metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Aceto­nitrile-κN)iodidobis(tri­phenylphosphane-κP)copper(I)

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 30 April 2014; accepted 13 May 2014; online 17 May 2014)

In the mononuclear title complex, [CuI(CH3CN)(C18H15P)2], the CuI ion is in a distorted tetra­hedral geometry, coordinated by two P atoms of two tri­phenyl­phosphane ligands, one N atom of an aceto­nitrile ligand and one iodide anion. The aceto­nitrile ligand is disordered over two sets of sites in a 0.629 (15): 0.371 (15) ratio. In the crystal, weak C—H⋯I hydrogen bonds link the mol­ecules, forming a chain along [100].

Related literature

For potential applications of copper(I) complexes, see: Tian et al. (2004[Tian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. 9, 1813-1816.]); Krupanidhi et al. (2008[Krupanidhi, S., Sreekumar, A. & Sanjeevi, C. B. (2008). Indian J. Med. Res. 128, 448-461.]); Aslanidis et al. (2010[Aslanidis, P., Cox, P. J. & Tsipis, A. C. (2010). Dalton Trans. 39, 10238-10248.]); Gallego et al. (2012[Gallego, A., Castillo, O., Gómez-García, C., Zamora, F. & Delgado, S. (2012). Inorg. Chem. 51, 718-727.]). For related structures, see: Balili & Pintauer (2007[Balili, M. N. C. & Pintauer, T. (2007). Acta Cryst. E63, m988-m990.]); Royappa et al. (2013[Royappa, A. T., Stepherson, J. R., Vu, O. D., Royappa, A. D., Stern, C. L. & Müller, P. (2013). Acta Cryst. E69, m544.]).

[Scheme 1]

Experimental

Crystal data
  • [CuI(C2H3N)(C18H15P)2]

  • Mr = 756.03

  • Monoclinic, P 21 /n

  • a = 9.2547 (3) Å

  • b = 19.3814 (6) Å

  • c = 19.4249 (6) Å

  • β = 93.043 (1)°

  • V = 3479.31 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.63 mm−1

  • T = 100 K

  • 0.33 × 0.22 × 0.09 mm

Data collection
  • Bruker AXS SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.600, Tmax = 0.746

  • 20389 measured reflections

  • 10066 independent reflections

  • 8394 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.086

  • S = 1.09

  • 10066 reflections

  • 400 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯I1i 0.98 3.09 3.727 (8) 124
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Tri­phenyl­phosphane (0.14g, 0.5 mmol) was dissolved in 30 cm3 of aceto­nitrile in a round flask equipped with reflux condenser and magnetic stirrer at 335 K. CuI (0.10g, 0.5 mmol) was added and the mixture was stirred for 6 hrs. Solid 5-amino-1,3,4-thia­diazole-2-thiol (0.07 g, 0.05 mmol) was added and the new reaction mixture was heated under reflux for 8 hrs where upon the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. Colorless crystals, which deposited upon standing for several days, were filtered off, washed with acetone and dried in vacuo (0.09 g, yield 29%). Mp = 456–458 K.

Refinement top

Reflections 0 1 1 and 0 1 2 were affected by the beam stop and were omitted from the refinement.The H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 with Uiso(H) = 1.2 Ueq(C) for H atoms on C(sp2) and 0.98 Å with Uiso(H) = 1.5 Ueq(C) for H atoms on C(sp3). The aceto­nitrile exhibits disorder over two different orientations. The occupancies refined to 0.629 (15) and 0.371 (15).

Results and discussion top

Copper(I) complexes have many applications. Many of these complexes have been of increasing inter­est due to the variety of their structures and their similarity to metallo­thio­neins. The role of copper(I) is evident in several biologically important reactions, such as a di­oxy­gen carrier and models for several enzymes (Krupanidhi et al., 2008). On the other hand, these compounds have been reported to be luminescent (Aslanidis et al., 2010; Gallego et al., 2012) and exhibit corrosion inhibiting properties (Tian et al., 2004). Herein, the title complex was prepared by reacting copper (I) iodide and tri­phenyl­phosphane (PPh3), followed by the addition of 5-amino-1,3,4-thia­diazole-2-thiol (ATM) in aceto­nitrile solvent. An unexpexted complex [CuI(C18H15P)2(CH3CN)] was formed in the absence of ATM in low yield (29%) (Fig.1). The coordination environment around the CuI ion is a distorted tetra­hedral geometry fromed by two P atoms of two tri­phenyl­phosphine ligands, one N atom of disordered aceto­nitrile ligand and one iodide atom. The occupancies of the disorder sites of the aceto­nitrile ligand refined to 0.629 (15) and 0.371 (15). The Cu1—N1 bond distance of 2.055 (10) Å is slightly longer than that found in for example [Cu(C15H4BF18N6)(C2H3N)], which is 1.888 (3) Å (Balili & Pintauer, 2007). The aceto­nitrile ligand is almost linear with an N—C—C angle of 177.4 (14)° [or 174 (3)° for the minor component of disorder]. The typical value for an aceto­nitrile ligand, as for the [Cu(CH3CN)4]+ cation (Royappa et al., 2013) are angles in the range 178.4 (3)-179 (3)°. In the crystal, the molecules are connected via weak C2—H2A···I1i inter­actions, forming a one-dimensional chain along the a-axis direction (Fig.2).

Related literature top

For potential applications of copper(I) complexes, see: Tian et al. (2004); Krupanidhi et al. (2008); Aslanidis et al. (2010); Gallego et al. (2012). For related structures, see: Balili & Pintauer (2007); Royappa et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. The disorder is not shown.
[Figure 2] Fig. 2. Part of the crystal structure showing weak intermolecular C—H···I hydrogen bonds (dashed lines), leading to the formation of a 1-D chain along the a-axis direction (symmetry code (i): x+1, y, z).
(Acetonitrile-κN)iodidobis(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuI(C2H3N)(C18H15P)2]F(000) = 1520
Mr = 756.03Dx = 1.443 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.2547 (3) ÅCell parameters from 7884 reflections
b = 19.3814 (6) Åθ = 2.4–31.2°
c = 19.4249 (6) ŵ = 1.63 mm1
β = 93.043 (1)°T = 100 K
V = 3479.31 (19) Å3Plate, colourless
Z = 40.33 × 0.22 × 0.09 mm
Data collection top
Bruker AXS SMART APEX CCD
diffractometer
8394 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.025
ω and ϕ scansθmax = 31.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1213
Tmin = 0.600, Tmax = 0.746k = 2728
20389 measured reflectionsl = 2621
10066 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0383P)2 + 1.2024P]
where P = (Fo2 + 2Fc2)/3
10066 reflections(Δ/σ)max = 0.002
400 parametersΔρmax = 1.59 e Å3
3 restraintsΔρmin = 0.52 e Å3
Crystal data top
[CuI(C2H3N)(C18H15P)2]V = 3479.31 (19) Å3
Mr = 756.03Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2547 (3) ŵ = 1.63 mm1
b = 19.3814 (6) ÅT = 100 K
c = 19.4249 (6) Å0.33 × 0.22 × 0.09 mm
β = 93.043 (1)°
Data collection top
Bruker AXS SMART APEX CCD
diffractometer
10066 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
8394 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.746Rint = 0.025
20389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0363 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.09Δρmax = 1.59 e Å3
10066 reflectionsΔρmin = 0.52 e Å3
400 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.96840 (2)0.74638 (2)0.25147 (2)0.01967 (5)
Cu11.12630 (3)0.86273 (2)0.25454 (2)0.01449 (6)
P11.08578 (6)0.91578 (3)0.35789 (3)0.01380 (11)
P21.07803 (6)0.91388 (3)0.14896 (3)0.01330 (11)
N11.3267 (11)0.8180 (8)0.2489 (11)0.0200 (17)0.629 (15)
C11.4315 (9)0.7867 (5)0.2453 (5)0.0213 (15)0.629 (15)
C21.5653 (8)0.7464 (5)0.2371 (5)0.051 (2)0.629 (15)
H2A1.64120.76290.27010.076*0.629 (15)
H2B1.59690.75220.19010.076*0.629 (15)
H2C1.54630.69750.24570.076*0.629 (15)
N1B1.336 (2)0.8304 (15)0.254 (2)0.0200 (17)0.371 (15)
C1B1.4352 (17)0.8042 (8)0.2331 (10)0.0213 (15)0.371 (15)
C2B1.5702 (15)0.7720 (9)0.2124 (8)0.051 (2)0.371 (15)
H2D1.65060.78680.24390.076*0.371 (15)
H2E1.58920.78610.16530.076*0.371 (15)
H2F1.56090.72170.21430.076*0.371 (15)
C111.1283 (2)0.86224 (11)0.43498 (11)0.0162 (4)
C121.0491 (3)0.86457 (12)0.49505 (12)0.0221 (5)
H120.96300.89120.49560.027*
C131.0978 (3)0.82739 (14)0.55452 (12)0.0281 (6)
H131.04380.82870.59480.034*
C141.2247 (3)0.78884 (14)0.55407 (13)0.0295 (6)
H141.25810.76430.59410.035*
C151.3029 (3)0.78641 (14)0.49446 (13)0.0270 (5)
H151.38980.76030.49430.032*
C161.2542 (3)0.82223 (12)0.43488 (12)0.0210 (5)
H161.30690.81930.39430.025*
C211.1866 (2)0.99578 (11)0.37978 (11)0.0151 (4)
C221.2632 (2)1.00580 (12)0.44391 (11)0.0174 (4)
H221.25540.97290.47980.021*
C231.3505 (3)1.06426 (12)0.45463 (12)0.0209 (5)
H231.40251.07050.49770.025*
C241.3619 (3)1.11372 (12)0.40247 (13)0.0224 (5)
H241.42261.15280.41010.027*
C251.2838 (3)1.10554 (12)0.33921 (13)0.0236 (5)
H251.28881.13970.30430.028*
C261.1982 (3)1.04656 (12)0.32783 (12)0.0205 (5)
H261.14711.04050.28450.025*
C310.8948 (2)0.93943 (12)0.36381 (11)0.0174 (4)
C320.7922 (3)0.88569 (13)0.36523 (12)0.0219 (5)
H320.82330.83910.36990.026*
C330.6451 (3)0.90124 (15)0.35968 (13)0.0270 (5)
H330.57600.86510.36140.032*
C340.5982 (3)0.96955 (16)0.35156 (13)0.0322 (6)
H340.49770.97950.34640.039*
C350.6980 (3)1.02267 (16)0.35101 (15)0.0347 (6)
H350.66591.06910.34640.042*
C360.8460 (3)1.00806 (13)0.35728 (13)0.0266 (5)
H360.91421.04470.35710.032*
C410.8856 (2)0.91370 (11)0.12315 (11)0.0164 (4)
C420.8312 (2)0.89980 (12)0.05587 (12)0.0198 (5)
H420.89600.89060.02070.024*
C430.6829 (3)0.89942 (14)0.04044 (13)0.0254 (5)
H430.64630.88980.00520.031*
C440.5882 (3)0.91312 (18)0.09190 (14)0.0394 (8)
H440.48670.91290.08140.047*
C450.6415 (3)0.9272 (2)0.15896 (15)0.0615 (12)
H450.57620.93670.19390.074*
C460.7893 (3)0.9275 (2)0.17500 (14)0.0446 (9)
H460.82520.93690.22080.054*
C511.1667 (2)0.87560 (11)0.07426 (11)0.0145 (4)
C521.2127 (2)0.91528 (12)0.01858 (11)0.0177 (4)
H521.19520.96360.01760.021*
C531.2845 (3)0.88405 (13)0.03579 (12)0.0218 (5)
H531.31620.91140.07270.026*
C541.3089 (3)0.81271 (13)0.03523 (13)0.0256 (5)
H541.35780.79150.07150.031*
C551.2604 (3)0.77261 (13)0.01957 (15)0.0290 (6)
H551.27460.72410.01950.035*
C561.1915 (3)0.80371 (12)0.07425 (12)0.0205 (5)
H561.16130.77630.11140.025*
C611.1305 (3)1.00548 (11)0.14349 (11)0.0174 (4)
C621.2766 (3)1.02147 (13)0.15747 (13)0.0253 (5)
H621.34410.98530.16690.030*
C631.3247 (3)1.09004 (14)0.15778 (13)0.0320 (6)
H631.42441.10000.16680.038*
C641.2260 (4)1.14374 (14)0.14489 (14)0.0426 (8)
H641.25811.19030.14560.051*
C651.0822 (4)1.12864 (14)0.13109 (15)0.0451 (9)
H651.01501.16500.12180.054*
C661.0337 (3)1.05963 (13)0.13057 (13)0.0295 (6)
H660.93391.05000.12130.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01685 (8)0.01524 (7)0.02709 (9)0.00172 (5)0.00276 (6)0.00058 (5)
Cu10.01291 (12)0.01785 (13)0.01256 (13)0.00217 (10)0.00077 (9)0.00019 (10)
P10.0128 (3)0.0166 (3)0.0120 (3)0.0004 (2)0.00034 (19)0.0007 (2)
P20.0130 (2)0.0149 (2)0.0119 (3)0.0020 (2)0.00034 (19)0.00071 (19)
N10.0145 (15)0.029 (6)0.016 (3)0.002 (2)0.0040 (17)0.009 (3)
C10.0144 (12)0.033 (5)0.016 (4)0.000 (3)0.0013 (17)0.004 (3)
C20.0310 (19)0.076 (6)0.046 (5)0.024 (3)0.009 (3)0.023 (3)
N1B0.0145 (15)0.029 (6)0.016 (3)0.002 (2)0.0040 (17)0.009 (3)
C1B0.0144 (12)0.033 (5)0.016 (4)0.000 (3)0.0013 (17)0.004 (3)
C2B0.0310 (19)0.076 (6)0.046 (5)0.024 (3)0.009 (3)0.023 (3)
C110.0180 (10)0.0168 (10)0.0137 (10)0.0029 (8)0.0018 (8)0.0006 (8)
C120.0242 (12)0.0250 (12)0.0174 (11)0.0007 (10)0.0033 (9)0.0010 (9)
C130.0363 (15)0.0340 (14)0.0143 (11)0.0026 (12)0.0042 (10)0.0033 (10)
C140.0411 (16)0.0304 (13)0.0164 (12)0.0020 (12)0.0036 (10)0.0042 (10)
C150.0280 (13)0.0280 (13)0.0247 (13)0.0074 (10)0.0022 (10)0.0004 (10)
C160.0225 (12)0.0225 (11)0.0179 (11)0.0017 (9)0.0017 (9)0.0012 (9)
C210.0137 (10)0.0170 (10)0.0148 (10)0.0006 (8)0.0018 (8)0.0024 (8)
C220.0178 (10)0.0217 (11)0.0126 (10)0.0007 (9)0.0014 (8)0.0013 (8)
C230.0222 (12)0.0239 (11)0.0163 (11)0.0006 (9)0.0006 (9)0.0072 (9)
C240.0240 (12)0.0189 (11)0.0246 (12)0.0030 (9)0.0024 (9)0.0071 (9)
C250.0298 (13)0.0193 (11)0.0218 (12)0.0028 (10)0.0022 (10)0.0018 (9)
C260.0233 (12)0.0220 (11)0.0158 (11)0.0038 (9)0.0014 (9)0.0001 (9)
C310.0151 (10)0.0249 (11)0.0120 (10)0.0018 (9)0.0009 (8)0.0032 (8)
C320.0181 (11)0.0299 (12)0.0181 (11)0.0025 (9)0.0038 (9)0.0061 (9)
C330.0168 (11)0.0445 (15)0.0200 (12)0.0054 (11)0.0045 (9)0.0104 (11)
C340.0160 (12)0.0541 (18)0.0266 (13)0.0082 (12)0.0019 (10)0.0108 (12)
C350.0232 (13)0.0393 (15)0.0417 (16)0.0143 (12)0.0044 (11)0.0047 (13)
C360.0206 (12)0.0276 (13)0.0317 (14)0.0030 (10)0.0031 (10)0.0031 (10)
C410.0131 (10)0.0199 (10)0.0161 (10)0.0038 (8)0.0011 (8)0.0012 (8)
C420.0156 (10)0.0253 (11)0.0188 (11)0.0002 (9)0.0031 (8)0.0033 (9)
C430.0178 (11)0.0385 (14)0.0196 (12)0.0001 (10)0.0034 (9)0.0001 (10)
C440.0123 (11)0.080 (2)0.0255 (14)0.0078 (13)0.0026 (10)0.0041 (14)
C450.0212 (14)0.144 (4)0.0197 (14)0.0259 (19)0.0038 (11)0.0005 (19)
C460.0199 (13)0.101 (3)0.0130 (12)0.0221 (15)0.0012 (10)0.0020 (14)
C510.0111 (9)0.0192 (10)0.0129 (10)0.0010 (8)0.0021 (7)0.0027 (8)
C520.0170 (11)0.0203 (11)0.0156 (10)0.0037 (8)0.0016 (8)0.0001 (8)
C530.0207 (11)0.0290 (12)0.0157 (11)0.0017 (10)0.0023 (9)0.0012 (9)
C540.0235 (12)0.0322 (13)0.0218 (12)0.0058 (10)0.0078 (9)0.0065 (10)
C550.0318 (14)0.0198 (11)0.0364 (15)0.0071 (11)0.0110 (11)0.0055 (11)
C560.0218 (11)0.0185 (11)0.0219 (12)0.0014 (9)0.0067 (9)0.0009 (9)
C610.0259 (12)0.0163 (10)0.0101 (10)0.0019 (9)0.0007 (8)0.0019 (8)
C620.0296 (13)0.0216 (12)0.0255 (13)0.0034 (10)0.0068 (10)0.0059 (10)
C630.0448 (17)0.0303 (14)0.0213 (13)0.0183 (12)0.0069 (11)0.0067 (10)
C640.081 (2)0.0220 (13)0.0235 (14)0.0137 (14)0.0138 (14)0.0016 (11)
C650.076 (2)0.0176 (12)0.0382 (17)0.0061 (14)0.0297 (16)0.0008 (11)
C660.0391 (15)0.0213 (12)0.0261 (13)0.0076 (11)0.0159 (11)0.0030 (10)
Geometric parameters (Å, º) top
I1—Cu12.6861 (3)C31—C321.410 (3)
Cu1—N1B2.037 (18)C32—C331.393 (3)
Cu1—N12.055 (10)C32—H320.9500
Cu1—P22.3003 (6)C33—C341.400 (4)
Cu1—P12.3038 (6)C33—H330.9500
P1—C311.836 (2)C34—C351.384 (4)
P1—C111.847 (2)C34—H340.9500
P1—C211.847 (2)C35—C361.397 (3)
P2—C411.824 (2)C35—H350.9500
P2—C611.845 (2)C36—H360.9500
P2—C511.859 (2)C41—C421.402 (3)
N1—C11.149 (9)C41—C461.406 (3)
C1—C21.479 (7)C42—C431.389 (3)
C2—H2A0.9800C42—H420.9500
C2—H2B0.9800C43—C441.390 (4)
C2—H2C0.9800C43—H430.9500
N1B—C1B1.148 (13)C44—C451.395 (4)
C1B—C2B1.471 (12)C44—H440.9500
C2B—H2D0.9800C45—C461.386 (4)
C2B—H2E0.9800C45—H450.9500
C2B—H2F0.9800C46—H460.9500
C11—C161.400 (3)C51—C521.411 (3)
C11—C121.411 (3)C51—C561.412 (3)
C12—C131.414 (3)C52—C531.413 (3)
C12—H120.9500C52—H520.9500
C13—C141.393 (4)C53—C541.401 (3)
C13—H130.9500C53—H530.9500
C14—C151.399 (4)C54—C551.410 (4)
C14—H140.9500C54—H540.9500
C15—C161.403 (3)C55—C561.404 (3)
C15—H150.9500C55—H550.9500
C16—H160.9500C56—H560.9500
C21—C221.414 (3)C61—C661.394 (3)
C21—C261.418 (3)C61—C621.399 (3)
C22—C231.401 (3)C62—C631.401 (3)
C22—H220.9500C62—H620.9500
C23—C241.403 (3)C63—C641.398 (4)
C23—H230.9500C63—H630.9500
C24—C251.401 (3)C64—C651.375 (5)
C24—H240.9500C64—H640.9500
C25—C261.402 (3)C65—C661.411 (4)
C25—H250.9500C65—H650.9500
C26—H260.9500C66—H660.9500
C31—C361.408 (3)
N1B—Cu1—P2105.7 (12)C36—C31—C32119.1 (2)
N1—Cu1—P2105.5 (7)C36—C31—P1122.36 (18)
N1B—Cu1—P1109.7 (9)C32—C31—P1117.91 (17)
N1—Cu1—P1115.1 (5)C33—C32—C31119.6 (2)
P2—Cu1—P1123.48 (2)C33—C32—H32120.2
N1B—Cu1—I1105.0 (8)C31—C32—H32120.2
N1—Cu1—I197.8 (4)C32—C33—C34120.6 (2)
P2—Cu1—I1105.208 (17)C32—C33—H33119.7
P1—Cu1—I1106.291 (17)C34—C33—H33119.7
C31—P1—C11104.69 (10)C35—C34—C33120.1 (2)
C31—P1—C21104.61 (10)C35—C34—H34120.0
C11—P1—C21101.64 (10)C33—C34—H34120.0
C31—P1—Cu1111.59 (7)C34—C35—C36120.0 (3)
C11—P1—Cu1114.73 (7)C34—C35—H35120.0
C21—P1—Cu1118.14 (7)C36—C35—H35120.0
C41—P2—C61104.01 (10)C35—C36—C31120.5 (2)
C41—P2—C51104.46 (10)C35—C36—H36119.8
C61—P2—C51102.15 (10)C31—C36—H36119.8
C41—P2—Cu1112.63 (7)C42—C41—C46119.6 (2)
C61—P2—Cu1115.26 (7)C42—C41—P2123.63 (17)
C51—P2—Cu1116.81 (7)C46—C41—P2116.72 (17)
C1—N1—Cu1173.0 (12)C43—C42—C41120.3 (2)
N1—C1—C2177.4 (14)C43—C42—H42119.9
C1—C2—H2A109.5C41—C42—H42119.9
C1—C2—H2B109.5C42—C43—C44119.8 (2)
H2A—C2—H2B109.5C42—C43—H43120.1
C1—C2—H2C109.5C44—C43—H43120.1
H2A—C2—H2C109.5C43—C44—C45120.2 (2)
H2B—C2—H2C109.5C43—C44—H44119.9
C1B—N1B—Cu1157 (3)C45—C44—H44119.9
N1B—C1B—C2B174 (3)C46—C45—C44120.4 (3)
C1B—C2B—H2D109.5C46—C45—H45119.8
C1B—C2B—H2E109.5C44—C45—H45119.8
H2D—C2B—H2E109.5C45—C46—C41119.6 (2)
C1B—C2B—H2F109.5C45—C46—H46120.2
H2D—C2B—H2F109.5C41—C46—H46120.2
H2E—C2B—H2F109.5C52—C51—C56118.8 (2)
C16—C11—C12119.2 (2)C52—C51—P2122.99 (16)
C16—C11—P1116.83 (17)C56—C51—P2118.18 (17)
C12—C11—P1123.72 (17)C51—C52—C53120.8 (2)
C11—C12—C13120.2 (2)C51—C52—H52119.6
C11—C12—H12119.9C53—C52—H52119.6
C13—C12—H12119.9C54—C53—C52119.9 (2)
C14—C13—C12120.0 (2)C54—C53—H53120.0
C14—C13—H13120.0C52—C53—H53120.0
C12—C13—H13120.0C53—C54—C55119.5 (2)
C13—C14—C15119.8 (2)C53—C54—H54120.3
C13—C14—H14120.1C55—C54—H54120.3
C15—C14—H14120.1C56—C55—C54120.7 (2)
C14—C15—C16120.6 (2)C56—C55—H55119.7
C14—C15—H15119.7C54—C55—H55119.7
C16—C15—H15119.7C55—C56—C51120.3 (2)
C11—C16—C15120.3 (2)C55—C56—H56119.9
C11—C16—H16119.9C51—C56—H56119.9
C15—C16—H16119.9C66—C61—C62118.3 (2)
C22—C21—C26118.6 (2)C66—C61—P2124.48 (19)
C22—C21—P1122.79 (17)C62—C61—P2117.15 (18)
C26—C21—P1118.38 (16)C61—C62—C63120.9 (3)
C23—C22—C21120.0 (2)C61—C62—H62119.5
C23—C22—H22120.0C63—C62—H62119.5
C21—C22—H22120.0C64—C63—C62120.1 (3)
C22—C23—C24120.7 (2)C64—C63—H63120.0
C22—C23—H23119.7C62—C63—H63120.0
C24—C23—H23119.7C65—C64—C63119.5 (3)
C25—C24—C23120.1 (2)C65—C64—H64120.3
C25—C24—H24120.0C63—C64—H64120.3
C23—C24—H24120.0C64—C65—C66120.5 (3)
C26—C25—C24119.4 (2)C64—C65—H65119.7
C26—C25—H25120.3C66—C65—H65119.7
C24—C25—H25120.3C61—C66—C65120.7 (3)
C25—C26—C21121.2 (2)C61—C66—H66119.6
C25—C26—H26119.4C65—C66—H66119.6
C21—C26—H26119.4
C31—P1—C11—C16163.69 (17)C61—P2—C41—C4295.7 (2)
C21—P1—C11—C1687.64 (18)C51—P2—C41—C4211.1 (2)
Cu1—P1—C11—C1641.04 (19)Cu1—P2—C41—C42138.85 (18)
C31—P1—C11—C1222.3 (2)C61—P2—C41—C4685.3 (2)
C21—P1—C11—C1286.4 (2)C51—P2—C41—C46168.0 (2)
Cu1—P1—C11—C12144.94 (17)Cu1—P2—C41—C4640.2 (2)
C16—C11—C12—C130.6 (3)C46—C41—C42—C430.2 (4)
P1—C11—C12—C13173.25 (19)P2—C41—C42—C43178.85 (19)
C11—C12—C13—C140.6 (4)C41—C42—C43—C440.2 (4)
C12—C13—C14—C150.7 (4)C42—C43—C44—C450.0 (5)
C13—C14—C15—C160.3 (4)C43—C44—C45—C460.2 (6)
C12—C11—C16—C151.7 (3)C44—C45—C46—C410.3 (6)
P1—C11—C16—C15172.63 (19)C42—C41—C46—C450.1 (5)
C14—C15—C16—C111.5 (4)P2—C41—C46—C45179.2 (3)
C31—P1—C21—C22105.21 (19)C41—P2—C51—C5288.90 (19)
C11—P1—C21—C223.5 (2)C61—P2—C51—C5219.2 (2)
Cu1—P1—C21—C22130.00 (17)Cu1—P2—C51—C52145.96 (15)
C31—P1—C21—C2680.63 (19)C41—P2—C51—C5692.43 (18)
C11—P1—C21—C26170.64 (18)C61—P2—C51—C56159.43 (17)
Cu1—P1—C21—C2644.2 (2)Cu1—P2—C51—C5632.71 (19)
C26—C21—C22—C231.2 (3)C56—C51—C52—C531.0 (3)
P1—C21—C22—C23172.94 (17)P2—C51—C52—C53177.62 (17)
C21—C22—C23—C240.7 (3)C51—C52—C53—C540.9 (3)
C22—C23—C24—C251.0 (4)C52—C53—C54—C550.4 (4)
C23—C24—C25—C262.0 (4)C53—C54—C55—C561.6 (4)
C24—C25—C26—C211.5 (4)C54—C55—C56—C511.5 (4)
C22—C21—C26—C250.1 (3)C52—C51—C56—C550.1 (3)
P1—C21—C26—C25174.27 (19)P2—C51—C56—C55178.85 (19)
C11—P1—C31—C36129.7 (2)C41—P2—C61—C667.0 (2)
C21—P1—C31—C3623.2 (2)C51—P2—C61—C66115.5 (2)
Cu1—P1—C31—C36105.69 (19)Cu1—P2—C61—C66116.78 (19)
C11—P1—C31—C3259.41 (19)C41—P2—C61—C62177.03 (18)
C21—P1—C31—C32165.90 (17)C51—P2—C61—C6268.54 (19)
Cu1—P1—C31—C3265.25 (18)Cu1—P2—C61—C6259.18 (19)
C36—C31—C32—C330.5 (3)C66—C61—C62—C630.7 (4)
P1—C31—C32—C33170.79 (18)P2—C61—C62—C63176.87 (19)
C31—C32—C33—C341.1 (4)C61—C62—C63—C640.8 (4)
C32—C33—C34—C351.9 (4)C62—C63—C64—C650.8 (4)
C33—C34—C35—C361.2 (4)C63—C64—C65—C660.6 (5)
C34—C35—C36—C310.4 (4)C62—C61—C66—C650.5 (4)
C32—C31—C36—C351.2 (4)P2—C61—C66—C65176.4 (2)
P1—C31—C36—C35169.7 (2)C64—C65—C66—C610.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···I1i0.983.093.727 (8)124
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···I1i0.983.093.727 (8)124.3
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

Financial support from the Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller for his valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

References

First citationAslanidis, P., Cox, P. J. & Tsipis, A. C. (2010). Dalton Trans. 39, 10238–10248.  Web of Science CAS PubMed Google Scholar
First citationBalili, M. N. C. & Pintauer, T. (2007). Acta Cryst. E63, m988-m990.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGallego, A., Castillo, O., Gómez-García, C., Zamora, F. & Delgado, S. (2012). Inorg. Chem. 51, 718–727.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrupanidhi, S., Sreekumar, A. & Sanjeevi, C. B. (2008). Indian J. Med. Res. 128, 448–461.  Web of Science PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRoyappa, A. T., Stepherson, J. R., Vu, O. D., Royappa, A. D., Stern, C. L. & Müller, P. (2013). Acta Cryst. E69, m544.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. 9, 1813–1816.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds