organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1-Oxidopyridin-4-yl)sulfan­yl]benzoic acid

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brasil
*Correspondence e-mail: rodimo26@yahoo.es

Edited by A. J. Lough, University of Toronto, Canada (Received 16 April 2014; accepted 1 May 2014; online 10 May 2014)

In the title compound, C12H9NO3S, the dihedral angle between the pyridine and benzene rings is 83.93 (7)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the molecules, forming inversion dimers with graph-set notation R22(22). These dimers are in turn linked by weak C—H⋯O hydrogen bonds along [100], forming R22(8) rings.

Related literature

For a novel synthesis of organic sulfur compounds, see: Moreno-Fuquen et al. (2010[Moreno-Fuquen, R., Valencia, L., Kennedy, A. R., Gilmour, D. & Ribeiro, L. (2010). Z. Kristallogr. 225, 396-400.]); For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO3S

  • Mr = 247.26

  • Monoclinic, P 21 /c

  • a = 8.9894 (8) Å

  • b = 5.7373 (3) Å

  • c = 22.5855 (18) Å

  • β = 111.348 (4)°

  • V = 1084.92 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.39 × 0.09 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.944, Tmax = 0.966

  • 7031 measured reflections

  • 2439 independent reflections

  • 1209 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 0.96

  • 2439 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.93 2.35 3.255 (3) 164
O1—H1⋯O3ii 0.82 1.74 2.530 (3) 162
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+1, -y+1, -z+2.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In a previous study in our research group, it was possible to obtain the 2-amino-3-(N-oxipiridin-4-ilsulfanil)-propionic acid dihydrate (NPNOCys) by a novel synthesis (Moreno-Fuquen et al., 2010). We then tried to form other organic sulfur compounds by this same synthetic route. In this study nitropyridine N-oxide and 2-mercaptobenzoic acid were combined following the same synthetic route. The crystal structure determination of the title compound (I) was carried out in order to examine its structural characteristics and supramolecular behavior. The molecular structure of the title compound is shown in Fig. 1. Bond lengths (Allen et al., 1987) are in the normal values. The benzene and pyridine rings bridged by the sulfur atom are tilted with respect to each other forming a dihedral angle of 83.93 (7)°. The C—S bond length which links the sulfur to the oxipiridinic ring is similar to the distance in the NPNOCys compound [C—S = 1.7533 (12) Å]. The crystal packing is stabilized by O—H···O hydrogen bonds and weak C—H···O intermolecular interactions, forming R22(22) and R22(8) fused-rings along [100] (see Fig. 2; Etter, 1990). The O1 atom of the carboxyl group at (x,y,z) acts as hydrogen-bond donors to O3 atom of the N-oxide group at (-x + 1,-y + 1,-z + 2) and the C11 atom at (x,y,z) acts as hydrogen-bond donors to the O3 atom at (-x + 2,-y + 1,-z + 2) (see Table 1; Nardelli, 1995).

Related literature top

For a novel synthesis of sulfur organic compounds, see: Moreno-Fuquen et al. (2010); For standard bond-length data, see: Allen et al. (1987). For hydrogen bonding, see: Nardelli (1995). For graph-set motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Sigma-Aldrich Chemical Co., and they were used without additional purification. To form this compound, equimolar amounts of 4-nitropyridine N-oxide (0.835 g. 5.96 mmol) and thiosalicylic acid were taken. They were completely dissolved in a hot mixture of acetonitrile - methanol (20%) to give a saturated solution. The solution was allowed to slowly evaporating at room temperature. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown from this mixture. The mechanism of the reaction is similar to that reported in other work published before (Moreno-Fuquen et al., 2010).

Refinement top

All H-atoms were placed in calculated positions [C—H= 0.93 Å for aromatic and O—H = 0.82 Å for carboxyl] and they were refined with Uiso(H) 1.2 or 1.5 times Ueq of the parent atom, respectively.

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 2012) plot of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains of molecules running along [100]. Symmetry code: (i) -x + 2,-y - 1,-z; (ii) -x + 1,-y - 1,-z. Hydrogen bonds are shown as dashed lines.
2-[(1-Oxidopyridin-4-yl)sulfanyl]benzoic acid top
Crystal data top
C12H9NO3SF(000) = 512
Mr = 247.26Dx = 1.514 Mg m3
Monoclinic, P21/cMelting point: 505(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9894 (8) ÅCell parameters from 3414 reflections
b = 5.7373 (3) Åθ = 2.9–27.5°
c = 22.5855 (18) ŵ = 0.29 mm1
β = 111.348 (4)°T = 295 K
V = 1084.92 (14) Å3Block, pale-yellow
Z = 40.39 × 0.09 × 0.08 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2439 independent reflections
Radiation source: fine-focus sealed tube1209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 118
Tmin = 0.944, Tmax = 0.966k = 67
7031 measured reflectionsl = 2925
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0604P)2]
where P = (Fo2 + 2Fc2)/3
2439 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H9NO3SV = 1084.92 (14) Å3
Mr = 247.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9894 (8) ŵ = 0.29 mm1
b = 5.7373 (3) ÅT = 295 K
c = 22.5855 (18) Å0.39 × 0.09 × 0.08 mm
β = 111.348 (4)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1209 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.966Rint = 0.063
7031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.96Δρmax = 0.22 e Å3
2439 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36646 (9)0.99831 (11)0.85995 (4)0.0459 (3)
N10.8447 (3)0.8084 (4)1.00615 (11)0.0418 (6)
O30.9856 (2)0.7555 (3)1.05129 (10)0.0536 (6)
C20.2227 (3)0.5798 (4)0.80591 (13)0.0404 (7)
C80.5518 (3)0.9125 (4)0.91490 (13)0.0365 (7)
O20.2993 (3)0.5340 (3)0.91821 (10)0.0550 (6)
C90.6268 (4)1.0653 (5)0.96478 (14)0.0424 (7)
H90.57811.20550.96780.051*
C30.3100 (3)0.7755 (4)0.80100 (13)0.0391 (7)
C120.6304 (4)0.7070 (4)0.91254 (13)0.0436 (7)
H120.58380.60150.87970.052*
O10.0548 (3)0.4332 (4)0.85447 (10)0.0701 (7)
H10.04470.40030.88810.105*
C110.7762 (4)0.6582 (5)0.95814 (13)0.0436 (7)
H110.82830.52020.95590.052*
C10.1974 (4)0.5164 (4)0.86591 (14)0.0412 (7)
C100.7716 (3)1.0091 (5)1.00914 (14)0.0449 (7)
H100.82081.11231.04230.054*
C70.1627 (3)0.4318 (5)0.75358 (14)0.0475 (8)
H70.10320.30200.75590.057*
C40.3364 (4)0.8171 (5)0.74496 (14)0.0479 (8)
H40.39440.94750.74170.058*
C60.1904 (4)0.4752 (5)0.69837 (15)0.0547 (9)
H60.15010.37430.66400.066*
C50.2771 (4)0.6664 (5)0.69418 (15)0.0547 (9)
H50.29610.69480.65700.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (5)0.0341 (4)0.0473 (5)0.0058 (3)0.0083 (4)0.0015 (3)
N10.0359 (15)0.0498 (14)0.0394 (15)0.0031 (11)0.0133 (12)0.0002 (11)
O30.0345 (12)0.0743 (13)0.0455 (13)0.0009 (10)0.0070 (10)0.0051 (10)
C20.0355 (17)0.0401 (15)0.0361 (18)0.0094 (13)0.0016 (14)0.0025 (12)
C80.0408 (17)0.0326 (14)0.0384 (17)0.0036 (12)0.0170 (14)0.0023 (11)
O20.0559 (15)0.0636 (13)0.0380 (13)0.0129 (11)0.0082 (11)0.0030 (10)
C90.0426 (19)0.0406 (15)0.0464 (19)0.0015 (13)0.0192 (16)0.0058 (13)
C30.0358 (17)0.0357 (15)0.0392 (18)0.0079 (12)0.0057 (14)0.0021 (12)
C120.048 (2)0.0387 (16)0.0397 (18)0.0008 (13)0.0112 (16)0.0040 (12)
O10.0446 (15)0.1016 (18)0.0569 (16)0.0104 (13)0.0099 (12)0.0222 (12)
C110.0444 (19)0.0396 (16)0.0450 (19)0.0040 (13)0.0141 (16)0.0000 (13)
C10.0393 (19)0.0321 (14)0.0475 (19)0.0039 (13)0.0103 (15)0.0017 (12)
C100.0448 (19)0.0461 (17)0.0455 (19)0.0097 (15)0.0186 (16)0.0086 (13)
C70.0404 (19)0.0429 (16)0.047 (2)0.0015 (13)0.0015 (16)0.0013 (13)
C40.042 (2)0.0533 (18)0.044 (2)0.0037 (14)0.0105 (16)0.0047 (14)
C60.053 (2)0.062 (2)0.039 (2)0.0083 (16)0.0039 (16)0.0118 (15)
C50.057 (2)0.064 (2)0.041 (2)0.0121 (17)0.0157 (17)0.0040 (15)
Geometric parameters (Å, º) top
S1—C81.747 (3)C12—C111.369 (4)
S1—C31.781 (3)C12—H120.9300
N1—C101.339 (3)O1—C11.302 (3)
N1—O31.341 (3)O1—H10.8200
N1—C111.346 (3)C11—H110.9300
C2—C71.395 (4)C10—H100.9300
C2—C31.397 (4)C7—C61.380 (4)
C2—C11.498 (4)C7—H70.9300
C8—C121.385 (4)C4—C51.379 (4)
C8—C91.393 (4)C4—H40.9300
O2—C11.207 (3)C6—C51.369 (4)
C9—C101.361 (4)C6—H60.9300
C9—H90.9300C5—H50.9300
C3—C41.391 (4)
C8—S1—C3105.49 (12)N1—C11—H11119.8
C10—N1—O3120.1 (2)C12—C11—H11119.8
C10—N1—C11120.2 (3)O2—C1—O1124.5 (3)
O3—N1—C11119.7 (2)O2—C1—C2123.6 (3)
C7—C2—C3118.5 (3)O1—C1—C2111.8 (3)
C7—C2—C1118.7 (3)N1—C10—C9121.5 (3)
C3—C2—C1122.8 (2)N1—C10—H10119.3
C12—C8—C9117.6 (3)C9—C10—H10119.3
C12—C8—S1125.5 (2)C6—C7—C2121.0 (3)
C9—C8—S1116.9 (2)C6—C7—H7119.5
C10—C9—C8119.9 (3)C2—C7—H7119.5
C10—C9—H9120.1C5—C4—C3120.5 (3)
C8—C9—H9120.1C5—C4—H4119.8
C4—C3—C2119.8 (2)C3—C4—H4119.8
C4—C3—S1117.4 (2)C5—C6—C7120.1 (3)
C2—C3—S1122.2 (2)C5—C6—H6120.0
C11—C12—C8120.5 (3)C7—C6—H6120.0
C11—C12—H12119.8C6—C5—C4120.2 (3)
C8—C12—H12119.8C6—C5—H5119.9
C1—O1—H1109.5C4—C5—H5119.9
N1—C11—C12120.4 (3)
C3—S1—C8—C122.5 (3)C7—C2—C1—O2137.2 (3)
C3—S1—C8—C9176.8 (2)C3—C2—C1—O239.8 (4)
C12—C8—C9—C100.5 (4)C7—C2—C1—O140.6 (3)
S1—C8—C9—C10179.9 (2)C3—C2—C1—O1142.3 (3)
C7—C2—C3—C40.6 (4)O3—N1—C10—C9178.6 (2)
C1—C2—C3—C4176.4 (2)C11—N1—C10—C90.8 (4)
C7—C2—C3—S1170.4 (2)C8—C9—C10—N10.1 (4)
C1—C2—C3—S112.5 (4)C3—C2—C7—C60.8 (4)
C8—S1—C3—C499.3 (2)C1—C2—C7—C6176.3 (3)
C8—S1—C3—C289.5 (2)C2—C3—C4—C50.1 (4)
C9—C8—C12—C110.3 (4)S1—C3—C4—C5171.6 (2)
S1—C8—C12—C11179.6 (2)C2—C7—C6—C50.4 (4)
C10—N1—C11—C121.0 (4)C7—C6—C5—C40.4 (5)
O3—N1—C11—C12178.4 (2)C3—C4—C5—C60.6 (5)
C8—C12—C11—N10.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.353.255 (3)164
O1—H1···O3ii0.821.742.530 (3)162
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.353.255 (3)164.0
O1—H1···O3ii0.821.742.530 (3)162.0
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Valencia, L., Kennedy, A. R., Gilmour, D. & Ribeiro, L. (2010). Z. Kristallogr. 225, 396–400.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds