organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­hexyl-2-methyl-3-(3-methyl­phenyl­sulfin­yl)-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 5 May 2014; accepted 15 May 2014; online 21 May 2014)

In the title compound, C22H24O2S, the cyclo­hexyl ring adopts a chair conformation. The dihedral angle between the mean planes of the benzo­furan and 3-methyl­phenyl moieties is 86.48 (4)°. In the crystal, mol­ecules are connected along the a-axis direction by two different inversion-generated pairs of C—H⋯π and C—H⋯O inter­actions.

Related literature

For background information and the crystal structures of related compounds, see: Choi et al. (2012[Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o947.], 2013[Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o1026.], 2014[Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o309.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24O2S

  • Mr = 352.47

  • Triclinic, [P \overline 1]

  • a = 8.8562 (2) Å

  • b = 10.3095 (2) Å

  • c = 11.1248 (2) Å

  • α = 91.147 (1)°

  • β = 113.425 (1)°

  • γ = 98.036 (1)°

  • V = 919.66 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.40 × 0.39 × 0.32 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.746

  • 16991 measured reflections

  • 4585 independent reflections

  • 3954 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.03

  • 4585 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22B⋯O2i 0.98 2.54 3.295 (2) 134
C14—H14ACg1ii 0.99 2.91 3.607 (2) 128
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continuing study of 5-cyclohexyl-2-methyl-1-benzofuran derivatives containing 4-methylphenylsulfinyl (Choi et al., 2012), 3-fluorophenylsulfinyl (Choi et al., 2013) and 3-bromophenylsulfinyl (Choi et al., 2014) substituents in 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The 3-methylphenyl ring is essentially planar, with a mean deviation of 0.006 (1) Å from the least-squares plane defined by the six constituent atoms. The cyclohexyl ring is in the chair form. The dihedral angle formed by the benzofuran ring system and the 3-methylphenyl ring is 86.48 (4)°. In the crystal structure (Fig. 2), molecules are connected via two different inversion-generated pairs of C—H···π and C—H···O interactions (Table 1, Cg1 is the centroid of the C2–C7 benzene ring), forming supramolecular stacks running along the a-axis direction.

Related literature top

For background information and the crystal structures of related compounds, see: Choi et al. (2012, 2013, 2014).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclohexyl-2-methyl-3-(3-methylphenylsulfanyl)-1-benzofuran (302 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 75%, m.p. 390–391 K; Rf = 0.56 (hexane-ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y, - z + 1; (ii) - x + 1,- y + 1,- z + 1.]
5-Cyclohexyl-2-methyl-3-(3-methylphenylsulfinyl)-1-benzofuran top
Crystal data top
C22H24O2SZ = 2
Mr = 352.47F(000) = 376
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Melting point = 391–390 K
a = 8.8562 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3095 (2) ÅCell parameters from 6026 reflections
c = 11.1248 (2) Åθ = 2.5–28.3°
α = 91.147 (1)°µ = 0.19 mm1
β = 113.425 (1)°T = 173 K
γ = 98.036 (1)°Block, colourless
V = 919.66 (3) Å30.40 × 0.39 × 0.32 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4585 independent reflections
Radiation source: rotating anode3954 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.026
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.685, Tmax = 0.746l = 1413
16991 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.3576P]
where P = (Fo2 + 2Fc2)/3
4585 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H24O2Sγ = 98.036 (1)°
Mr = 352.47V = 919.66 (3) Å3
Triclinic, P1Z = 2
a = 8.8562 (2) ÅMo Kα radiation
b = 10.3095 (2) ŵ = 0.19 mm1
c = 11.1248 (2) ÅT = 173 K
α = 91.147 (1)°0.40 × 0.39 × 0.32 mm
β = 113.425 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3954 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.026
16991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
4585 reflectionsΔρmin = 0.29 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.33525 (4)0.01712 (3)0.19341 (3)0.02995 (11)
O10.54828 (13)0.32465 (11)0.08241 (10)0.0345 (2)
O20.45096 (14)0.04957 (11)0.30068 (11)0.0386 (3)
C10.44786 (17)0.16556 (14)0.17900 (13)0.0282 (3)
C20.56092 (16)0.26407 (14)0.28182 (13)0.0263 (3)
C30.61829 (17)0.28088 (14)0.41837 (13)0.0263 (3)
H30.58200.21650.46510.032*
C40.72974 (17)0.39386 (14)0.48490 (13)0.0271 (3)
C50.78181 (18)0.48692 (15)0.41363 (15)0.0323 (3)
H50.85760.56370.46010.039*
C60.72745 (19)0.47179 (16)0.27813 (15)0.0342 (3)
H60.76400.53560.23090.041*
C70.61774 (18)0.35936 (15)0.21611 (14)0.0292 (3)
C80.44668 (19)0.20622 (16)0.06342 (14)0.0322 (3)
C90.79399 (18)0.41763 (14)0.63272 (14)0.0285 (3)
H90.88040.49850.66050.034*
C100.8773 (2)0.30491 (15)0.70293 (14)0.0328 (3)
H10A0.79540.22270.67460.039*
H10B0.97000.29300.67750.039*
C110.9449 (2)0.33006 (17)0.85189 (15)0.0391 (4)
H11A0.99150.25240.89340.047*
H11B1.03630.40620.88140.047*
C120.8107 (2)0.35721 (17)0.89605 (16)0.0405 (4)
H12A0.86070.38000.99220.049*
H12B0.72640.27700.87700.049*
C130.7266 (2)0.4689 (2)0.82687 (16)0.0478 (5)
H13A0.80810.55130.85430.057*
H13B0.63460.48060.85320.057*
C140.6574 (2)0.4421 (2)0.67754 (16)0.0469 (5)
H14A0.60760.51840.63530.056*
H14B0.56830.36440.64920.056*
C150.3574 (2)0.15033 (19)0.07522 (15)0.0434 (4)
H15A0.30110.06080.07780.065*
H15B0.43750.14830.11550.065*
H15C0.27460.20500.12390.065*
C160.20315 (17)0.08466 (13)0.25708 (14)0.0271 (3)
C170.23952 (17)0.08488 (13)0.38974 (13)0.0267 (3)
H170.33390.04980.44670.032*
C180.13706 (18)0.13682 (14)0.43984 (14)0.0293 (3)
C190.00153 (19)0.18503 (15)0.35310 (16)0.0349 (3)
H190.07230.22080.38580.042*
C200.03811 (19)0.18184 (17)0.21998 (16)0.0384 (4)
H200.13390.21470.16230.046*
C210.06364 (19)0.13129 (15)0.17043 (15)0.0341 (3)
H210.03870.12850.07900.041*
C220.1782 (2)0.14006 (17)0.58434 (16)0.0389 (4)
H22A0.24390.22550.62710.058*
H22B0.24280.07010.62210.058*
H22C0.07480.12680.59830.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03221 (19)0.02785 (18)0.02855 (18)0.00229 (14)0.01213 (14)0.00417 (13)
O10.0349 (6)0.0442 (6)0.0278 (5)0.0052 (5)0.0166 (4)0.0054 (4)
O20.0401 (6)0.0350 (6)0.0432 (6)0.0124 (5)0.0173 (5)0.0045 (5)
C10.0270 (7)0.0325 (7)0.0256 (6)0.0044 (6)0.0116 (5)0.0018 (5)
C20.0231 (6)0.0286 (7)0.0288 (7)0.0053 (5)0.0120 (5)0.0013 (5)
C30.0256 (6)0.0271 (7)0.0265 (6)0.0036 (5)0.0111 (5)0.0024 (5)
C40.0238 (6)0.0272 (7)0.0292 (7)0.0063 (5)0.0088 (5)0.0027 (5)
C50.0259 (7)0.0298 (7)0.0367 (8)0.0012 (6)0.0091 (6)0.0033 (6)
C60.0302 (7)0.0355 (8)0.0388 (8)0.0025 (6)0.0165 (6)0.0102 (6)
C70.0270 (7)0.0362 (8)0.0269 (7)0.0065 (6)0.0132 (5)0.0042 (6)
C80.0308 (7)0.0399 (8)0.0281 (7)0.0066 (6)0.0141 (6)0.0005 (6)
C90.0269 (7)0.0255 (7)0.0281 (7)0.0027 (5)0.0065 (5)0.0002 (5)
C100.0379 (8)0.0329 (7)0.0302 (7)0.0124 (6)0.0141 (6)0.0043 (6)
C110.0440 (9)0.0431 (9)0.0306 (8)0.0173 (7)0.0120 (7)0.0083 (7)
C120.0454 (9)0.0449 (9)0.0312 (8)0.0022 (7)0.0175 (7)0.0031 (7)
C130.0471 (10)0.0627 (12)0.0334 (8)0.0247 (9)0.0115 (7)0.0078 (8)
C140.0398 (9)0.0667 (12)0.0322 (8)0.0278 (9)0.0066 (7)0.0065 (8)
C150.0473 (9)0.0584 (11)0.0259 (7)0.0072 (8)0.0168 (7)0.0021 (7)
C160.0263 (7)0.0242 (6)0.0287 (7)0.0003 (5)0.0102 (5)0.0003 (5)
C170.0248 (6)0.0257 (6)0.0278 (7)0.0037 (5)0.0089 (5)0.0025 (5)
C180.0301 (7)0.0272 (7)0.0317 (7)0.0031 (6)0.0140 (6)0.0031 (5)
C190.0298 (7)0.0345 (8)0.0431 (8)0.0083 (6)0.0165 (6)0.0047 (6)
C200.0287 (7)0.0424 (9)0.0399 (8)0.0109 (7)0.0076 (6)0.0100 (7)
C210.0319 (7)0.0374 (8)0.0281 (7)0.0044 (6)0.0073 (6)0.0054 (6)
C220.0431 (9)0.0451 (9)0.0350 (8)0.0130 (7)0.0204 (7)0.0049 (7)
Geometric parameters (Å, º) top
S1—O21.4847 (11)C11—H11B0.9900
S1—C11.7528 (15)C12—C131.513 (2)
S1—C161.7950 (14)C12—H12A0.9900
O1—C81.3698 (19)C12—H12B0.9900
O1—C71.3815 (17)C13—C141.529 (2)
C1—C81.357 (2)C13—H13A0.9900
C1—C21.4494 (19)C13—H13B0.9900
C2—C71.391 (2)C14—H14A0.9900
C2—C31.3953 (19)C14—H14B0.9900
C3—C41.3935 (19)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.400 (2)C15—H15C0.9800
C4—C91.5129 (19)C16—C171.3797 (19)
C5—C61.386 (2)C16—C211.387 (2)
C5—H50.9500C17—C181.395 (2)
C6—C71.373 (2)C17—H170.9500
C6—H60.9500C18—C191.390 (2)
C8—C151.484 (2)C18—C221.499 (2)
C9—C101.5241 (19)C19—C201.383 (2)
C9—C141.529 (2)C19—H190.9500
C9—H91.0000C20—C211.379 (2)
C10—C111.524 (2)C20—H200.9500
C10—H10A0.9900C21—H210.9500
C10—H10B0.9900C22—H22A0.9800
C11—C121.511 (2)C22—H22B0.9800
C11—H11A0.9900C22—H22C0.9800
O2—S1—C1107.71 (7)C11—C12—H12A109.4
O2—S1—C16107.13 (7)C13—C12—H12A109.4
C1—S1—C1697.97 (6)C11—C12—H12B109.4
C8—O1—C7106.36 (11)C13—C12—H12B109.4
C8—C1—C2107.14 (13)H12A—C12—H12B108.0
C8—C1—S1124.02 (12)C12—C13—C14111.37 (14)
C2—C1—S1128.81 (11)C12—C13—H13A109.4
C7—C2—C3119.30 (13)C14—C13—H13A109.4
C7—C2—C1104.68 (12)C12—C13—H13B109.4
C3—C2—C1136.02 (13)C14—C13—H13B109.4
C4—C3—C2118.83 (13)H13A—C13—H13B108.0
C4—C3—H3120.6C13—C14—C9111.25 (13)
C2—C3—H3120.6C13—C14—H14A109.4
C3—C4—C5119.41 (13)C9—C14—H14A109.4
C3—C4—C9120.91 (13)C13—C14—H14B109.4
C5—C4—C9119.67 (13)C9—C14—H14B109.4
C6—C5—C4122.75 (14)H14A—C14—H14B108.0
C6—C5—H5118.6C8—C15—H15A109.5
C4—C5—H5118.6C8—C15—H15B109.5
C7—C6—C5116.14 (14)H15A—C15—H15B109.5
C7—C6—H6121.9C8—C15—H15C109.5
C5—C6—H6121.9H15A—C15—H15C109.5
C6—C7—O1125.75 (13)H15B—C15—H15C109.5
C6—C7—C2123.57 (13)C17—C16—C21121.73 (13)
O1—C7—C2110.68 (13)C17—C16—S1119.36 (10)
C1—C8—O1111.14 (13)C21—C16—S1118.88 (11)
C1—C8—C15133.36 (16)C16—C17—C18119.67 (13)
O1—C8—C15115.49 (14)C16—C17—H17120.2
C4—C9—C10111.95 (12)C18—C17—H17120.2
C4—C9—C14112.42 (12)C19—C18—C17118.50 (13)
C10—C9—C14109.64 (13)C19—C18—C22121.62 (13)
C4—C9—H9107.5C17—C18—C22119.88 (13)
C10—C9—H9107.5C20—C19—C18121.14 (14)
C14—C9—H9107.5C20—C19—H19119.4
C11—C10—C9111.93 (12)C18—C19—H19119.4
C11—C10—H10A109.2C21—C20—C19120.42 (14)
C9—C10—H10A109.2C21—C20—H20119.8
C11—C10—H10B109.2C19—C20—H20119.8
C9—C10—H10B109.2C20—C21—C16118.51 (14)
H10A—C10—H10B107.9C20—C21—H21120.7
C12—C11—C10111.65 (13)C16—C21—H21120.7
C12—C11—H11A109.3C18—C22—H22A109.5
C10—C11—H11A109.3C18—C22—H22B109.5
C12—C11—H11B109.3H22A—C22—H22B109.5
C10—C11—H11B109.3C18—C22—H22C109.5
H11A—C11—H11B108.0H22A—C22—H22C109.5
C11—C12—C13111.11 (14)H22B—C22—H22C109.5
O2—S1—C1—C8131.33 (13)C7—O1—C8—C15179.61 (13)
C16—S1—C1—C8117.76 (13)C3—C4—C9—C1056.24 (17)
O2—S1—C1—C246.28 (14)C5—C4—C9—C10124.23 (14)
C16—S1—C1—C264.63 (13)C3—C4—C9—C1467.70 (18)
C8—C1—C2—C70.82 (15)C5—C4—C9—C14111.83 (16)
S1—C1—C2—C7178.75 (11)C4—C9—C10—C11178.94 (13)
C8—C1—C2—C3179.08 (15)C14—C9—C10—C1155.57 (17)
S1—C1—C2—C31.2 (2)C9—C10—C11—C1255.45 (19)
C7—C2—C3—C40.74 (19)C10—C11—C12—C1354.59 (19)
C1—C2—C3—C4179.36 (14)C11—C12—C13—C1455.3 (2)
C2—C3—C4—C50.31 (19)C12—C13—C14—C956.6 (2)
C2—C3—C4—C9179.22 (12)C4—C9—C14—C13178.73 (14)
C3—C4—C5—C60.2 (2)C10—C9—C14—C1356.05 (19)
C9—C4—C5—C6179.71 (13)O2—S1—C16—C179.59 (13)
C4—C5—C6—C70.2 (2)C1—S1—C16—C17101.79 (12)
C5—C6—C7—O1179.97 (13)O2—S1—C16—C21168.25 (12)
C5—C6—C7—C20.3 (2)C1—S1—C16—C2180.37 (13)
C8—O1—C7—C6179.85 (14)C21—C16—C17—C182.0 (2)
C8—O1—C7—C20.05 (15)S1—C16—C17—C18179.79 (11)
C3—C2—C7—C60.7 (2)C16—C17—C18—C191.1 (2)
C1—C2—C7—C6179.33 (13)C16—C17—C18—C22178.62 (13)
C3—C2—C7—O1179.45 (11)C17—C18—C19—C200.1 (2)
C1—C2—C7—O10.47 (15)C22—C18—C19—C20179.84 (15)
C2—C1—C8—O10.90 (16)C18—C19—C20—C210.5 (3)
S1—C1—C8—O1178.95 (10)C19—C20—C21—C160.3 (2)
C2—C1—C8—C15179.66 (16)C17—C16—C21—C201.6 (2)
S1—C1—C8—C152.3 (3)S1—C16—C21—C20179.37 (12)
C7—O1—C8—C10.61 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C22—H22B···O2i0.982.543.295 (2)134
C14—H14A···Cg1ii0.992.913.607 (2)128
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C22—H22B···O2i0.982.543.295 (2)133.7
C14—H14A···Cg1ii0.992.913.607 (2)128.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by a Dongeui University Grant. (2014AA011)

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o947.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o1026.  CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o309.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds