2014); Gopinath et al. (2014). For the Thorpe–Ingold effect, see: Bassindale (1984). For bond-length distortions, see: Allen et al. (1987). For graph-set notation: Bernstein et al. (1995).

Experimental top

A mixture of 4-methoxy-3-methyl-2-(2-nitrophenyl)-9- (phenylsulfonyl)-9H-carbazole(1.65 g, 3.5 mmol) and NBS(0.93 g, 5.25 mmol) in dry CCl4(100 ml) containing a catalytic amount of AIBN(50 mg) was refluxed for 1 h. Then, it was cooled to room temperature and the additional equivalent of NBS(0.93 g, 5.25 mmol) and AIBN(50 mg) were added and allowed to reflux for 1 h. Then the reaction mixture was cooled to room temperature and the floated succinimide was filtered off through Na2So4 pad and washed with hot CCl4 (20 ml). The subsequent removal of solvent in vacuo followed by tituration of the crude product with MeOH(10 ml) afforded 3-(bromomethyl)-4-methoxy-2-(2-nitrophenyl)-9-(phenylsulfonyl) -9Hcarbazole(1.71 g, 89%) as a dull white solid. Single crystals suitable for X-ray diffraction was prepared by slow evapouration of a solution of the title compound in methanol at room temperature.

m.p. = 483 K–485 K.

Refinement top

The positions of the hydrogen atoms were localized from the difference electron density maps and the distances were geometrically constrained. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C–H) = 0.93 Å and Uiso(H) = 1.2Ueq (c) for aromatic and methoxy group, d(C–H) = 0.96 Å and Uiso(H) = 1.5Ueq(c) for the bromomethyl group. The rotation angle for the methyl group was optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular Structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down a axis. The dashed line indicate the C—H···O intermolecular interaction. Symmetry Code: (i) x, -y + 3/2, +z - 1/2
[Figure 3] Fig. 3. Part of the crystal packing of the title compound viewed down b axis. the dashed lines indicate C22—H22···Cg1ii interactions, where the Cg1 is the centre of the gravity of (C7–C12). Symmetry code: (ii) x, -y + 1/2, +z - 3/2
3-Bromomethyl-4-methoxy-2-(2-nitrophenyl)-9-phenylsulfonyl-9H-carbazole top
Crystal data top
C26H19BrN2O5SF(000) = 1120
Mr = 551.40Dx = 1.588 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6652 reflections
a = 10.3176 (4) Åθ = 2.0–27.0°
b = 14.4431 (6) ŵ = 1.92 mm1
c = 15.4901 (6) ÅT = 296 K
β = 92.329 (2)°Block, white
V = 2306.40 (16) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6652 independent reflections
Radiation source: fine-focus sealed tube3939 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω &ϕ scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1413
Tmin = 0.901, Tmax = 0.905k = 2019
28756 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.8074P]
where P = (Fo2 + 2Fc2)/3
6652 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C26H19BrN2O5SV = 2306.40 (16) Å3
Mr = 551.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3176 (4) ŵ = 1.92 mm1
b = 14.4431 (6) ÅT = 296 K
c = 15.4901 (6) Å0.35 × 0.30 × 0.25 mm
β = 92.329 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3939 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.905Rint = 0.037
28756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
6652 reflectionsΔρmin = 0.74 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5239 (3)0.9609 (2)0.16131 (19)0.0406 (6)
C20.4792 (3)1.0177 (2)0.2262 (2)0.0545 (8)
H20.49711.08080.22720.065*
C30.4077 (3)0.9774 (3)0.2886 (2)0.0624 (9)
H30.37691.01390.33280.075*
C40.3802 (3)0.8829 (3)0.2873 (2)0.0597 (9)
H40.33260.85730.33100.072*
C50.4221 (3)0.8274 (2)0.2225 (2)0.0488 (7)
H50.40230.76450.22140.059*
C60.4952 (3)0.8669 (2)0.15814 (19)0.0393 (6)
C70.5591 (3)0.82841 (18)0.08476 (18)0.0363 (6)
C80.6265 (3)0.89955 (18)0.04518 (18)0.0368 (6)
C90.7036 (3)0.88394 (19)0.02381 (18)0.0396 (6)
H90.74540.93260.05050.048*
C100.7173 (3)0.79316 (19)0.05237 (18)0.0366 (6)
C110.6474 (3)0.72050 (18)0.01624 (17)0.0370 (6)
C120.5667 (3)0.73930 (18)0.05171 (18)0.0363 (6)
C130.3650 (3)0.6679 (3)0.0589 (2)0.0654 (10)
H13A0.32400.72480.07480.098*
H13B0.32160.61680.08480.098*
H13C0.36000.66140.00280.098*
C140.8317 (3)1.0435 (2)0.1570 (2)0.0443 (7)
C150.9401 (3)1.0058 (2)0.1228 (2)0.0546 (8)
H150.94330.99570.06360.065*
C161.0440 (4)0.9831 (3)0.1767 (3)0.0678 (10)
H161.11790.95740.15410.081*
C171.0389 (4)0.9983 (3)0.2642 (3)0.0755 (12)
H171.10990.98380.30060.091*
C180.9288 (4)1.0349 (4)0.2979 (3)0.0779 (12)
H180.92511.04410.35720.093*
C190.8250 (4)1.0576 (3)0.2448 (2)0.0641 (10)
H190.75051.08240.26750.077*
C200.8034 (3)0.77497 (18)0.12588 (17)0.0372 (6)
C210.7515 (3)0.7773 (2)0.2098 (2)0.0536 (8)
H210.66370.79010.21920.064*
C220.8278 (4)0.7609 (3)0.2803 (2)0.0641 (10)
H220.79060.76260.33600.077*
C230.9561 (4)0.7425 (3)0.2683 (2)0.0633 (10)
H231.00710.73280.31570.076*
C241.0099 (3)0.7381 (2)0.1871 (2)0.0531 (8)
H241.09750.72400.17860.064*
C250.9345 (3)0.75469 (19)0.11715 (17)0.0386 (6)
C260.6569 (3)0.6230 (2)0.0488 (2)0.0472 (7)
H26A0.60940.57620.02370.057*
H26B0.71030.60950.09400.057*
N10.6006 (2)0.98366 (15)0.08997 (16)0.0407 (5)
N21.0011 (3)0.7494 (2)0.03198 (18)0.0520 (7)
O10.9650 (3)0.7991 (2)0.02487 (15)0.0771 (8)
O21.0921 (3)0.6960 (2)0.0230 (2)0.0881 (9)
O30.6318 (3)1.14928 (15)0.12702 (17)0.0634 (6)
O40.7410 (3)1.08277 (15)0.00314 (15)0.0575 (6)
O50.4979 (2)0.66924 (14)0.08849 (14)0.0482 (5)
S10.69953 (8)1.07490 (5)0.08859 (5)0.0460 (2)
Br10.80182 (4)0.55845 (2)0.01227 (2)0.06233 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0317 (14)0.0433 (15)0.0466 (16)0.0042 (11)0.0016 (12)0.0051 (13)
C20.0420 (18)0.0529 (19)0.069 (2)0.0071 (14)0.0026 (16)0.0164 (17)
C30.0446 (19)0.082 (3)0.061 (2)0.0042 (18)0.0081 (16)0.021 (2)
C40.0427 (18)0.085 (3)0.0519 (19)0.0037 (17)0.0084 (15)0.0034 (18)
C50.0413 (17)0.0549 (18)0.0504 (18)0.0038 (14)0.0027 (14)0.0001 (15)
C60.0295 (14)0.0421 (15)0.0459 (15)0.0027 (11)0.0025 (12)0.0004 (12)
C70.0283 (13)0.0367 (14)0.0434 (15)0.0008 (10)0.0047 (11)0.0007 (12)
C80.0345 (14)0.0303 (13)0.0452 (15)0.0016 (11)0.0042 (12)0.0011 (11)
C90.0397 (15)0.0339 (14)0.0453 (16)0.0051 (11)0.0034 (13)0.0009 (12)
C100.0313 (14)0.0369 (14)0.0412 (15)0.0007 (11)0.0038 (11)0.0035 (12)
C110.0383 (14)0.0300 (13)0.0421 (15)0.0004 (11)0.0063 (12)0.0038 (11)
C120.0344 (14)0.0313 (13)0.0427 (15)0.0041 (10)0.0042 (12)0.0032 (11)
C130.055 (2)0.077 (2)0.064 (2)0.0356 (19)0.0000 (18)0.0043 (19)
C140.0468 (17)0.0392 (15)0.0472 (17)0.0111 (12)0.0052 (14)0.0028 (13)
C150.059 (2)0.056 (2)0.0495 (18)0.0072 (16)0.0124 (16)0.0026 (15)
C160.054 (2)0.070 (2)0.080 (3)0.0002 (18)0.0105 (19)0.001 (2)
C170.061 (3)0.088 (3)0.077 (3)0.011 (2)0.013 (2)0.008 (2)
C180.068 (3)0.119 (4)0.046 (2)0.010 (2)0.0014 (19)0.003 (2)
C190.052 (2)0.091 (3)0.050 (2)0.0078 (18)0.0075 (17)0.0119 (18)
C200.0411 (15)0.0327 (13)0.0376 (14)0.0031 (11)0.0020 (12)0.0027 (11)
C210.0506 (18)0.0586 (19)0.0505 (18)0.0020 (15)0.0117 (15)0.0032 (15)
C220.083 (3)0.074 (2)0.0340 (17)0.007 (2)0.0107 (17)0.0052 (16)
C230.078 (3)0.071 (2)0.0413 (18)0.0043 (19)0.0129 (18)0.0095 (16)
C240.0504 (19)0.058 (2)0.0514 (19)0.0013 (15)0.0104 (15)0.0059 (15)
C250.0405 (15)0.0413 (15)0.0337 (14)0.0024 (12)0.0018 (12)0.0004 (11)
C260.0557 (18)0.0365 (15)0.0492 (17)0.0043 (13)0.0000 (14)0.0066 (13)
N10.0402 (13)0.0304 (11)0.0515 (14)0.0017 (10)0.0030 (11)0.0057 (10)
N20.0368 (14)0.0698 (18)0.0488 (16)0.0042 (13)0.0049 (12)0.0064 (14)
O10.0648 (17)0.127 (3)0.0389 (13)0.0121 (16)0.0058 (12)0.0149 (15)
O20.0648 (18)0.109 (2)0.088 (2)0.0272 (17)0.0267 (16)0.0025 (17)
O30.0786 (17)0.0319 (11)0.0798 (17)0.0056 (11)0.0028 (13)0.0074 (11)
O40.0847 (17)0.0381 (11)0.0497 (13)0.0083 (11)0.0030 (12)0.0064 (9)
O50.0499 (12)0.0393 (11)0.0554 (12)0.0096 (9)0.0016 (10)0.0074 (9)
S10.0590 (5)0.0277 (3)0.0511 (4)0.0022 (3)0.0013 (4)0.0011 (3)
Br10.0740 (3)0.0455 (2)0.0674 (3)0.01137 (16)0.00214 (19)0.00155 (15)
Geometric parameters (Å, º) top
C1—C21.390 (4)C14—S11.752 (3)
C1—C61.391 (4)C15—C161.371 (5)
C1—N11.423 (4)C15—H150.9300
C2—C31.369 (5)C16—C171.376 (6)
C2—H20.9300C16—H160.9300
C3—C41.394 (6)C17—C181.374 (6)
C3—H30.9300C17—H170.9300
C4—C51.368 (5)C18—C191.365 (6)
C4—H40.9300C18—H180.9300
C5—C61.397 (4)C19—H190.9300
C5—H50.9300C20—C251.385 (4)
C6—C71.448 (4)C20—C211.386 (4)
C7—C121.389 (4)C21—C221.393 (5)
C7—C81.396 (4)C21—H210.9300
C8—C91.377 (4)C22—C231.355 (5)
C8—N11.429 (4)C22—H220.9300
C9—C101.393 (4)C23—C241.355 (5)
C9—H90.9300C23—H230.9300
C10—C111.402 (4)C24—C251.381 (4)
C10—C201.496 (4)C24—H240.9300
C11—C121.395 (4)C25—N21.465 (4)
C11—C261.500 (4)C26—Br11.971 (3)
C12—O51.373 (3)C26—H26A0.9300
C13—O51.428 (4)C26—H26B0.9300
C13—H13A0.9600N1—S11.668 (2)
C13—H13B0.9600N2—O11.207 (4)
C13—H13C0.9600N2—O21.218 (4)
C14—C151.370 (5)O3—S11.425 (2)
C14—C191.379 (5)O4—S11.412 (2)
C2—C1—C6121.7 (3)C15—C16—H16120.0
C2—C1—N1129.6 (3)C17—C16—H16120.0
C6—C1—N1108.8 (2)C18—C17—C16120.1 (4)
C3—C2—C1117.6 (3)C18—C17—H17120.0
C3—C2—H2121.2C16—C17—H17120.0
C1—C2—H2121.2C19—C18—C17120.2 (4)
C2—C3—C4121.4 (3)C19—C18—H18119.9
C2—C3—H3119.3C17—C18—H18119.9
C4—C3—H3119.3C18—C19—C14119.3 (4)
C5—C4—C3121.0 (3)C18—C19—H19120.3
C5—C4—H4119.5C14—C19—H19120.3
C3—C4—H4119.5C25—C20—C21115.8 (3)
C4—C5—C6118.7 (3)C25—C20—C10124.8 (2)
C4—C5—H5120.7C21—C20—C10119.4 (3)
C6—C5—H5120.7C20—C21—C22121.5 (3)
C1—C6—C5119.6 (3)C20—C21—H21119.3
C1—C6—C7107.4 (2)C22—C21—H21119.3
C5—C6—C7132.9 (3)C23—C22—C21120.4 (3)
C12—C7—C8118.9 (3)C23—C22—H22119.8
C12—C7—C6132.8 (3)C21—C22—H22119.8
C8—C7—C6108.3 (2)C22—C23—C24119.8 (3)
C9—C8—C7122.3 (3)C22—C23—H23120.1
C9—C8—N1129.9 (3)C24—C23—H23120.1
C7—C8—N1107.8 (2)C23—C24—C25119.9 (3)
C8—C9—C10118.0 (3)C23—C24—H24120.1
C8—C9—H9121.0C25—C24—H24120.1
C10—C9—H9121.0C24—C25—C20122.6 (3)
C9—C10—C11121.2 (3)C24—C25—N2116.0 (3)
C9—C10—C20118.6 (2)C20—C25—N2121.3 (3)
C11—C10—C20120.2 (2)C11—C26—Br1110.0 (2)
C12—C11—C10119.2 (2)C11—C26—H26A120.0
C12—C11—C26119.0 (3)Br1—C26—H26A81.8
C10—C11—C26121.8 (3)C11—C26—H26B120.0
O5—C12—C7119.5 (3)Br1—C26—H26B78.5
O5—C12—C11120.3 (2)H26A—C26—H26B120.0
C7—C12—C11120.2 (2)C1—N1—C8107.6 (2)
O5—C13—H13A109.5C1—N1—S1123.50 (19)
O5—C13—H13B109.5C8—N1—S1122.6 (2)
H13A—C13—H13B109.5O1—N2—O2123.5 (3)
O5—C13—H13C109.5O1—N2—C25118.6 (3)
H13A—C13—H13C109.5O2—N2—C25117.9 (3)
H13B—C13—H13C109.5C12—O5—C13112.5 (2)
C15—C14—C19121.0 (3)O4—S1—O3120.22 (15)
C15—C14—S1119.8 (2)O4—S1—N1106.54 (14)
C19—C14—S1119.3 (3)O3—S1—N1106.23 (14)
C14—C15—C16119.3 (3)O4—S1—C14109.25 (16)
C14—C15—H15120.3O3—S1—C14108.98 (15)
C16—C15—H15120.3N1—S1—C14104.43 (13)
C15—C16—C17120.1 (4)
C6—C1—C2—C31.5 (5)C9—C10—C20—C2590.5 (4)
N1—C1—C2—C3179.1 (3)C11—C10—C20—C2592.5 (3)
C1—C2—C3—C40.3 (5)C9—C10—C20—C2190.0 (3)
C2—C3—C4—C51.0 (5)C11—C10—C20—C2187.0 (4)
C3—C4—C5—C61.0 (5)C25—C20—C21—C220.5 (5)
C2—C1—C6—C51.5 (4)C10—C20—C21—C22179.9 (3)
N1—C1—C6—C5179.0 (3)C20—C21—C22—C230.3 (6)
C2—C1—C6—C7178.4 (3)C21—C22—C23—C241.3 (6)
N1—C1—C6—C72.0 (3)C22—C23—C24—C251.6 (6)
C4—C5—C6—C10.2 (4)C23—C24—C25—C200.7 (5)
C4—C5—C6—C7176.2 (3)C23—C24—C25—N2179.4 (3)
C1—C6—C7—C12178.5 (3)C21—C20—C25—C240.3 (4)
C5—C6—C7—C122.1 (5)C10—C20—C25—C24179.8 (3)
C1—C6—C7—C80.6 (3)C21—C20—C25—N2179.5 (3)
C5—C6—C7—C8175.8 (3)C10—C20—C25—N20.0 (4)
C12—C7—C8—C92.1 (4)C12—C11—C26—Br192.0 (3)
C6—C7—C8—C9176.1 (3)C10—C11—C26—Br188.1 (3)
C12—C7—C8—N1178.8 (2)C2—C1—N1—C8176.7 (3)
C6—C7—C8—N12.9 (3)C6—C1—N1—C83.9 (3)
C7—C8—C9—C102.2 (4)C2—C1—N1—S124.2 (4)
N1—C8—C9—C10176.6 (3)C6—C1—N1—S1156.4 (2)
C8—C9—C10—C114.5 (4)C9—C8—N1—C1174.8 (3)
C8—C9—C10—C20178.5 (2)C7—C8—N1—C14.2 (3)
C9—C10—C11—C122.5 (4)C9—C8—N1—S122.0 (4)
C20—C10—C11—C12179.4 (2)C7—C8—N1—S1157.0 (2)
C9—C10—C11—C26177.4 (3)C24—C25—N2—O1147.7 (3)
C20—C10—C11—C260.5 (4)C20—C25—N2—O132.5 (4)
C8—C7—C12—O5178.1 (2)C24—C25—N2—O230.9 (4)
C6—C7—C12—O54.2 (5)C20—C25—N2—O2148.9 (3)
C8—C7—C12—C114.2 (4)C7—C12—O5—C1381.0 (3)
C6—C7—C12—C11173.5 (3)C11—C12—O5—C13101.3 (3)
C10—C11—C12—O5179.6 (2)C1—N1—S1—O4170.5 (2)
C26—C11—C12—O50.5 (4)C8—N1—S1—O441.0 (3)
C10—C11—C12—C72.0 (4)C1—N1—S1—O341.2 (3)
C26—C11—C12—C7178.1 (3)C8—N1—S1—O3170.3 (2)
C19—C14—C15—C160.9 (5)C1—N1—S1—C1473.9 (2)
S1—C14—C15—C16178.7 (3)C8—N1—S1—C1474.6 (2)
C14—C15—C16—C170.1 (6)C15—C14—S1—O418.4 (3)
C15—C16—C17—C181.1 (7)C19—C14—S1—O4161.3 (3)
C16—C17—C18—C191.0 (7)C15—C14—S1—O3151.5 (3)
C17—C18—C19—C140.0 (7)C19—C14—S1—O328.1 (3)
C15—C14—C19—C180.9 (5)C15—C14—S1—N195.3 (3)
S1—C14—C19—C18178.7 (3)C19—C14—S1—N185.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.342.941 (4)122
C9—H9···O40.932.322.925 (4)122
C23—H23···O1i0.932.533.264 (4)136
C22—H22···Cg1ii0.932.953.810 (4)155
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O30.932.342.941 (4)122
C9—H9···O40.932.322.925 (4)122
C23—H23···O1i0.932.533.264 (4)135.7
C22—H22···Cg1ii0.932.953.810 (4)155
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z3/2.
 

Acknowledgements

SG and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Madras, India for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFriend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos SAntos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.  Web of Science CrossRef CAS Google Scholar
First citationGopinath, S., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o273–o274.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o230–o231.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRamsewak, R. S., Nair, M. G., Starsburg, G. M., Dewitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444—447.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Chen, J. Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem, 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o707-o708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds