organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o681-o682

Flunarizinium isonicotinate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 26 April 2014; accepted 7 May 2014; online 17 May 2014)

In the cation of the title salt {systematic name: 4-[bis­(4-fluoro­phen­yl)meth­yl]-1-[(2E)-3-phenyl­prop-2-en-1-yl]piperazin-1-ium pyridine-4-carboxyl­ate}, C26H27F2N2+·C6H4NO2, the piperazine ring is in a slightly distorted chair conformation. The dihedral angle between the mean planes of the fluoro-substituted benzene rings is 81.9 (1)° and these benzene rings form dihedral angles of 6.5 (1) and 87.8 (1)° with the phenyl ring. In the crystal, a single N—H⋯O hydrogen bond links the cation and the anion. In addition, weak C—H⋯O hydrogen bonds and ππ stacking inter­actions involving one of the fluoro-substituted benzene rings and the phenyl ring, with a centroid–centroid distance of 3.700 (7) Å, link mol­ecules along [100].

Related literature

For the bioligical activities of flunarizine, see: Amery (1983[Amery, W. K. (1983). Headache, 23, 70-74.]); Holmes et al. (1984[Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6-44.]). For related structures, see: Kavitha et al. (2013a[Kavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013a). Acta Cryst. E69, o260-o261.],b[Kavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344.],c[Kavitha, C. N., Yildirim, S. Ō. ¯, Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013c). Acta Cryst. E69, o142-o143.],d[Kavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013d). Acta Cryst. E69, o485-o486.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27F2N2+·C6H4NO2

  • Mr = 527.60

  • Monoclinic, P c

  • a = 11.0023 (3) Å

  • b = 10.6435 (3) Å

  • c = 11.3393 (3) Å

  • β = 92.481 (3)°

  • V = 1326.63 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 173 K

  • 0.22 × 0.12 × 0.06 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.781, Tmax = 1.000

  • 8232 measured reflections

  • 3403 independent reflections

  • 3238 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.02

  • 3403 reflections

  • 357 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 857 Friedel pairs

  • Absolute structure parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1Bi 0.94 (4) 1.62 (4) 2.557 (3) 176 (4)
C6A—H6A⋯O2Bii 0.93 2.60 3.439 (4) 151
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x-1, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Flunarizine (1-[bis(4-fluorophenyl)methyl]-4-[(2E)-3-phenylprop-2-en-1-yl]piperazine), a piperazine derivative is a non-selective calcium antagonist (Amery, 1983). It is effective in the prophylaxis of migraine, occlusive peripheral vascular disease, vertigo of central and peripheral origin, and as an adjuvant in the therapy of epilepsy. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use is published (Holmes et al., 1984). The crystal structures of 4- [bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium- 3-carboxy propanoate (Kavitha et al., 2013a), flunarizinium hydrogen maleate (Kavitha et al., 2013b), cinnarizinium fumarate (Kavitha et al., 2013c) and cinnarizinium bis(p-toluenesulfonate)dihydrate (Kavitha et al., 2013d) have been reported. In view of the importance of flunarizine, this paper reports the crystal structure study of flunarizinium isonicotinate, (I), C26H27F2N2+.C6H4NO2-.

The title salt, (I), crystallizes with one piperazinium cation (A) and one isonicotinate anion (B) in the asymmetric unit (Fig. 1). In the cation, the piperazine ring is in a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.596 (3)Å, 3.3 (3)° and 10 (4)°, respectively (Cremer & Pople, 1975) and is twisted from the mean plane of the phenyl ring in an anti-periplanar conformation with a torsion angle of -178.9 (7)°. The dihedral angle between the mean planes of the two fluoro-substituted benzene rings is 81.9 (1)°. Of the two fluro-substitutted benzene ring rings, one (C8A–C13A) is almost planar with respect to the mean plane of the phenyl ring forming a diherdral angle of 6.5 (1)°, while the other (C2A–C7A) is twisted by 87.8 (1)°. Bond lengths are in normal ranges (Allen et al., 1987). A single N2A—H2A···O1Bi intermolecular hydrogen bond links the cation with the anion (Fig. 2). In addition, weak C—H···O intermolecular interactions (Table 1) and a weak ππ stacking interaction involving one of the fluoro-substituted benzene rings and the phenyl ring, link the molecules along [100] (Cg1–Cg2 = 3.700 (7)Å; -1+x, 1+y, z; Cg1 = C8A–C13A; Cg2 = C21A–C26A).

Related literature top

For the bioligical activities of flunarizine, see: Amery (1983); Holmes et al. (1984). For related structures, see: Kavitha et al. (2013a,b,c,d). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Flunarizine (2.025 g, 0.01 mol) and isonicotinic acid (0.61 g, 0.005 mol) were dissolved in hot dimethylformamide solution and stirred over a magnetic stirrer for 10 minutes. The resulting solution was allowed to cool slowly at room temperature. The crystals of the title compound appeared after a few days and were subsequently used for x-ray studies.

Refinement top

Atom H2A was refined isotropically and the remaining H atoms were placed in calculated positions and then refined using a riding-model approximation with C—H = 0.93Å or 0.98Å(CH) or 0.97Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonds have been removed for clarity.
4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium pyridine-4-carboxylate top
Crystal data top
C26H27F2N2+·C6H4NO2F(000) = 556
Mr = 527.60Dx = 1.321 Mg m3
Monoclinic, PcCu Kα radiation, λ = 1.54184 Å
a = 11.0023 (3) ÅCell parameters from 4115 reflections
b = 10.6435 (3) Åθ = 4.0–71.5°
c = 11.3393 (3) ŵ = 0.76 mm1
β = 92.481 (3)°T = 173 K
V = 1326.63 (6) Å3Block, colourless
Z = 20.22 × 0.12 × 0.06 mm
Data collection top
Agilent Eos Gemini
diffractometer
3403 independent reflections
Radiation source: Enhance (Cu) X-ray Source3238 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.042
ω scansθmax = 71.3°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 137
Tmin = 0.781, Tmax = 1.000k = 1213
8232 measured reflectionsl = 1313
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0764P)2 + 0.0707P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.040(Δ/σ)max < 0.001
wR(F2) = 0.110Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.20 e Å3
3403 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
357 parametersExtinction coefficient: 0.0050 (8)
2 restraintsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower. 857 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Hydrogen site location: mixed
Crystal data top
C26H27F2N2+·C6H4NO2V = 1326.63 (6) Å3
Mr = 527.60Z = 2
Monoclinic, PcCu Kα radiation
a = 11.0023 (3) ŵ = 0.76 mm1
b = 10.6435 (3) ÅT = 173 K
c = 11.3393 (3) Å0.22 × 0.12 × 0.06 mm
β = 92.481 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
3403 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
3238 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 1.000Rint = 0.042
8232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.20 e Å3
3403 reflectionsAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower. 857 Friedel pairs
357 parametersAbsolute structure parameter: 0.2 (2)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.1154 (2)1.19666 (19)0.98648 (18)0.0538 (5)
F2A0.0248 (2)1.5040 (2)0.2592 (2)0.0696 (7)
N1A0.2572 (2)1.0742 (2)0.58937 (19)0.0263 (5)
N2A0.4826 (2)0.9352 (2)0.5718 (2)0.0272 (5)
H2A0.461 (4)0.877 (4)0.513 (4)0.048 (10)*
C1A0.1259 (2)1.0983 (2)0.5668 (2)0.0270 (5)
H1A0.08971.02310.52980.032*
C2A0.0641 (2)1.1206 (2)0.6827 (2)0.0271 (5)
C3A0.1256 (3)1.1748 (2)0.7798 (2)0.0291 (5)
H3A0.20801.19320.77630.035*
C4A0.0650 (3)1.2017 (2)0.8823 (3)0.0336 (6)
H4A0.10621.23780.94720.040*
C5A0.0561 (3)1.1741 (3)0.8856 (3)0.0362 (6)
C6A0.1212 (3)1.1206 (3)0.7915 (3)0.0375 (7)
H6A0.20371.10330.79590.045*
C7A0.0596 (3)1.0937 (3)0.6905 (3)0.0323 (6)
H7A0.10161.05690.62640.039*
C8A0.1019 (2)1.2089 (2)0.4835 (2)0.0286 (5)
C9A0.0496 (3)1.1870 (3)0.3720 (3)0.0350 (6)
H9A0.03201.10520.34820.042*
C10A0.0231 (3)1.2866 (4)0.2952 (3)0.0441 (8)
H10A0.01221.27230.22040.053*
C11A0.0504 (3)1.4057 (3)0.3327 (3)0.0460 (8)
C12A0.1034 (3)1.4311 (3)0.4423 (3)0.0454 (8)
H12A0.12161.51320.46490.054*
C13A0.1292 (3)1.3318 (3)0.5183 (3)0.0366 (6)
H13A0.16491.34710.59270.044*
C14A0.3274 (2)1.0792 (3)0.4828 (2)0.0301 (6)
H14A0.31561.16010.44460.036*
H14B0.29911.01450.42810.036*
C15A0.4611 (3)1.0600 (3)0.5144 (2)0.0297 (6)
H15A0.50701.06500.44340.036*
H15B0.48951.12610.56760.036*
C16A0.4061 (2)0.9246 (2)0.6769 (2)0.0280 (5)
H16A0.43320.98530.73620.034*
H16B0.41480.84130.71080.034*
C17A0.2741 (3)0.9485 (2)0.6415 (2)0.0286 (5)
H17A0.24630.88550.58470.034*
H17B0.22530.94120.71040.034*
C18A0.6153 (3)0.9189 (3)0.6037 (3)0.0338 (6)
H18A0.66030.91800.53210.041*
H18B0.64350.99000.65080.041*
C19A0.6416 (3)0.8002 (3)0.6713 (3)0.0328 (6)
H19A0.62470.72350.63490.039*
C20A0.6877 (3)0.8008 (3)0.7806 (3)0.0324 (6)
H20A0.70190.87960.81390.039*
C21A0.7198 (2)0.6926 (3)0.8567 (2)0.0306 (6)
C22A0.7056 (3)0.5679 (3)0.8189 (3)0.0360 (6)
H22A0.67180.55120.74400.043*
C23A0.7412 (3)0.4696 (3)0.8918 (3)0.0420 (7)
H23A0.73060.38720.86580.050*
C24A0.7929 (3)0.4928 (3)1.0041 (3)0.0439 (7)
H24A0.81820.42631.05230.053*
C25A0.8064 (3)0.6152 (3)1.0436 (3)0.0420 (7)
H25A0.83980.63141.11880.050*
C26A0.7696 (3)0.7141 (3)0.9699 (3)0.0353 (6)
H26A0.77850.79630.99690.042*
O1B0.4163 (2)0.2192 (2)0.9087 (2)0.0479 (6)
O2B0.5711 (2)0.1759 (2)0.7956 (2)0.0434 (5)
N1B0.3838 (3)0.5717 (3)0.6228 (4)0.0636 (10)
C1B0.4838 (3)0.2391 (3)0.8226 (2)0.0326 (6)
C2B0.4475 (3)0.3537 (3)0.7500 (2)0.0328 (6)
C3B0.4993 (3)0.3812 (3)0.6435 (3)0.0438 (7)
H3B0.55740.32810.61320.053*
C4B0.4628 (4)0.4892 (4)0.5830 (3)0.0604 (11)
H4B0.49560.50460.51020.072*
C5B0.3354 (4)0.5444 (4)0.7234 (4)0.0584 (10)
H5B0.27870.60030.75180.070*
C6B0.3624 (3)0.4388 (3)0.7899 (3)0.0401 (7)
H6B0.32440.42460.86030.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0610 (13)0.0588 (12)0.0435 (11)0.0125 (10)0.0239 (9)0.0020 (9)
F2A0.0701 (15)0.0701 (14)0.0688 (15)0.0143 (11)0.0076 (12)0.0431 (12)
N1A0.0251 (11)0.0285 (10)0.0256 (11)0.0021 (8)0.0031 (8)0.0020 (8)
N2A0.0258 (12)0.0318 (11)0.0238 (11)0.0027 (9)0.0002 (8)0.0024 (9)
C1A0.0282 (13)0.0253 (12)0.0272 (13)0.0001 (10)0.0023 (10)0.0015 (10)
C2A0.0277 (13)0.0240 (12)0.0296 (13)0.0034 (10)0.0017 (10)0.0034 (9)
C3A0.0301 (13)0.0258 (12)0.0316 (13)0.0011 (10)0.0017 (10)0.0002 (9)
C4A0.0445 (16)0.0266 (12)0.0295 (13)0.0066 (11)0.0006 (12)0.0001 (10)
C5A0.0448 (17)0.0306 (13)0.0345 (14)0.0099 (12)0.0149 (12)0.0086 (11)
C6A0.0300 (14)0.0377 (15)0.0452 (17)0.0050 (12)0.0074 (12)0.0109 (12)
C7A0.0305 (14)0.0316 (13)0.0342 (14)0.0005 (10)0.0029 (11)0.0066 (11)
C8A0.0257 (12)0.0324 (13)0.0277 (13)0.0044 (11)0.0021 (10)0.0024 (10)
C9A0.0313 (14)0.0428 (15)0.0309 (14)0.0020 (11)0.0016 (11)0.0018 (12)
C10A0.0341 (16)0.067 (2)0.0311 (15)0.0048 (14)0.0008 (12)0.0123 (14)
C11A0.0438 (18)0.0467 (18)0.0480 (19)0.0079 (14)0.0085 (14)0.0221 (15)
C12A0.0536 (19)0.0324 (15)0.0510 (19)0.0035 (14)0.0122 (15)0.0096 (13)
C13A0.0435 (17)0.0324 (15)0.0340 (15)0.0027 (12)0.0029 (12)0.0029 (11)
C14A0.0310 (14)0.0338 (13)0.0255 (13)0.0031 (11)0.0032 (11)0.0035 (10)
C15A0.0310 (14)0.0338 (13)0.0243 (13)0.0010 (11)0.0036 (10)0.0020 (10)
C16A0.0305 (14)0.0298 (12)0.0238 (12)0.0038 (10)0.0019 (10)0.0026 (10)
C17A0.0293 (13)0.0290 (12)0.0277 (13)0.0011 (10)0.0032 (10)0.0037 (10)
C18A0.0260 (14)0.0421 (15)0.0332 (15)0.0021 (11)0.0007 (11)0.0016 (11)
C19A0.0269 (14)0.0351 (14)0.0363 (15)0.0047 (11)0.0005 (11)0.0066 (11)
C20A0.0276 (13)0.0329 (14)0.0368 (14)0.0007 (11)0.0023 (11)0.0035 (11)
C21A0.0220 (12)0.0361 (14)0.0338 (15)0.0008 (10)0.0030 (10)0.0008 (11)
C22A0.0325 (15)0.0396 (15)0.0357 (15)0.0031 (12)0.0024 (12)0.0045 (12)
C23A0.0389 (17)0.0326 (14)0.0545 (19)0.0005 (13)0.0029 (14)0.0015 (13)
C24A0.0395 (17)0.0445 (17)0.0476 (18)0.0031 (13)0.0013 (14)0.0131 (14)
C25A0.0391 (16)0.0529 (18)0.0338 (14)0.0006 (14)0.0025 (12)0.0029 (13)
C26A0.0339 (15)0.0368 (15)0.0351 (15)0.0031 (12)0.0015 (12)0.0028 (11)
O1B0.0465 (13)0.0533 (13)0.0444 (13)0.0075 (11)0.0073 (10)0.0189 (10)
O2B0.0362 (12)0.0411 (11)0.0529 (13)0.0060 (9)0.0027 (10)0.0053 (9)
N1B0.0457 (18)0.068 (2)0.077 (2)0.0050 (15)0.0011 (16)0.0407 (18)
C1B0.0317 (14)0.0346 (14)0.0311 (13)0.0056 (12)0.0023 (11)0.0033 (11)
C2B0.0324 (14)0.0361 (14)0.0294 (13)0.0091 (11)0.0023 (10)0.0008 (11)
C3B0.0436 (17)0.0529 (18)0.0353 (15)0.0173 (14)0.0043 (13)0.0030 (13)
C4B0.057 (2)0.087 (3)0.0363 (18)0.026 (2)0.0027 (16)0.0219 (18)
C5B0.045 (2)0.050 (2)0.081 (3)0.0008 (16)0.0043 (19)0.0200 (19)
C6B0.0408 (17)0.0391 (15)0.0407 (17)0.0044 (13)0.0048 (13)0.0056 (12)
Geometric parameters (Å, º) top
F1A—C5A1.363 (3)C16A—H16A0.9700
F2A—C11A1.360 (4)C16A—H16B0.9700
N1A—C1A1.479 (3)C16A—C17A1.511 (4)
N1A—C14A1.463 (3)C17A—H17A0.9700
N1A—C17A1.471 (3)C17A—H17B0.9700
N2A—H2A0.94 (4)C18A—H18A0.9700
N2A—C15A1.493 (3)C18A—H18B0.9700
N2A—C16A1.492 (3)C18A—C19A1.499 (4)
N2A—C18A1.499 (3)C19A—H19A0.9300
C1A—H1A0.9800C19A—C20A1.319 (4)
C1A—C2A1.524 (3)C20A—H20A0.9300
C1A—C8A1.525 (3)C20A—C21A1.472 (4)
C2A—C3A1.392 (4)C21A—C22A1.401 (4)
C2A—C7A1.398 (4)C21A—C26A1.393 (4)
C3A—H3A0.9300C22A—H22A0.9300
C3A—C4A1.395 (4)C22A—C23A1.379 (4)
C4A—H4A0.9300C23A—H23A0.9300
C4A—C5A1.366 (4)C23A—C24A1.395 (5)
C5A—C6A1.381 (5)C24A—H24A0.9300
C6A—H6A0.9300C24A—C25A1.383 (5)
C6A—C7A1.386 (4)C25A—H25A0.9300
C7A—H7A0.9300C25A—C26A1.393 (4)
C8A—C9A1.387 (4)C26A—H26A0.9300
C8A—C13A1.394 (4)O1B—C1B1.270 (4)
C9A—H9A0.9300O2B—C1B1.223 (4)
C9A—C10A1.395 (4)N1B—C4B1.329 (6)
C10A—H10A0.9300N1B—C5B1.311 (5)
C10A—C11A1.366 (5)C1B—C2B1.515 (4)
C11A—C12A1.377 (5)C2B—C3B1.388 (4)
C12A—H12A0.9300C2B—C6B1.392 (4)
C12A—C13A1.385 (4)C3B—H3B0.9300
C13A—H13A0.9300C3B—C4B1.389 (6)
C14A—H14A0.9700C4B—H4B0.9300
C14A—H14B0.9700C5B—H5B0.9300
C14A—C15A1.512 (4)C5B—C6B1.379 (5)
C15A—H15A0.9700C6B—H6B0.9300
C15A—H15B0.9700
C14A—N1A—C1A113.4 (2)H15A—C15A—H15B108.0
C14A—N1A—C17A107.66 (19)N2A—C16A—H16A109.6
C17A—N1A—C1A109.43 (19)N2A—C16A—H16B109.6
C15A—N2A—H2A104 (2)N2A—C16A—C17A110.1 (2)
C15A—N2A—C18A110.1 (2)H16A—C16A—H16B108.2
C16A—N2A—H2A113 (2)C17A—C16A—H16A109.6
C16A—N2A—C15A109.35 (19)C17A—C16A—H16B109.6
C16A—N2A—C18A112.1 (2)N1A—C17A—C16A111.3 (2)
C18A—N2A—H2A108 (2)N1A—C17A—H17A109.4
N1A—C1A—H1A108.0N1A—C17A—H17B109.4
N1A—C1A—C2A110.3 (2)C16A—C17A—H17A109.4
N1A—C1A—C8A112.5 (2)C16A—C17A—H17B109.4
C2A—C1A—H1A108.0H17A—C17A—H17B108.0
C2A—C1A—C8A110.0 (2)N2A—C18A—H18A109.1
C8A—C1A—H1A108.0N2A—C18A—H18B109.1
C3A—C2A—C1A121.8 (2)H18A—C18A—H18B107.8
C3A—C2A—C7A118.5 (2)C19A—C18A—N2A112.7 (2)
C7A—C2A—C1A119.6 (2)C19A—C18A—H18A109.1
C2A—C3A—H3A119.6C19A—C18A—H18B109.1
C2A—C3A—C4A120.7 (3)C18A—C19A—H19A118.8
C4A—C3A—H3A119.6C20A—C19A—C18A122.3 (3)
C3A—C4A—H4A120.6C20A—C19A—H19A118.8
C5A—C4A—C3A118.7 (3)C19A—C20A—H20A115.9
C5A—C4A—H4A120.6C19A—C20A—C21A128.3 (3)
F1A—C5A—C4A119.2 (3)C21A—C20A—H20A115.9
F1A—C5A—C6A118.0 (3)C22A—C21A—C20A122.7 (3)
C4A—C5A—C6A122.8 (3)C26A—C21A—C20A119.1 (2)
C5A—C6A—H6A121.0C26A—C21A—C22A118.1 (3)
C5A—C6A—C7A117.9 (3)C21A—C22A—H22A119.6
C7A—C6A—H6A121.0C23A—C22A—C21A120.7 (3)
C2A—C7A—H7A119.3C23A—C22A—H22A119.6
C6A—C7A—C2A121.4 (3)C22A—C23A—H23A119.8
C6A—C7A—H7A119.3C22A—C23A—C24A120.4 (3)
C9A—C8A—C1A119.3 (2)C24A—C23A—H23A119.8
C9A—C8A—C13A119.4 (3)C23A—C24A—H24A120.1
C13A—C8A—C1A121.3 (2)C25A—C24A—C23A119.7 (3)
C8A—C9A—H9A119.7C25A—C24A—H24A120.1
C8A—C9A—C10A120.6 (3)C24A—C25A—H25A120.2
C10A—C9A—H9A119.7C24A—C25A—C26A119.6 (3)
C9A—C10A—H10A120.9C26A—C25A—H25A120.2
C11A—C10A—C9A118.3 (3)C21A—C26A—C25A121.4 (3)
C11A—C10A—H10A120.9C21A—C26A—H26A119.3
F2A—C11A—C10A119.1 (3)C25A—C26A—H26A119.3
F2A—C11A—C12A118.1 (3)C5B—N1B—C4B116.4 (3)
C10A—C11A—C12A122.8 (3)O1B—C1B—C2B113.8 (3)
C11A—C12A—H12A120.7O2B—C1B—O1B126.3 (3)
C11A—C12A—C13A118.6 (3)O2B—C1B—C2B119.9 (3)
C13A—C12A—H12A120.7C3B—C2B—C1B122.3 (3)
C8A—C13A—H13A119.9C3B—C2B—C6B116.9 (3)
C12A—C13A—C8A120.3 (3)C6B—C2B—C1B120.8 (2)
C12A—C13A—H13A119.9C2B—C3B—H3B120.6
N1A—C14A—H14A109.7C2B—C3B—C4B118.9 (3)
N1A—C14A—H14B109.7C4B—C3B—H3B120.6
N1A—C14A—C15A110.0 (2)N1B—C4B—C3B124.0 (3)
H14A—C14A—H14B108.2N1B—C4B—H4B118.0
C15A—C14A—H14A109.7C3B—C4B—H4B118.0
C15A—C14A—H14B109.7N1B—C5B—H5B117.6
N2A—C15A—C14A111.0 (2)N1B—C5B—C6B124.8 (4)
N2A—C15A—H15A109.4C6B—C5B—H5B117.6
N2A—C15A—H15B109.4C2B—C6B—H6B120.5
C14A—C15A—H15A109.4C5B—C6B—C2B119.0 (3)
C14A—C15A—H15B109.4C5B—C6B—H6B120.5
F1A—C5A—C6A—C7A177.8 (2)C14A—N1A—C1A—C8A44.2 (3)
F2A—C11A—C12A—C13A179.6 (3)C14A—N1A—C17A—C16A61.8 (3)
N1A—C1A—C2A—C3A30.7 (3)C15A—N2A—C16A—C17A54.7 (3)
N1A—C1A—C2A—C7A153.4 (2)C15A—N2A—C18A—C19A175.0 (2)
N1A—C1A—C8A—C9A112.3 (3)C16A—N2A—C15A—C14A55.8 (3)
N1A—C1A—C8A—C13A69.0 (3)C16A—N2A—C18A—C19A53.1 (3)
N1A—C14A—C15A—N2A60.2 (3)C17A—N1A—C1A—C2A72.5 (3)
N2A—C16A—C17A—N1A59.2 (3)C17A—N1A—C1A—C8A164.4 (2)
N2A—C18A—C19A—C20A116.8 (3)C17A—N1A—C14A—C15A61.5 (3)
C1A—N1A—C14A—C15A177.2 (2)C18A—N2A—C15A—C14A179.3 (2)
C1A—N1A—C17A—C16A174.5 (2)C18A—N2A—C16A—C17A177.0 (2)
C1A—C2A—C3A—C4A175.8 (2)C18A—C19A—C20A—C21A179.0 (2)
C1A—C2A—C7A—C6A175.5 (2)C19A—C20A—C21A—C22A0.9 (4)
C1A—C8A—C9A—C10A178.0 (3)C19A—C20A—C21A—C26A179.0 (3)
C1A—C8A—C13A—C12A178.2 (3)C20A—C21A—C22A—C23A177.5 (3)
C2A—C1A—C8A—C9A124.4 (3)C20A—C21A—C26A—C25A177.2 (3)
C2A—C1A—C8A—C13A54.3 (3)C21A—C22A—C23A—C24A0.5 (5)
C2A—C3A—C4A—C5A0.1 (4)C22A—C21A—C26A—C25A1.0 (4)
C3A—C2A—C7A—C6A0.5 (4)C22A—C23A—C24A—C25A1.3 (5)
C3A—C4A—C5A—F1A178.1 (2)C23A—C24A—C25A—C26A0.9 (5)
C3A—C4A—C5A—C6A0.1 (4)C24A—C25A—C26A—C21A0.3 (5)
C4A—C5A—C6A—C7A0.4 (4)C26A—C21A—C22A—C23A0.6 (4)
C5A—C6A—C7A—C2A0.7 (4)O1B—C1B—C2B—C3B171.0 (3)
C7A—C2A—C3A—C4A0.1 (4)O1B—C1B—C2B—C6B11.0 (4)
C8A—C1A—C2A—C3A93.9 (3)O2B—C1B—C2B—C3B9.0 (4)
C8A—C1A—C2A—C7A82.0 (3)O2B—C1B—C2B—C6B169.0 (3)
C8A—C9A—C10A—C11A0.2 (4)N1B—C5B—C6B—C2B0.4 (6)
C9A—C8A—C13A—C12A0.5 (4)C1B—C2B—C3B—C4B178.9 (3)
C9A—C10A—C11A—F2A179.8 (3)C1B—C2B—C6B—C5B177.5 (3)
C9A—C10A—C11A—C12A0.5 (5)C2B—C3B—C4B—N1B2.7 (6)
C10A—C11A—C12A—C13A0.7 (5)C3B—C2B—C6B—C5B0.6 (5)
C11A—C12A—C13A—C8A0.1 (5)C4B—N1B—C5B—C6B1.2 (6)
C13A—C8A—C9A—C10A0.7 (4)C5B—N1B—C4B—C3B2.8 (6)
C14A—N1A—C1A—C2A167.3 (2)C6B—C2B—C3B—C4B0.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1Bi0.94 (4)1.62 (4)2.557 (3)176 (4)
C6A—H6A···O2Bii0.932.603.439 (4)151
Symmetry codes: (i) x, y+1, z1/2; (ii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···O1Bi0.94 (4)1.62 (4)2.557 (3)176 (4)
C6A—H6A···O2Bii0.932.603.439 (4)151.0
Symmetry codes: (i) x, y+1, z1/2; (ii) x1, y+1, z.
 

Acknowledgements

CNK thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for Women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmery, W. K. (1983). Headache, 23, 70–74.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6–44.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKavitha, C. N., Butcher, R. J., Jasinski, J. P., Yathirajan, H. S. & Dayananda, A. S. (2013d). Acta Cryst. E69, o485–o486.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Jasinski, J. P., Matar, S. M., Yathirajan, H. S. & Ramesha, A. R. (2013b). Acta Cryst. E69, o1344.  CSD CrossRef IUCr Journals Google Scholar
First citationKavitha, C. N., Yathirajan, H. S., Narayana, B., Gerber, T., van Brecht, B. & Betz, R. (2013a). Acta Cryst. E69, o260–o261.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKavitha, C. N., Yildirim, S. Ō. ¯, Jasinski, J. P., Yathirajan, H. S. & Butcher, R. J. (2013c). Acta Cryst. E69, o142–o143.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o681-o682
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds