metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m216-m217

(N,N′-Di­ethyl­thio­urea-κS)tris­­(tri­phenylphosphane-κP)silver(I) acetate methanol monosolvate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

Edited by A. J. Lough, University of Toronto, Canada (Received 26 April 2014; accepted 12 May 2014; online 17 May 2014)

In the mononuclear title complex, [Ag(C5H12N2S)(C18H15P)3](CH3COO)·CH3OH, the AgI ion is in a distorted tetra­hedral coordination geometry formed by three P atoms from three tri­phenyl­phosphane ligands and one S atom from an N,N′-di­ethyl­thio­urea ligand. In the crystal, the acetate anion is connected to the complex mol­ecule via a pair of N—H⋯O hydrogen bonds [graph-set motif R22(8)] and the solvent methanol mol­ecule is connected to the anion via an O—H⋯O hydrogen bond. This aggregate is further connected through a weak C—H⋯O hydrogen bond, forming a chain along [100]. In addition, sixfold phenyl embraces with inter­molecular distances of 6.6463 (13)–6.667 (2) Å are arranged in a chain along [001]. The combination of hydrogen bonding and phen­yl⋯phenyl inter­actions leads to the formation of a two-dimensional network parallel to (010).

Related literature

For structural reports on silver(I) complexes containing thio­urea derivatives as ligands or mixed-ligands with tri­phenyl­phosphane, see: Bowmaker et al. (2010[Bowmaker, G. A., Pakawatchai, C., Saithong, S., Skelton, B. W. & White, A. H. (2010). Dalton Trans. 39, 4391-4404.]); Rüffer et al. (2011[Rüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 52, 1025-1029.]); Pakawatchai et al. (2012[Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506-m1507.]). For potential applications of silver(I) complexes, see: Ferrari et al. (2007[Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]). For details of sixfold phenyl embraces, see: Dance & Scudder (2000[Dance, I. & Scudder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 1587-1594.]); Scudder & Dance (2001[Scudder, M. & Dance, I. (2001). CrystEngCom, 12, 1-4.]). For hydrogen-bond graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C5H12N2S)(C18H15P)3](C2H3O2)·CH4O

  • Mr = 1117.99

  • Monoclinic, P 21 /n

  • a = 12.950 (3) Å

  • b = 21.903 (6) Å

  • c = 19.915 (5) Å

  • β = 103.201 (4)°

  • V = 5500 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.608, Tmax = 0.746

  • 59032 measured reflections

  • 16670 independent reflections

  • 10564 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.120

  • S = 1.00

  • 16670 reflections

  • 653 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 1.93 2.811 (3) 176
N2—H2⋯O2 0.88 1.89 2.754 (3) 168
O3—H3D⋯O1 0.87 1.86 2.724 (4) 177
C34—H34⋯O2i 0.95 2.52 3.394 (4) 154
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Tri­phenyl­phosphane, PPh3 (0.31 g) was dissolved in 30 mL of methanol at 338 K and then silver acetate, AgOAc (0.10 g) was added. The mixture was stirred for 2 hr and then N,N'-di­ethyl­thio­urea, detu (0.08 g) was added and the new reaction mixture was heated under reflux 5 hr where upon the precipitate gradually disappeared. The resulting clear solution was filtered off and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for several day, was filtered off and dried in vacuo.

Refinement top

Reflections -1 1 1, 0 2 0, 0 -2 1, 1 1 0, -1 0 1, -1 -1 1, 0 0 2, 0 1 1, 0 -1 1, 0 1 2, 0 -1 2, 1 1 1, -1 3 1 and -2 2 3 were affected by the beam stop and were omitted from the refinement. All H atoms were positioned geometrically and refined using a riding-model with C—H = 0.98 Å (CH3), and Uiso(H) = 1.5 Ueq(C); 0.99 Å (CH2), and Uiso(H) = 1.2 Ueq(C); 0.95 Å (aryl H), and Uiso(H) = 1.2 Ueq(C); 0.88 Å (NH), and Uiso(H) = 1.2 Ueq(N); 0.84 Å (OH), and Uiso(H) = 1.5 Ueq(O).

Results and discussion top

A large number of structural reports on silver(I) complexes containing thio­urea derivatives as ligands or mixed-ligands with tri­phenyl­phosphane have been studied in recent years (Bowmaker et al., 2010; Rüffer et al., 2011; Pakawatchai et al., 2012) because these complexes have many applications. Some of these complexes show inter­esting luminescence properties (Ferrari et al., 2007) and exhibit significant biological activities (Isab et al., 2010). The sixfold phenyl embraces (6PE) is a common motif of a pair of threefold XPh3 moieties to form a concerted cycle of six edge-to-face (EF) motifs between six phenyl groups, leading to a formation one-, two-, and three-dimensional supra­molecular networks (Dance & Scudder, 2000; Scudder & Dance, 2001). Herein, we report the crystal structure a silver(I) complex containing tri­phenyl­phosphane and N,N'-di­ethyl­thio­urea.

In the mononuclear title complex, [Ag(C5H12N2S)(C18H15P)3]·CH3COO·CH3OH, the AgI ion adopts a distorted tetra­hedral geometry formed by three P atoms from three tri­phenyl­phosphane ligands, one S atom from a N,N'-di­ethyl­thio­urea ligand (Fig.1). The angles at the AgI ion vary from 91.66 (3)° to 115.50 (3)°. In the crystal, the acetace anion is linked to the complex molecule via N1—H1···O1 and N2—H2···O2 hydrogen bonds [graph-set motif R22(8); Etter et al., 1990] and the solvent methanol molecule via an O3—H3D···O1 hydrogen bond. Each cation–anion pair is linked through a weak C34(sp3)—H34···O2i hydrogen bond, forming chains along the a-axis direction (see Table 1 and Fig. 2 ). In addition, sixfold phenyl embraces (6PE) with inter­molecular distances P1···P1ii and P3···P3iii of 6.6463 (13) Å and 6.667 (2) Å, respectively (symmetry code: (ii) 1-x, 1-y, -z; (iii) 1-x, 1-y, 1-z) are arranged in one-dimensional zigzag chains along the c-axis direction (Fig. 3). The combination of hydrogen bonding and phenyl···phenyl inter­actions lead to the formation of a layer network parallel to (010) (Fig. 4).

Related literature top

For structural reports on silver(I) complexes containing thiourea derivatives as ligands or mixed-ligands with triphenylphosphane, see: Bowmaker et al. (2010); Rüffer et al. (2011); Pakawatchai et al. (2012). For potential applications of silver(I) complexes, see: Ferrari et al. (2007); Isab et al. (2010). For details of sixfold phenyl embraces, see: Dance & Scudder (2000); Scudder & Dance (2001). For hydrogen-bond graph-set analysis, see Etter et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level. The acetate anion and methanol molecule are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure with N—H···O and O—H···O hydrogen bonds shown as red dashed lines (symmetry code (i): x-1, y, z).
[Figure 3] Fig. 3. Part of the crystal structure with phenyl···phenyl interactions shown as dashed lines, which link molecules into one-dimensional zigzag chains (symmetry codes: (ii) 1-x, 1-y, -z; (iii) 1-x, 1-y, 1-z).
[Figure 4] Fig. 4. Part of the crystal structure showing formation of a layer network parallel to (010).
(N,N'-Diethylthiourea-κS)tris(triphenylphosphane-κP)silver(I) acetate methanol monosolvate top
Crystal data top
[Ag(C5H12N2S)(C18H15P)3](C2H3O2)·CH4OF(000) = 2328
Mr = 1117.99Dx = 1.350 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.950 (3) ÅCell parameters from 5990 reflections
b = 21.903 (6) Åθ = 2.3–25.9°
c = 19.915 (5) ŵ = 0.54 mm1
β = 103.201 (4)°T = 100 K
V = 5500 (2) Å3Block, colourless
Z = 40.18 × 0.15 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
10564 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.093
ω and π scansθmax = 30.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.608, Tmax = 0.746k = 3031
59032 measured reflectionsl = 2827
16670 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: mixed
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0439P)2 + 1.6753P]
where P = (Fo2 + 2Fc2)/3
16670 reflections(Δ/σ)max = 0.002
653 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 1.13 e Å3
Crystal data top
[Ag(C5H12N2S)(C18H15P)3](C2H3O2)·CH4OV = 5500 (2) Å3
Mr = 1117.99Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.950 (3) ŵ = 0.54 mm1
b = 21.903 (6) ÅT = 100 K
c = 19.915 (5) Å0.18 × 0.15 × 0.11 mm
β = 103.201 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
16670 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
10564 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.746Rint = 0.093
59032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00Δρmax = 1.23 e Å3
16670 reflectionsΔρmin = 1.13 e Å3
653 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.33154 (2)0.60067 (2)0.22458 (2)0.01296 (6)
S10.33683 (6)0.72215 (3)0.22711 (4)0.01798 (16)
P10.40233 (6)0.55336 (4)0.12895 (4)0.01430 (16)
P20.13005 (6)0.60018 (4)0.19850 (4)0.01245 (14)
P30.41323 (6)0.56197 (3)0.34445 (4)0.01342 (15)
N10.4563 (2)0.77443 (12)0.14991 (12)0.0179 (5)
H10.51310.79540.14710.021*
N20.5416 (2)0.75355 (11)0.26029 (12)0.0151 (5)
H20.59810.76960.24950.018*
C10.4519 (2)0.75171 (13)0.21146 (15)0.0162 (6)
C20.3736 (3)0.76719 (16)0.08743 (16)0.0233 (7)
H2A0.31530.79640.08780.028*
H2B0.34420.72530.08540.028*
C30.4183 (3)0.77859 (18)0.02503 (17)0.0306 (8)
H3A0.44440.82070.02610.046*
H3B0.36270.77230.01690.046*
H3C0.47690.75020.02530.046*
C40.5515 (3)0.73090 (15)0.33009 (16)0.0213 (7)
H4A0.51790.69020.32850.026*
H4B0.51440.75890.35580.026*
C50.6670 (3)0.72634 (16)0.36683 (17)0.0274 (8)
H5A0.69900.76710.37100.041*
H5B0.70420.69990.34040.041*
H5C0.67270.70910.41290.041*
C60.5431 (2)0.57060 (14)0.13891 (15)0.0153 (6)
C70.5741 (3)0.63004 (15)0.15736 (18)0.0250 (7)
H70.52280.65900.16400.030*
C80.6792 (3)0.64759 (16)0.16616 (18)0.0272 (8)
H80.69980.68850.17840.033*
C90.7535 (3)0.60516 (17)0.15701 (18)0.0275 (8)
H90.82560.61680.16250.033*
C100.7228 (3)0.54571 (16)0.13985 (19)0.0284 (8)
H100.77460.51630.13490.034*
C110.6177 (2)0.52847 (15)0.12977 (17)0.0215 (7)
H110.59700.48780.11660.026*
C120.3419 (2)0.57843 (14)0.04166 (15)0.0171 (6)
C130.3988 (3)0.60774 (14)0.00032 (16)0.0203 (7)
H130.47230.61570.01650.024*
C140.3486 (3)0.62551 (15)0.06685 (17)0.0257 (8)
H140.38790.64580.09500.031*
C150.2425 (3)0.61386 (14)0.09221 (17)0.0253 (8)
H150.20890.62540.13800.030*
C160.1846 (3)0.58513 (15)0.05066 (16)0.0228 (7)
H160.11120.57720.06780.027*
C170.2338 (3)0.56809 (15)0.01571 (16)0.0209 (7)
H170.19350.54900.04410.025*
C180.3954 (2)0.47009 (14)0.12207 (15)0.0162 (6)
C190.4193 (3)0.43635 (15)0.18297 (17)0.0243 (7)
H190.43970.45670.22610.029*
C200.4133 (3)0.37296 (17)0.18082 (19)0.0304 (8)
H200.43050.35030.22250.036*
C210.3829 (3)0.34290 (15)0.11903 (19)0.0262 (8)
H210.37830.29960.11790.031*
C220.3588 (3)0.37610 (16)0.05847 (18)0.0249 (7)
H220.33730.35540.01560.030*
C230.3658 (2)0.43917 (15)0.05958 (16)0.0197 (7)
H230.35030.46140.01750.024*
C240.0644 (2)0.62679 (13)0.11257 (15)0.0147 (6)
C250.1001 (3)0.68057 (14)0.08859 (16)0.0194 (7)
H250.15950.70130.11590.023*
C260.0493 (3)0.70410 (16)0.02476 (17)0.0261 (8)
H260.07320.74130.00910.031*
C270.0358 (3)0.67363 (16)0.01598 (16)0.0250 (7)
H270.07050.68990.05950.030*
C280.0701 (3)0.61942 (16)0.00689 (17)0.0243 (7)
H280.12750.59790.02150.029*
C290.0214 (2)0.59630 (15)0.07107 (15)0.0191 (6)
H290.04650.55950.08690.023*
C300.0609 (2)0.64181 (15)0.25510 (15)0.0167 (6)
C310.0768 (2)0.62282 (16)0.32355 (16)0.0227 (7)
H310.12470.59050.34000.027*
C320.0227 (3)0.65100 (18)0.36770 (18)0.0293 (8)
H320.03220.63730.41400.035*
C330.0451 (3)0.69919 (17)0.34413 (18)0.0289 (8)
H330.08200.71850.37440.035*
C340.0593 (3)0.71940 (16)0.27687 (19)0.0278 (8)
H340.10470.75310.26130.033*
C350.0071 (2)0.69032 (15)0.23211 (16)0.0193 (7)
H350.01790.70370.18560.023*
C360.0815 (2)0.52212 (14)0.20000 (14)0.0161 (6)
C370.0046 (3)0.50528 (16)0.22687 (17)0.0243 (7)
H370.04480.53550.24370.029*
C380.0314 (3)0.44386 (18)0.22893 (18)0.0337 (9)
H380.08950.43230.24790.040*
C390.0252 (3)0.39995 (17)0.20387 (18)0.0350 (9)
H390.00610.35820.20550.042*
C400.1096 (3)0.41600 (15)0.17641 (18)0.0282 (8)
H400.14850.38560.15870.034*
C410.1375 (3)0.47657 (15)0.17474 (16)0.0218 (7)
H410.19600.48750.15600.026*
C420.3968 (2)0.47973 (14)0.35532 (14)0.0148 (6)
C430.2959 (2)0.45460 (14)0.33370 (15)0.0186 (7)
H430.23710.48060.31640.022*
C440.2799 (3)0.39218 (15)0.33711 (16)0.0218 (7)
H440.21070.37550.32230.026*
C450.3657 (3)0.35437 (15)0.36223 (16)0.0217 (7)
H450.35530.31150.36420.026*
C460.4659 (3)0.37849 (14)0.38437 (16)0.0199 (7)
H460.52430.35230.40180.024*
C470.4817 (2)0.44119 (14)0.38122 (15)0.0173 (6)
H470.55080.45770.39690.021*
C480.5559 (2)0.57202 (13)0.37759 (15)0.0149 (6)
C490.6217 (2)0.56328 (14)0.33204 (16)0.0199 (7)
H490.59190.55540.28470.024*
C500.7317 (3)0.56610 (15)0.35607 (17)0.0230 (7)
H500.77640.56050.32480.028*
C510.7756 (3)0.57685 (14)0.42450 (17)0.0215 (7)
H510.85060.57750.44070.026*
C520.7108 (2)0.58667 (14)0.46984 (16)0.0201 (7)
H520.74140.59510.51700.024*
C530.6008 (2)0.58423 (14)0.44665 (16)0.0179 (6)
H530.55660.59090.47800.021*
C540.3525 (2)0.59660 (14)0.40967 (14)0.0146 (6)
C550.3145 (2)0.56192 (15)0.45762 (15)0.0183 (6)
H550.32300.51880.45860.022*
C560.2643 (2)0.58991 (15)0.50379 (16)0.0216 (7)
H560.23660.56590.53530.026*
C570.2545 (2)0.65292 (16)0.50409 (16)0.0229 (7)
H570.22140.67210.53650.027*
C580.2928 (3)0.68773 (16)0.45740 (17)0.0232 (7)
H580.28660.73090.45800.028*
C590.3404 (2)0.65987 (15)0.40960 (16)0.0201 (7)
H590.36480.68400.37670.024*
O10.63350 (18)0.84663 (11)0.14416 (12)0.0267 (5)
O20.72376 (18)0.81113 (11)0.24488 (13)0.0306 (6)
C600.7099 (2)0.84833 (14)0.19575 (17)0.0189 (7)
C610.7909 (3)0.89894 (18)0.2000 (2)0.0354 (9)
H61A0.81140.91410.24750.053*
H61B0.76000.93240.16920.053*
H61C0.85360.88310.18600.053*
O30.5306 (2)0.92864 (13)0.04935 (13)0.0415 (7)
H3D0.56520.90250.07870.062*
C620.4790 (3)0.9708 (2)0.08389 (19)0.0386 (10)
H62A0.43110.94890.10710.058*
H62B0.43820.99960.05050.058*
H62C0.53190.99310.11810.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01191 (10)0.01405 (10)0.01316 (10)0.00088 (10)0.00339 (8)0.00021 (9)
S10.0162 (4)0.0138 (3)0.0248 (4)0.0007 (3)0.0066 (3)0.0009 (3)
P10.0138 (4)0.0157 (4)0.0141 (4)0.0027 (3)0.0046 (3)0.0009 (3)
P20.0104 (3)0.0126 (3)0.0146 (3)0.0001 (3)0.0034 (3)0.0007 (3)
P30.0135 (4)0.0134 (4)0.0134 (4)0.0008 (3)0.0032 (3)0.0024 (3)
N10.0168 (13)0.0205 (14)0.0166 (13)0.0036 (11)0.0042 (11)0.0018 (10)
N20.0150 (12)0.0149 (13)0.0154 (12)0.0001 (10)0.0035 (10)0.0011 (10)
C10.0183 (15)0.0096 (14)0.0212 (15)0.0003 (12)0.0054 (13)0.0032 (11)
C20.0190 (16)0.0315 (19)0.0190 (16)0.0026 (14)0.0033 (13)0.0025 (14)
C30.036 (2)0.036 (2)0.0186 (17)0.0033 (17)0.0035 (16)0.0010 (15)
C40.0253 (17)0.0188 (16)0.0196 (16)0.0011 (14)0.0046 (14)0.0052 (13)
C50.0296 (19)0.0205 (17)0.0259 (18)0.0039 (15)0.0066 (15)0.0048 (14)
C60.0168 (15)0.0174 (15)0.0126 (14)0.0015 (12)0.0050 (12)0.0001 (11)
C70.0235 (17)0.0202 (17)0.0336 (19)0.0017 (14)0.0117 (15)0.0071 (15)
C80.0240 (18)0.0214 (18)0.038 (2)0.0071 (15)0.0107 (16)0.0100 (15)
C90.0156 (15)0.0313 (19)0.0356 (19)0.0039 (15)0.0056 (14)0.0097 (16)
C100.0160 (16)0.0262 (19)0.043 (2)0.0010 (14)0.0067 (16)0.0130 (16)
C110.0165 (15)0.0196 (16)0.0278 (17)0.0002 (13)0.0037 (14)0.0092 (13)
C120.0205 (16)0.0159 (15)0.0158 (15)0.0043 (13)0.0061 (13)0.0004 (12)
C130.0244 (16)0.0164 (16)0.0205 (15)0.0002 (14)0.0063 (13)0.0007 (12)
C140.040 (2)0.0176 (16)0.0215 (17)0.0024 (15)0.0101 (16)0.0005 (13)
C150.040 (2)0.0160 (17)0.0172 (16)0.0061 (15)0.0015 (15)0.0012 (12)
C160.0214 (16)0.0245 (18)0.0200 (16)0.0091 (14)0.0009 (14)0.0033 (13)
C170.0195 (16)0.0222 (17)0.0217 (16)0.0057 (14)0.0059 (13)0.0010 (13)
C180.0137 (14)0.0189 (15)0.0165 (15)0.0021 (12)0.0043 (12)0.0002 (12)
C190.0285 (18)0.0238 (18)0.0209 (17)0.0057 (15)0.0063 (15)0.0003 (14)
C200.036 (2)0.0263 (19)0.030 (2)0.0079 (17)0.0105 (17)0.0070 (15)
C210.0215 (17)0.0135 (16)0.043 (2)0.0002 (14)0.0059 (16)0.0007 (15)
C220.0205 (17)0.0219 (17)0.0300 (19)0.0023 (14)0.0006 (15)0.0062 (14)
C230.0152 (15)0.0228 (17)0.0208 (16)0.0016 (13)0.0035 (13)0.0001 (13)
C240.0151 (14)0.0135 (14)0.0162 (14)0.0049 (12)0.0052 (12)0.0020 (11)
C250.0223 (16)0.0154 (15)0.0197 (16)0.0008 (13)0.0029 (13)0.0012 (12)
C260.035 (2)0.0204 (17)0.0235 (17)0.0030 (15)0.0084 (15)0.0055 (14)
C270.0286 (18)0.0306 (19)0.0145 (15)0.0071 (15)0.0020 (14)0.0054 (13)
C280.0174 (16)0.0328 (19)0.0212 (17)0.0005 (14)0.0012 (14)0.0027 (14)
C290.0146 (14)0.0246 (17)0.0186 (15)0.0014 (14)0.0048 (12)0.0015 (13)
C300.0093 (13)0.0228 (16)0.0183 (15)0.0050 (12)0.0035 (12)0.0039 (12)
C310.0135 (15)0.0341 (19)0.0214 (17)0.0004 (14)0.0059 (13)0.0012 (14)
C320.0182 (16)0.049 (2)0.0214 (17)0.0053 (16)0.0063 (14)0.0056 (16)
C330.0197 (17)0.041 (2)0.0294 (19)0.0050 (16)0.0118 (15)0.0170 (16)
C340.0192 (17)0.0244 (18)0.039 (2)0.0013 (14)0.0057 (16)0.0106 (16)
C350.0171 (15)0.0195 (16)0.0209 (16)0.0027 (13)0.0034 (13)0.0034 (13)
C360.0146 (14)0.0187 (15)0.0124 (14)0.0040 (13)0.0026 (12)0.0031 (12)
C370.0244 (18)0.0258 (18)0.0227 (17)0.0097 (15)0.0052 (14)0.0001 (14)
C380.039 (2)0.037 (2)0.0239 (18)0.0204 (18)0.0051 (17)0.0076 (16)
C390.052 (2)0.0178 (17)0.0268 (18)0.0132 (19)0.0087 (17)0.0071 (15)
C400.037 (2)0.0150 (16)0.0255 (18)0.0025 (15)0.0084 (16)0.0010 (13)
C410.0238 (17)0.0202 (16)0.0185 (16)0.0009 (14)0.0010 (14)0.0004 (13)
C420.0177 (15)0.0167 (15)0.0103 (13)0.0005 (12)0.0040 (12)0.0020 (11)
C430.0172 (15)0.0207 (16)0.0153 (15)0.0004 (13)0.0012 (13)0.0056 (12)
C440.0186 (15)0.0228 (17)0.0211 (16)0.0072 (14)0.0016 (13)0.0016 (13)
C450.0279 (18)0.0163 (16)0.0202 (16)0.0005 (14)0.0042 (14)0.0037 (12)
C460.0216 (16)0.0170 (15)0.0210 (16)0.0038 (13)0.0047 (14)0.0050 (12)
C470.0163 (15)0.0174 (15)0.0167 (15)0.0008 (13)0.0009 (12)0.0030 (12)
C480.0151 (14)0.0121 (14)0.0177 (15)0.0001 (12)0.0043 (12)0.0042 (11)
C490.0188 (16)0.0195 (16)0.0202 (16)0.0008 (13)0.0022 (13)0.0005 (13)
C500.0189 (16)0.0226 (17)0.0296 (18)0.0019 (14)0.0096 (15)0.0015 (14)
C510.0150 (15)0.0165 (15)0.0304 (18)0.0006 (13)0.0001 (14)0.0037 (13)
C520.0209 (16)0.0201 (17)0.0156 (15)0.0052 (13)0.0032 (13)0.0039 (12)
C530.0185 (15)0.0177 (15)0.0187 (15)0.0023 (12)0.0066 (13)0.0022 (12)
C540.0106 (13)0.0202 (15)0.0123 (13)0.0008 (13)0.0012 (11)0.0006 (12)
C550.0188 (15)0.0192 (16)0.0157 (15)0.0013 (13)0.0016 (13)0.0051 (12)
C560.0206 (16)0.0286 (19)0.0165 (15)0.0017 (14)0.0060 (13)0.0068 (13)
C570.0153 (15)0.034 (2)0.0207 (16)0.0033 (14)0.0070 (13)0.0025 (14)
C580.0225 (17)0.0212 (17)0.0273 (18)0.0030 (14)0.0087 (14)0.0017 (14)
C590.0195 (15)0.0208 (16)0.0218 (16)0.0028 (14)0.0082 (13)0.0016 (13)
O10.0215 (12)0.0335 (14)0.0244 (12)0.0031 (11)0.0035 (10)0.0092 (11)
O20.0216 (12)0.0336 (14)0.0342 (14)0.0056 (11)0.0010 (11)0.0152 (11)
C600.0153 (15)0.0198 (16)0.0252 (17)0.0018 (13)0.0119 (13)0.0011 (13)
C610.034 (2)0.037 (2)0.036 (2)0.0158 (19)0.0097 (17)0.0049 (18)
O30.0531 (18)0.0419 (17)0.0307 (15)0.0131 (14)0.0122 (13)0.0079 (12)
C620.035 (2)0.051 (3)0.029 (2)0.002 (2)0.0062 (18)0.0029 (18)
Geometric parameters (Å, º) top
Ag1—P12.5178 (9)C27—C281.381 (5)
Ag1—P32.5264 (9)C27—H270.9500
Ag1—P22.5415 (10)C28—C291.386 (4)
Ag1—S12.6619 (10)C28—H280.9500
S1—C11.717 (3)C29—H290.9500
P1—C121.821 (3)C30—C351.389 (4)
P1—C61.827 (3)C30—C311.395 (4)
P1—C181.830 (3)C31—C321.387 (4)
P2—C361.824 (3)C31—H310.9500
P2—C241.824 (3)C32—C331.384 (5)
P2—C301.834 (3)C32—H320.9500
P3—C481.828 (3)C33—C341.382 (5)
P3—C541.829 (3)C33—H330.9500
P3—C421.833 (3)C34—C351.391 (4)
N1—C11.336 (4)C34—H340.9500
N1—C21.453 (4)C35—H350.9500
N1—H10.8806C36—C371.392 (4)
N2—C11.334 (4)C36—C411.393 (4)
N2—C41.454 (4)C37—C381.392 (5)
N2—H20.8807C37—H370.9500
C2—C31.507 (4)C38—C391.371 (6)
C2—H2A0.9900C38—H380.9500
C2—H2B0.9900C39—C401.375 (5)
C3—H3A0.9800C39—H390.9500
C3—H3B0.9800C40—C411.377 (4)
C3—H3C0.9800C40—H400.9500
C4—C51.510 (5)C41—H410.9500
C4—H4A0.9900C42—C471.388 (4)
C4—H4B0.9900C42—C431.393 (4)
C5—H5A0.9800C43—C441.387 (4)
C5—H5B0.9800C43—H430.9500
C5—H5C0.9800C44—C451.384 (4)
C6—C111.378 (4)C44—H440.9500
C6—C71.387 (4)C45—C461.377 (4)
C7—C81.386 (5)C45—H450.9500
C7—H70.9500C46—C471.392 (4)
C8—C91.380 (5)C46—H460.9500
C8—H80.9500C47—H470.9500
C9—C101.381 (5)C48—C531.391 (4)
C9—H90.9500C48—C491.392 (4)
C10—C111.383 (4)C49—C501.396 (4)
C10—H100.9500C49—H490.9500
C11—H110.9500C50—C511.372 (5)
C12—C131.391 (4)C50—H500.9500
C12—C171.396 (4)C51—C521.383 (4)
C13—C141.391 (4)C51—H510.9500
C13—H130.9500C52—C531.395 (4)
C14—C151.375 (5)C52—H520.9500
C14—H140.9500C53—H530.9500
C15—C161.388 (5)C54—C591.395 (4)
C15—H150.9500C54—C551.395 (4)
C16—C171.381 (4)C55—C561.384 (4)
C16—H160.9500C55—H550.9500
C17—H170.9500C56—C571.386 (5)
C18—C231.392 (4)C56—H560.9500
C18—C191.393 (4)C57—C581.379 (4)
C19—C201.391 (5)C57—H570.9500
C19—H190.9500C58—C591.388 (4)
C20—C211.372 (5)C58—H580.9500
C20—H200.9500C59—H590.9500
C21—C221.382 (5)O1—C601.254 (4)
C21—H210.9500O2—C601.254 (4)
C22—C231.384 (5)C60—C611.515 (5)
C22—H220.9500C61—H61A0.9800
C23—H230.9500C61—H61B0.9800
C24—C251.390 (4)C61—H61C0.9800
C24—C291.394 (4)O3—C621.407 (5)
C25—C261.390 (4)O3—H3D0.8665
C25—H250.9500C62—H62A0.9800
C26—C271.382 (5)C62—H62B0.9800
C26—H260.9500C62—H62C0.9800
P1—Ag1—P3115.50 (3)C27—C26—C25120.3 (3)
P1—Ag1—P2112.20 (3)C27—C26—H26119.8
P3—Ag1—P2112.37 (3)C25—C26—H26119.8
P1—Ag1—S1114.42 (3)C28—C27—C26119.7 (3)
P3—Ag1—S1108.30 (3)C28—C27—H27120.2
P2—Ag1—S191.65 (3)C26—C27—H27120.2
C1—S1—Ag1113.15 (10)C27—C28—C29120.3 (3)
C12—P1—C6104.00 (14)C27—C28—H28119.8
C12—P1—C18103.08 (14)C29—C28—H28119.8
C6—P1—C18104.15 (14)C28—C29—C24120.4 (3)
C12—P1—Ag1116.54 (10)C28—C29—H29119.8
C6—P1—Ag1111.05 (10)C24—C29—H29119.8
C18—P1—Ag1116.55 (10)C35—C30—C31119.4 (3)
C36—P2—C24103.07 (13)C35—C30—P2122.6 (2)
C36—P2—C30103.75 (14)C31—C30—P2118.0 (2)
C24—P2—C30103.25 (14)C32—C31—C30120.3 (3)
C36—P2—Ag1110.00 (10)C32—C31—H31119.9
C24—P2—Ag1115.31 (10)C30—C31—H31119.9
C30—P2—Ag1119.65 (10)C33—C32—C31119.8 (3)
C48—P3—C54104.88 (13)C33—C32—H32120.1
C48—P3—C42102.17 (13)C31—C32—H32120.1
C54—P3—C42104.08 (13)C34—C33—C32120.4 (3)
C48—P3—Ag1118.12 (10)C34—C33—H33119.8
C54—P3—Ag1112.13 (10)C32—C33—H33119.8
C42—P3—Ag1113.98 (9)C33—C34—C35119.8 (3)
C1—N1—C2124.6 (3)C33—C34—H34120.1
C1—N1—H1117.7C35—C34—H34120.1
C2—N1—H1117.7C30—C35—C34120.2 (3)
C1—N2—C4124.0 (3)C30—C35—H35119.9
C1—N2—H2117.9C34—C35—H35119.9
C4—N2—H2118.1C37—C36—C41118.5 (3)
N2—C1—N1116.4 (3)C37—C36—P2124.3 (3)
N2—C1—S1121.7 (2)C41—C36—P2117.1 (2)
N1—C1—S1121.8 (2)C36—C37—C38119.6 (3)
N1—C2—C3109.9 (3)C36—C37—H37120.2
N1—C2—H2A109.7C38—C37—H37120.2
C3—C2—H2A109.7C39—C38—C37120.6 (3)
N1—C2—H2B109.7C39—C38—H38119.7
C3—C2—H2B109.7C37—C38—H38119.7
H2A—C2—H2B108.2C38—C39—C40120.4 (3)
C2—C3—H3A109.5C38—C39—H39119.8
C2—C3—H3B109.5C40—C39—H39119.8
H3A—C3—H3B109.5C39—C40—C41119.5 (4)
C2—C3—H3C109.5C39—C40—H40120.3
H3A—C3—H3C109.5C41—C40—H40120.3
H3B—C3—H3C109.5C40—C41—C36121.4 (3)
N2—C4—C5110.3 (3)C40—C41—H41119.3
N2—C4—H4A109.6C36—C41—H41119.3
C5—C4—H4A109.6C47—C42—C43118.8 (3)
N2—C4—H4B109.6C47—C42—P3122.5 (2)
C5—C4—H4B109.6C43—C42—P3118.6 (2)
H4A—C4—H4B108.1C44—C43—C42120.9 (3)
C4—C5—H5A109.5C44—C43—H43119.5
C4—C5—H5B109.5C42—C43—H43119.5
H5A—C5—H5B109.5C45—C44—C43119.5 (3)
C4—C5—H5C109.5C45—C44—H44120.3
H5A—C5—H5C109.5C43—C44—H44120.3
H5B—C5—H5C109.5C46—C45—C44120.4 (3)
C11—C6—C7119.6 (3)C46—C45—H45119.8
C11—C6—P1124.0 (2)C44—C45—H45119.8
C7—C6—P1116.4 (2)C45—C46—C47120.1 (3)
C8—C7—C6120.7 (3)C45—C46—H46120.0
C8—C7—H7119.7C47—C46—H46120.0
C6—C7—H7119.7C42—C47—C46120.3 (3)
C9—C8—C7119.4 (3)C42—C47—H47119.8
C9—C8—H8120.3C46—C47—H47119.8
C7—C8—H8120.3C53—C48—C49119.4 (3)
C8—C9—C10119.8 (3)C53—C48—P3122.7 (2)
C8—C9—H9120.1C49—C48—P3117.8 (2)
C10—C9—H9120.1C48—C49—C50119.9 (3)
C9—C10—C11120.7 (3)C48—C49—H49120.0
C9—C10—H10119.6C50—C49—H49120.0
C11—C10—H10119.6C51—C50—C49120.5 (3)
C6—C11—C10119.7 (3)C51—C50—H50119.8
C6—C11—H11120.2C49—C50—H50119.8
C10—C11—H11120.2C50—C51—C52120.0 (3)
C13—C12—C17118.5 (3)C50—C51—H51120.0
C13—C12—P1122.8 (2)C52—C51—H51120.0
C17—C12—P1118.7 (2)C51—C52—C53120.3 (3)
C12—C13—C14120.3 (3)C51—C52—H52119.9
C12—C13—H13119.8C53—C52—H52119.9
C14—C13—H13119.8C48—C53—C52119.9 (3)
C15—C14—C13120.5 (3)C48—C53—H53120.0
C15—C14—H14119.7C52—C53—H53120.0
C13—C14—H14119.7C59—C54—C55119.0 (3)
C14—C15—C16119.7 (3)C59—C54—P3118.5 (2)
C14—C15—H15120.1C55—C54—P3122.4 (2)
C16—C15—H15120.1C56—C55—C54120.4 (3)
C17—C16—C15119.9 (3)C56—C55—H55119.8
C17—C16—H16120.0C54—C55—H55119.8
C15—C16—H16120.0C55—C56—C57120.1 (3)
C16—C17—C12121.0 (3)C55—C56—H56119.9
C16—C17—H17119.5C57—C56—H56119.9
C12—C17—H17119.5C58—C57—C56120.0 (3)
C23—C18—C19118.8 (3)C58—C57—H57120.0
C23—C18—P1123.4 (2)C56—C57—H57120.0
C19—C18—P1117.8 (2)C57—C58—C59120.2 (3)
C20—C19—C18120.2 (3)C57—C58—H58119.9
C20—C19—H19119.9C59—C58—H58119.9
C18—C19—H19119.9C58—C59—C54120.2 (3)
C21—C20—C19120.6 (3)C58—C59—H59119.9
C21—C20—H20119.7C54—C59—H59119.9
C19—C20—H20119.7O1—C60—O2124.4 (3)
C20—C21—C22119.5 (3)O1—C60—C61118.3 (3)
C20—C21—H21120.3O2—C60—C61117.3 (3)
C22—C21—H21120.3C60—C61—H61A109.5
C21—C22—C23120.7 (3)C60—C61—H61B109.5
C21—C22—H22119.6H61A—C61—H61B109.5
C23—C22—H22119.6C60—C61—H61C109.5
C22—C23—C18120.2 (3)H61A—C61—H61C109.5
C22—C23—H23119.9H61B—C61—H61C109.5
C18—C23—H23119.9C62—O3—H3D109.4
C25—C24—C29119.0 (3)O3—C62—H62A109.5
C25—C24—P2118.2 (2)O3—C62—H62B109.5
C29—C24—P2122.7 (2)H62A—C62—H62B109.5
C24—C25—C26120.2 (3)O3—C62—H62C109.5
C24—C25—H25119.9H62A—C62—H62C109.5
C26—C25—H25119.9H62B—C62—H62C109.5
C4—N2—C1—N1179.9 (3)C36—P2—C30—C3159.7 (3)
C4—N2—C1—S10.5 (4)C24—P2—C30—C31167.0 (2)
C2—N1—C1—N2168.9 (3)Ag1—P2—C30—C3163.3 (3)
C2—N1—C1—S111.5 (4)C35—C30—C31—C321.8 (5)
Ag1—S1—C1—N279.1 (2)P2—C30—C31—C32177.1 (3)
Ag1—S1—C1—N1101.4 (2)C30—C31—C32—C331.7 (5)
C1—N1—C2—C3160.5 (3)C31—C32—C33—C340.0 (5)
C1—N2—C4—C5166.9 (3)C32—C33—C34—C351.4 (5)
C12—P1—C6—C1197.3 (3)C31—C30—C35—C340.4 (5)
C18—P1—C6—C1110.4 (3)P2—C30—C35—C34178.5 (2)
Ag1—P1—C6—C11136.6 (2)C33—C34—C35—C301.2 (5)
C12—P1—C6—C783.2 (3)C24—P2—C36—C3795.3 (3)
C18—P1—C6—C7169.1 (2)C30—P2—C36—C3712.1 (3)
Ag1—P1—C6—C742.9 (3)Ag1—P2—C36—C37141.2 (2)
C11—C6—C7—C80.5 (5)C24—P2—C36—C4187.1 (2)
P1—C6—C7—C8180.0 (3)C30—P2—C36—C41165.5 (2)
C6—C7—C8—C90.6 (5)Ag1—P2—C36—C4136.4 (2)
C7—C8—C9—C100.6 (5)C41—C36—C37—C381.1 (5)
C8—C9—C10—C111.8 (6)P2—C36—C37—C38176.4 (3)
C7—C6—C11—C100.7 (5)C36—C37—C38—C390.9 (5)
P1—C6—C11—C10178.7 (3)C37—C38—C39—C400.1 (5)
C9—C10—C11—C61.9 (5)C38—C39—C40—C410.5 (5)
C6—P1—C12—C134.2 (3)C39—C40—C41—C360.3 (5)
C18—P1—C12—C13112.7 (3)C37—C36—C41—C400.5 (5)
Ag1—P1—C12—C13118.3 (2)P2—C36—C41—C40177.2 (2)
C6—P1—C12—C17176.0 (2)C48—P3—C42—C471.8 (3)
C18—P1—C12—C1767.6 (3)C54—P3—C42—C47110.7 (3)
Ag1—P1—C12—C1761.4 (3)Ag1—P3—C42—C47126.8 (2)
C17—C12—C13—C140.7 (5)C48—P3—C42—C43178.7 (2)
P1—C12—C13—C14179.5 (2)C54—P3—C42—C4372.4 (3)
C12—C13—C14—C150.6 (5)Ag1—P3—C42—C4350.1 (3)
C13—C14—C15—C161.2 (5)C47—C42—C43—C440.7 (4)
C14—C15—C16—C170.4 (5)P3—C42—C43—C44176.3 (2)
C15—C16—C17—C121.0 (5)C42—C43—C44—C450.1 (5)
C13—C12—C17—C161.6 (5)C43—C44—C45—C460.7 (5)
P1—C12—C17—C16178.7 (2)C44—C45—C46—C470.4 (5)
C12—P1—C18—C239.3 (3)C43—C42—C47—C461.0 (4)
C6—P1—C18—C2399.1 (3)P3—C42—C47—C46175.9 (2)
Ag1—P1—C18—C23138.2 (2)C45—C46—C47—C420.5 (5)
C12—P1—C18—C19169.4 (2)C54—P3—C48—C5318.9 (3)
C6—P1—C18—C1982.2 (3)C42—P3—C48—C5389.5 (3)
Ag1—P1—C18—C1940.5 (3)Ag1—P3—C48—C53144.6 (2)
C23—C18—C19—C200.0 (5)C54—P3—C48—C49165.1 (2)
P1—C18—C19—C20178.7 (3)C42—P3—C48—C4986.6 (3)
C18—C19—C20—C210.7 (5)Ag1—P3—C48—C4939.3 (3)
C19—C20—C21—C220.5 (5)C53—C48—C49—C500.8 (5)
C20—C21—C22—C230.4 (5)P3—C48—C49—C50175.4 (2)
C21—C22—C23—C181.1 (5)C48—C49—C50—C510.6 (5)
C19—C18—C23—C220.9 (5)C49—C50—C51—C521.8 (5)
P1—C18—C23—C22177.8 (2)C50—C51—C52—C531.6 (5)
C36—P2—C24—C25167.0 (2)C49—C48—C53—C521.0 (4)
C30—P2—C24—C2585.3 (3)P3—C48—C53—C52175.0 (2)
Ag1—P2—C24—C2547.1 (3)C51—C52—C53—C480.1 (5)
C36—P2—C24—C2914.7 (3)C48—P3—C54—C5980.7 (3)
C30—P2—C24—C2993.1 (3)C42—P3—C54—C59172.4 (2)
Ag1—P2—C24—C29134.6 (2)Ag1—P3—C54—C5948.7 (3)
C29—C24—C25—C261.4 (5)C48—P3—C54—C55101.8 (3)
P2—C24—C25—C26177.0 (2)C42—P3—C54—C555.2 (3)
C24—C25—C26—C271.3 (5)Ag1—P3—C54—C55128.8 (2)
C25—C26—C27—C280.2 (5)C59—C54—C55—C560.8 (4)
C26—C27—C28—C291.6 (5)P3—C54—C55—C56176.7 (2)
C27—C28—C29—C241.4 (5)C54—C55—C56—C572.0 (5)
C25—C24—C29—C280.1 (4)C55—C56—C57—C581.3 (5)
P2—C24—C29—C28178.3 (2)C56—C57—C58—C590.6 (5)
C36—P2—C30—C35119.2 (3)C57—C58—C59—C541.8 (5)
C24—P2—C30—C3512.0 (3)C55—C54—C59—C581.1 (4)
Ag1—P2—C30—C35117.8 (2)P3—C54—C59—C58178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.932.811 (3)176
N2—H2···O20.881.892.754 (3)168
O3—H3D···O10.871.862.724 (4)177
C34—H34···O2i0.952.523.394 (4)154
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.881.932.811 (3)175.6
N2—H2···O20.881.892.754 (3)168.1
O3—H3D···O10.871.862.724 (4)176.9
C34—H34···O2i0.952.523.394 (4)153.8
Symmetry code: (i) x1, y, z.
 

Acknowledgements

Financial support from the Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller for valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

References

First citationBowmaker, G. A., Pakawatchai, C., Saithong, S., Skelton, B. W. & White, A. H. (2010). Dalton Trans. 39, 4391–4404.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDance, I. & Scudder, M. (2000). J. Chem. Soc. Dalton Trans. pp. 1587–1594.  Web of Science CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.  Web of Science CSD CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRüffer, T., Lang, H., Nawaz, S., Isab, A. A., Ahmad, S. & Athar, M. M. (2011). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 52, 1025–1029.  Google Scholar
First citationScudder, M. & Dance, I. (2001). CrystEngCom, 12, 1–4.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m216-m217
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds