organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,1-Tris(di­methyl­amino)-2-[tris­­(di­methyl­amino)­phospho­ranyl­­idene]diphosphinium tetra­phenyl­borate tetra­hydro­furan monosolvate

aDepartment of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
*Correspondence e-mail: cmacd@uwindsor.ca

(Received 1 May 2014; accepted 15 May 2014; online 21 May 2014)

In the tetra­hydro­furan solvate of the title salt, C12H36N6P3+·C24H20B·C4H8O, the cation features short P—P bond lengths [2.1111 (11) and 2.1364 (10) Å] and a distinctly bent P—P—P angle [104.67 (4)°] that confirm that the mol­ecule is not allene-like. In the crystal, the solvent mol­ecule is linked to the cation via a weak C—H⋯O hydrogen bond.

Related literature

For the preparation of [P(P[NMe3])2][BPh4], see: Schmidpeter & Lochschmidt (1986[Schmidpeter, A. & Lochschmidt, S. (1986). Angew. Chem. Int. Ed. Engl. 25, 253-254.]). For reviews of triphosphenium and related low-oxidation-state group 15 mol­ecules, see: Ellis & Macdonald (2007[Ellis, B. D. & Macdonald, C. L. B. (2007). Coord. Chem. Rev. 251, 936-973.]); Coffer & Dillon (2013[Coffer, P. K. & Dillon, K. B. (2013). Coord. Chem. Rev. 257, 910-923.]). For the use of [P(P[NMe3])2]+ salts as a source of P+, see: Schmidpeter et al. (1983[Schmidpeter, A., Lochschmidt, S. & Willhalm, A. (1983). Angew. Chem. Int. Ed. Engl. 22, 545-546.]); Driess et al. (1999[Driess, M., Aust, J., Merz, K. & van Wullen, C. (1999). Angew. Chem. Int. Ed. 38, 3677-3680.]); Schmidpeter (1999[Schmidpeter, A. (1999). Heteroat. Chem. 10, 529-537.]). For the structure of the only related acyclic triphosphenium salt [P(PPh3)2][AlCl4], see: Ellis & Macdonald (2006[Ellis, B. D. & Macdonald, C. L. B. (2006). Acta Cryst. E62, m1869-m1870.]). For a related structure, see: Appel et al. (1983[Appel, R., Baumeister, U. & Knoch, F. (1983). Chem. Ber. 116, 2275-2284.]). For a description of the Cambridge Structural Database (CSD), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C12H36N6P3+·C24H20B·C4H8O

  • Mr = 748.69

  • Monoclinic, P 21 /n

  • a = 13.0859 (17) Å

  • b = 11.8258 (16) Å

  • c = 27.504 (4) Å

  • β = 98.930 (2)°

  • V = 4204.7 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 183 K

  • 0.50 × 0.30 × 0.30 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.883, Tmax = 0.948

  • 47616 measured reflections

  • 9592 independent reflections

  • 5621 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.154

  • S = 1.02

  • 9592 reflections

  • 472 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H33⋯O1i 0.98 2.52 3.454 (4) 158
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The triphosphenium salt [P(P[NMe3])2][BPh4], which was first reported by Schmidpeter & Lochschmidt (1986), has been used as a reagent and a source of "P+" for decades but no structure of any salt containing the cation has ever been reported. As part of our ongoing investigations of low valent group 15 compounds, we were able to obtain crystals of the tetrahydrofuran solvate of the salt (1) from the slow evaporation of a THF solution of the salt.

The molecular structure of (1) is shown in Fig. 1. The P–P distances in the cation in (1) of 2.1111 (11) Å and 2.1364 (10) Å are significantly shorter than typical P–P single bonds ca 2.24 (2) Å that have been reported in the Cambridge Structural Database (as determined from the 14 examples of diorganodiphosphines that are found in CSD Version 5.35) (Allen, 2002) but are consistent with those reported for salts of other triphosphenium cations (Ellis & Macdonald, 2007). More importantly, the P–P–P angle of 104.67 (4)° clearly indicates that the geometry about the dicoordinate phosphorus atom in (1) is best-described as being bent and thus resembles that of the only other structurally characterized triphosphenium (Ellis & Macdonald, 2006). The bent geometry in (1) is in stark contrast to the perfectly linear allene-like P–C–P arangement in the analogous carbodiphosphorane C(P[NMe3])2 (Appel et al., 1983).

The metrical parameters of the tetraphenylborate anion and the THF solvent of crystallization are unexceptional and there are no unusually short cation-anion contacts. Details of a weak hydrogen bond between the cation and the THF oxygen atom (1) is listed in Table 1.

Related literature top

For the preparation of [P(P[NMe3])2][BPh4], see: Schmidpeter & Lochschmidt (1986). For reviews of triphosphenium and related low-oxidation-state group 15 molecules, see: Ellis & Macdonald (2007); Coffer & Dillon (2013). For the use of [P(P[NMe3])2]+ salts as a source of P+, see: Schmidpeter et al. (1983); Driess et al. (1999); Schmidpeter (1999). For the structure of the only related acyclic triphosphenium salt [P(PPh3)2][AlCl4], see: Ellis & Macdonald (2006). For a related structure, see: Appel et al. (1983). For a description of the Cambridge Structural Database (CSD), see: Allen (2002).

Experimental top

The salt (1) was synthesized using the method described by Schmidpeter and Lochschmidt (1986). Suitable crystals were obtained by the slow evaporation of a tetrahydrofuran solution of the salt in a nitrogen-filled glove box. The crystal used for data collection was coated in mineral oil, mounted and placed in the cold stream on the diffractometer.

Refinement top

All non-H atoms were refined anisotropically and H atoms were initially located in the difference Fourier maps. The H atoms were subsequently modeled as riding atoms with a C–H distance of 0.98 Å and U(H) of 1.5 times that of the carbon atom to which they are attached for each methyl hydrogen atom; each rigid methyl group was allowed to rotate in order to maximize the sum of electron density at the calculated H atom positions. The H atoms on the phenyl groups were modeled with a C–H distance of 0.95 Å and U(H) of 1.2 times that of the carbon atom to which they are attached and each methylene hydrogen atom was modeled with a C–H distance of 0.99 Å and U(H) of 1.2 times that of the carbon atom to which they are attached.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (40% probability surface) of the contents of the asymmetric unit of [P(P[NMe3])2][BPh4]·THF (1).
1,1,1-Tris(dimethylamino)-2-[tris(dimethylamino)phosphoranylidene]diphosphinium tetraphenylborate tetrahydrofuran monosolvate top
Crystal data top
C12H36N6P3+·C24H20B·C4H8OF(000) = 1616
Mr = 748.69Dx = 1.183 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.0859 (17) ÅCell parameters from 3924 reflections
b = 11.8258 (16) Åθ = 2.4–22.8°
c = 27.504 (4) ŵ = 0.18 mm1
β = 98.930 (2)°T = 183 K
V = 4204.7 (10) Å3Block, colourless
Z = 40.50 × 0.30 × 0.30 mm
Data collection top
Bruker APEX CCD
diffractometer
5621 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.090
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
θmax = 27.5°, θmin = 2.3°
Tmin = 0.883, Tmax = 0.948h = 1616
47616 measured reflectionsk = 1515
9592 independent reflectionsl = 3435
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0576P)2 + 2.6057P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
9592 reflectionsΔρmax = 0.50 e Å3
472 parametersΔρmin = 0.30 e Å3
Crystal data top
C12H36N6P3+·C24H20B·C4H8OV = 4204.7 (10) Å3
Mr = 748.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0859 (17) ŵ = 0.18 mm1
b = 11.8258 (16) ÅT = 183 K
c = 27.504 (4) Å0.50 × 0.30 × 0.30 mm
β = 98.930 (2)°
Data collection top
Bruker APEX CCD
diffractometer
9592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5621 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.948Rint = 0.090
47616 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.50 e Å3
9592 reflectionsΔρmin = 0.30 e Å3
472 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.1618 (2)0.7471 (2)0.09042 (10)0.0259 (6)
C180.2657 (2)0.7266 (2)0.08915 (11)0.0318 (7)
H490.31010.71250.11930.038*
C190.3078 (3)0.7257 (3)0.04550 (12)0.0412 (8)
H480.37930.70990.04640.049*
C200.2467 (3)0.7473 (3)0.00135 (12)0.0415 (8)
H470.27530.74690.02840.050*
C210.1434 (3)0.7696 (3)0.00076 (12)0.0423 (8)
H460.10010.78480.02960.051*
C220.1024 (2)0.7699 (3)0.04441 (11)0.0373 (8)
H450.03090.78630.04310.045*
C230.0343 (2)0.8560 (2)0.14270 (10)0.0241 (6)
C240.0602 (2)0.9610 (2)0.12407 (10)0.0293 (7)
H540.11920.96520.10790.035*
C250.0040 (2)1.0588 (2)0.12824 (11)0.0331 (7)
H530.02571.12820.11580.040*
C260.0837 (2)1.0558 (3)0.15043 (11)0.0357 (7)
H520.12301.12230.15330.043*
C270.1128 (2)0.9543 (3)0.16831 (11)0.0343 (7)
H510.17320.95040.18350.041*
C280.0550 (2)0.8575 (2)0.16449 (10)0.0274 (6)
H500.07730.78880.17730.033*
C290.0420 (2)0.6272 (2)0.14288 (11)0.0283 (7)
C300.0050 (2)0.5941 (3)0.18592 (12)0.0352 (7)
H590.02090.63990.21450.042*
C310.0538 (2)0.4971 (3)0.18854 (14)0.0455 (9)
H580.07880.47870.21820.055*
C320.0757 (3)0.4277 (3)0.14815 (16)0.0531 (10)
H570.11570.36120.14980.064*
C330.0393 (2)0.4551 (3)0.10556 (15)0.0483 (9)
H560.05300.40680.07770.058*
C340.0177 (2)0.5539 (2)0.10316 (12)0.0356 (7)
H550.04100.57210.07310.043*
C350.2023 (2)0.7470 (2)0.18904 (10)0.0230 (6)
C360.2409 (2)0.8475 (2)0.21153 (11)0.0306 (7)
H640.20980.91700.20000.037*
C370.3232 (2)0.8498 (3)0.25017 (11)0.0343 (7)
H630.34720.92000.26430.041*
C380.3701 (2)0.7508 (3)0.26809 (11)0.0331 (7)
H620.42610.75210.29460.040*
C390.3344 (2)0.6499 (3)0.24694 (10)0.0308 (7)
H610.36610.58090.25870.037*
C400.2523 (2)0.6487 (2)0.20859 (10)0.0271 (6)
H600.22890.57780.19490.033*
B10.1095 (2)0.7444 (3)0.14112 (11)0.0243 (7)
P10.47131 (6)0.27326 (7)0.04361 (3)0.0298 (2)
P20.45906 (5)0.24507 (6)0.11828 (3)0.02473 (17)
P30.31635 (5)0.26032 (6)0.00575 (3)0.02397 (17)
N10.57948 (18)0.2276 (2)0.14651 (9)0.0337 (6)
N20.39109 (19)0.1337 (2)0.12853 (9)0.0328 (6)
N30.4218 (2)0.3539 (2)0.14747 (9)0.0340 (6)
N40.28536 (19)0.1285 (2)0.00843 (9)0.0346 (6)
N50.21714 (18)0.3064 (2)0.03007 (9)0.0315 (6)
N60.32168 (18)0.3316 (2)0.04498 (8)0.0295 (6)
C10.6525 (3)0.3206 (3)0.14466 (13)0.0517 (10)
H10.70290.32130.17500.078*
H20.61490.39250.14140.078*
H30.68880.31020.11640.078*
C20.6274 (3)0.1186 (3)0.15207 (17)0.0751 (14)
H40.65700.10030.12240.113*
H50.57560.06150.15690.113*
H60.68240.11920.18070.113*
C30.3938 (3)0.0276 (3)0.10199 (13)0.0466 (9)
H70.42000.03250.12510.070*
H80.43930.03560.07710.070*
H90.32380.00840.08590.070*
C40.3379 (3)0.1247 (3)0.17174 (12)0.0533 (10)
H100.27190.08530.16250.080*
H110.32500.20070.18370.080*
H120.38130.08240.19780.080*
C50.4510 (3)0.3687 (3)0.20099 (11)0.0502 (9)
H130.48930.43970.20760.075*
H140.49470.30530.21450.075*
H150.38850.37100.21650.075*
C60.3654 (3)0.4497 (3)0.12355 (13)0.0499 (9)
H160.29530.45090.13200.075*
H170.36150.44280.08780.075*
H180.40120.51990.13480.075*
C70.3606 (3)0.0557 (3)0.02720 (14)0.0559 (10)
H190.35480.02140.01480.084*
H200.43050.08450.01610.084*
H210.34680.05520.06330.084*
C80.1787 (3)0.0863 (3)0.02147 (14)0.0571 (11)
H220.16560.06670.05650.086*
H230.12990.14510.01480.086*
H240.16950.01900.00180.086*
C90.1719 (3)0.4183 (3)0.01855 (12)0.0440 (9)
H250.09730.41070.00770.066*
H260.20390.45300.00770.066*
H270.18430.46610.04800.066*
C100.1772 (2)0.2494 (3)0.07023 (13)0.0492 (9)
H280.19710.29190.10080.074*
H290.20600.17280.07410.074*
H300.10160.24500.06270.074*
C110.2432 (2)0.3102 (3)0.08840 (11)0.0419 (8)
H310.18390.36050.08760.063*
H320.22030.23130.08810.063*
H330.27310.32450.11840.063*
C120.3759 (3)0.4398 (3)0.04721 (12)0.0487 (9)
H340.41520.43850.07470.073*
H350.42330.45170.01640.073*
H360.32530.50150.05200.073*
O10.5933 (2)0.6186 (2)0.17083 (10)0.0677 (8)
C130.5372 (3)0.7229 (4)0.16305 (16)0.0684 (12)
H430.47080.71730.17590.082*
H440.52230.74060.12750.082*
C140.6020 (4)0.8106 (4)0.18915 (16)0.0716 (13)
H410.55930.86850.20260.086*
H420.64470.84800.16710.086*
C150.6683 (4)0.7486 (4)0.22969 (18)0.0956 (17)
H390.74080.77510.23310.115*
H400.64280.76020.26140.115*
C160.6611 (5)0.6294 (5)0.21556 (16)0.1004 (18)
H370.73040.60030.21180.120*
H380.63500.58460.24150.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.0274 (14)0.0208 (14)0.0296 (15)0.0011 (12)0.0042 (12)0.0038 (12)
C180.0311 (16)0.0343 (17)0.0304 (16)0.0027 (13)0.0057 (13)0.0047 (13)
C190.0371 (18)0.047 (2)0.0429 (19)0.0020 (15)0.0165 (15)0.0004 (16)
C200.056 (2)0.0383 (19)0.0333 (17)0.0005 (17)0.0174 (15)0.0030 (15)
C210.054 (2)0.043 (2)0.0294 (17)0.0019 (17)0.0034 (15)0.0026 (15)
C220.0306 (16)0.045 (2)0.0348 (17)0.0036 (14)0.0016 (13)0.0043 (15)
C230.0217 (15)0.0258 (15)0.0237 (15)0.0015 (11)0.0000 (12)0.0032 (12)
C240.0249 (15)0.0305 (16)0.0327 (17)0.0010 (13)0.0051 (13)0.0019 (13)
C250.0353 (18)0.0225 (16)0.0408 (18)0.0025 (13)0.0039 (15)0.0022 (13)
C260.0319 (18)0.0280 (17)0.046 (2)0.0079 (13)0.0021 (15)0.0061 (14)
C270.0281 (16)0.0364 (18)0.0397 (18)0.0014 (14)0.0094 (14)0.0062 (15)
C280.0271 (15)0.0246 (15)0.0304 (16)0.0012 (12)0.0046 (13)0.0013 (12)
C290.0183 (14)0.0241 (15)0.0418 (18)0.0019 (12)0.0022 (13)0.0005 (13)
C300.0301 (17)0.0299 (17)0.0438 (19)0.0019 (13)0.0002 (14)0.0079 (14)
C310.0295 (18)0.042 (2)0.065 (2)0.0014 (15)0.0074 (17)0.0213 (18)
C320.0296 (19)0.0273 (18)0.099 (3)0.0066 (15)0.002 (2)0.012 (2)
C330.0339 (19)0.0267 (17)0.082 (3)0.0027 (15)0.0006 (19)0.0161 (18)
C340.0261 (16)0.0292 (17)0.051 (2)0.0002 (13)0.0043 (15)0.0084 (15)
C350.0204 (13)0.0243 (14)0.0259 (14)0.0002 (12)0.0086 (11)0.0002 (12)
C360.0291 (16)0.0256 (16)0.0360 (17)0.0002 (13)0.0017 (14)0.0017 (13)
C370.0343 (18)0.0307 (17)0.0364 (18)0.0045 (14)0.0008 (14)0.0089 (14)
C380.0279 (15)0.0408 (18)0.0287 (15)0.0006 (14)0.0013 (12)0.0002 (14)
C390.0287 (16)0.0332 (17)0.0300 (17)0.0033 (13)0.0024 (13)0.0044 (13)
C400.0261 (15)0.0232 (15)0.0330 (16)0.0018 (12)0.0075 (13)0.0030 (12)
B10.0224 (15)0.0217 (16)0.0286 (16)0.0009 (13)0.0030 (13)0.0015 (14)
P10.0225 (4)0.0440 (5)0.0234 (4)0.0045 (3)0.0049 (3)0.0005 (3)
P20.0237 (4)0.0262 (4)0.0243 (4)0.0016 (3)0.0038 (3)0.0007 (3)
P30.0227 (4)0.0240 (4)0.0249 (4)0.0011 (3)0.0027 (3)0.0015 (3)
N10.0287 (13)0.0399 (16)0.0311 (14)0.0034 (12)0.0003 (11)0.0031 (12)
N20.0357 (15)0.0282 (14)0.0343 (14)0.0063 (11)0.0045 (12)0.0063 (11)
N30.0415 (15)0.0341 (14)0.0269 (14)0.0022 (12)0.0066 (12)0.0039 (11)
N40.0315 (14)0.0265 (14)0.0425 (16)0.0016 (11)0.0050 (12)0.0060 (11)
N50.0269 (13)0.0354 (14)0.0334 (14)0.0040 (11)0.0082 (11)0.0041 (11)
N60.0308 (14)0.0351 (14)0.0216 (13)0.0021 (11)0.0013 (10)0.0006 (10)
C10.0332 (19)0.077 (3)0.042 (2)0.0181 (18)0.0039 (16)0.0092 (19)
C20.051 (2)0.061 (3)0.101 (4)0.021 (2)0.026 (2)0.025 (2)
C30.053 (2)0.0266 (18)0.056 (2)0.0037 (16)0.0066 (18)0.0014 (16)
C40.060 (2)0.060 (2)0.042 (2)0.024 (2)0.0142 (18)0.0099 (18)
C50.066 (3)0.054 (2)0.0320 (19)0.0021 (19)0.0127 (18)0.0094 (16)
C60.053 (2)0.0355 (19)0.057 (2)0.0142 (17)0.0047 (18)0.0152 (17)
C70.068 (3)0.038 (2)0.056 (2)0.0136 (18)0.007 (2)0.0202 (18)
C80.053 (2)0.035 (2)0.075 (3)0.0166 (17)0.019 (2)0.0012 (18)
C90.041 (2)0.051 (2)0.040 (2)0.0186 (16)0.0060 (16)0.0021 (16)
C100.0285 (17)0.074 (3)0.048 (2)0.0008 (17)0.0148 (15)0.0164 (19)
C110.0394 (19)0.058 (2)0.0262 (17)0.0008 (17)0.0009 (14)0.0013 (15)
C120.056 (2)0.051 (2)0.039 (2)0.0125 (18)0.0026 (17)0.0132 (17)
O10.083 (2)0.0602 (19)0.0594 (18)0.0155 (16)0.0089 (16)0.0013 (14)
C130.047 (2)0.094 (4)0.065 (3)0.005 (2)0.007 (2)0.004 (3)
C140.097 (3)0.054 (3)0.063 (3)0.013 (2)0.011 (3)0.010 (2)
C150.115 (4)0.096 (4)0.064 (3)0.019 (3)0.026 (3)0.013 (3)
C160.154 (5)0.090 (4)0.047 (3)0.002 (4)0.016 (3)0.015 (3)
Geometric parameters (Å, º) top
C17—C181.388 (4)N2—C41.471 (4)
C17—C221.405 (4)N3—C61.453 (4)
C17—B11.646 (4)N3—C51.472 (4)
C18—C191.397 (4)N4—C71.461 (4)
C18—H490.9500N4—C81.474 (4)
C19—C201.370 (4)N5—C101.459 (4)
C19—H480.9500N5—C91.464 (4)
C20—C211.375 (5)N6—C121.470 (4)
C20—H470.9500N6—C111.471 (4)
C21—C221.390 (4)C1—H10.9800
C21—H460.9500C1—H20.9800
C22—H450.9500C1—H30.9800
C23—C281.394 (4)C2—H40.9800
C23—C241.406 (4)C2—H50.9800
C23—B11.650 (4)C2—H60.9800
C24—C251.385 (4)C3—H70.9800
C24—H540.9500C3—H80.9800
C25—C261.381 (4)C3—H90.9800
C25—H530.9500C4—H100.9800
C26—C271.373 (4)C4—H110.9800
C26—H520.9500C4—H120.9800
C27—C281.385 (4)C5—H130.9800
C27—H510.9500C5—H140.9800
C28—H500.9500C5—H150.9800
C29—C341.392 (4)C6—H160.9800
C29—C301.402 (4)C6—H170.9800
C29—B11.648 (4)C6—H180.9800
C30—C311.390 (4)C7—H190.9800
C30—H590.9500C7—H200.9800
C31—C321.375 (5)C7—H210.9800
C31—H580.9500C8—H220.9800
C32—C331.370 (5)C8—H230.9800
C32—H570.9500C8—H240.9800
C33—C341.394 (4)C9—H250.9800
C33—H560.9500C9—H260.9800
C34—H550.9500C9—H270.9800
C35—C361.398 (4)C10—H280.9800
C35—C401.400 (4)C10—H290.9800
C35—B11.648 (4)C10—H300.9800
C36—C371.391 (4)C11—H310.9800
C36—H640.9500C11—H320.9800
C37—C381.376 (4)C11—H330.9800
C37—H630.9500C12—H340.9800
C38—C391.378 (4)C12—H350.9800
C38—H620.9500C12—H360.9800
C39—C401.383 (4)O1—C161.406 (5)
C39—H610.9500O1—C131.435 (5)
C40—H600.9500C13—C141.456 (6)
P1—P22.1111 (11)C13—H430.9900
P1—P32.1364 (10)C13—H440.9900
P2—N31.631 (2)C14—C151.495 (6)
P2—N21.638 (2)C14—H410.9900
P2—N11.658 (2)C14—H420.9900
P3—N61.641 (2)C15—C161.461 (6)
P3—N41.642 (2)C15—H390.9900
P3—N51.643 (2)C15—H400.9900
N1—C21.432 (4)C16—H370.9900
N1—C11.463 (4)C16—H380.9900
N2—C31.454 (4)
C18—C17—C22114.7 (3)C10—N5—C9113.7 (2)
C18—C17—B1123.8 (2)C10—N5—P3123.6 (2)
C22—C17—B1121.5 (2)C9—N5—P3122.0 (2)
C17—C18—C19122.8 (3)C12—N6—C11113.4 (2)
C17—C18—H49118.6C12—N6—P3124.6 (2)
C19—C18—H49118.6C11—N6—P3119.1 (2)
C20—C19—C18120.4 (3)N1—C1—H1109.5
C20—C19—H48119.8N1—C1—H2109.5
C18—C19—H48119.8H1—C1—H2109.5
C19—C20—C21118.9 (3)N1—C1—H3109.5
C19—C20—H47120.5H1—C1—H3109.5
C21—C20—H47120.5H2—C1—H3109.5
C20—C21—C22120.1 (3)N1—C2—H4109.5
C20—C21—H46119.9N1—C2—H5109.5
C22—C21—H46119.9H4—C2—H5109.5
C21—C22—C17122.9 (3)N1—C2—H6109.5
C21—C22—H45118.5H4—C2—H6109.5
C17—C22—H45118.5H5—C2—H6109.5
C28—C23—C24114.3 (3)N2—C3—H7109.5
C28—C23—B1124.4 (2)N2—C3—H8109.5
C24—C23—B1121.2 (2)H7—C3—H8109.5
C25—C24—C23123.1 (3)N2—C3—H9109.5
C25—C24—H54118.4H7—C3—H9109.5
C23—C24—H54118.4H8—C3—H9109.5
C26—C25—C24120.2 (3)N2—C4—H10109.5
C26—C25—H53119.9N2—C4—H11109.5
C24—C25—H53119.9H10—C4—H11109.5
C27—C26—C25118.5 (3)N2—C4—H12109.5
C27—C26—H52120.8H10—C4—H12109.5
C25—C26—H52120.8H11—C4—H12109.5
C26—C27—C28120.7 (3)N3—C5—H13109.5
C26—C27—H51119.7N3—C5—H14109.5
C28—C27—H51119.7H13—C5—H14109.5
C27—C28—C23123.2 (3)N3—C5—H15109.5
C27—C28—H50118.4H13—C5—H15109.5
C23—C28—H50118.4H14—C5—H15109.5
C34—C29—C30115.0 (3)N3—C6—H16109.5
C34—C29—B1124.0 (3)N3—C6—H17109.5
C30—C29—B1121.1 (3)H16—C6—H17109.5
C31—C30—C29122.7 (3)N3—C6—H18109.5
C31—C30—H59118.6H16—C6—H18109.5
C29—C30—H59118.6H17—C6—H18109.5
C32—C31—C30119.9 (3)N4—C7—H19109.5
C32—C31—H58120.0N4—C7—H20109.5
C30—C31—H58120.0H19—C7—H20109.5
C33—C32—C31119.6 (3)N4—C7—H21109.5
C33—C32—H57120.2H19—C7—H21109.5
C31—C32—H57120.2H20—C7—H21109.5
C32—C33—C34119.9 (3)N4—C8—H22109.5
C32—C33—H56120.1N4—C8—H23109.5
C34—C33—H56120.1H22—C8—H23109.5
C29—C34—C33122.9 (3)N4—C8—H24109.5
C29—C34—H55118.5H22—C8—H24109.5
C33—C34—H55118.5H23—C8—H24109.5
C36—C35—C40114.9 (2)N5—C9—H25109.5
C36—C35—B1122.7 (2)N5—C9—H26109.5
C40—C35—B1122.3 (2)H25—C9—H26109.5
C37—C36—C35122.6 (3)N5—C9—H27109.5
C37—C36—H64118.7H25—C9—H27109.5
C35—C36—H64118.7H26—C9—H27109.5
C38—C37—C36120.5 (3)N5—C10—H28109.5
C38—C37—H63119.8N5—C10—H29109.5
C36—C37—H63119.8H28—C10—H29109.5
C37—C38—C39118.8 (3)N5—C10—H30109.5
C37—C38—H62120.6H28—C10—H30109.5
C39—C38—H62120.6H29—C10—H30109.5
C38—C39—C40120.2 (3)N6—C11—H31109.5
C38—C39—H61119.9N6—C11—H32109.5
C40—C39—H61119.9H31—C11—H32109.5
C39—C40—C35123.1 (3)N6—C11—H33109.5
C39—C40—H60118.5H31—C11—H33109.5
C35—C40—H60118.5H32—C11—H33109.5
C17—B1—C29109.7 (2)N6—C12—H34109.5
C17—B1—C35109.0 (2)N6—C12—H35109.5
C29—B1—C35108.9 (2)H34—C12—H35109.5
C17—B1—C23109.6 (2)N6—C12—H36109.5
C29—B1—C23110.3 (2)H34—C12—H36109.5
C35—B1—C23109.4 (2)H35—C12—H36109.5
P2—P1—P3104.67 (4)C16—O1—C13106.9 (3)
N3—P2—N2109.77 (13)O1—C13—C14107.1 (3)
N3—P2—N1101.69 (13)O1—C13—H43110.3
N2—P2—N1108.73 (13)C14—C13—H43110.3
N3—P2—P1115.34 (10)O1—C13—H44110.3
N2—P2—P1114.81 (10)C14—C13—H44110.3
N1—P2—P1105.37 (9)H43—C13—H44108.6
N6—P3—N4109.09 (13)C13—C14—C15104.1 (4)
N6—P3—N5108.44 (12)C13—C14—H41110.9
N4—P3—N5103.30 (13)C15—C14—H41110.9
N6—P3—P1102.43 (9)C13—C14—H42110.9
N4—P3—P1111.38 (9)C15—C14—H42110.9
N5—P3—P1121.87 (10)H41—C14—H42108.9
C2—N1—C1113.7 (3)C16—C15—C14105.6 (4)
C2—N1—P2122.1 (2)C16—C15—H39110.6
C1—N1—P2118.0 (2)C14—C15—H39110.6
C3—N2—C4113.3 (3)C16—C15—H40110.6
C3—N2—P2123.4 (2)C14—C15—H40110.6
C4—N2—P2122.3 (2)H39—C15—H40108.7
C6—N3—C5113.2 (3)O1—C16—C15109.0 (4)
C6—N3—P2124.2 (2)O1—C16—H37109.9
C5—N3—P2122.4 (2)C15—C16—H37109.9
C7—N4—C8112.3 (3)O1—C16—H38109.9
C7—N4—P3119.2 (2)C15—C16—H38109.9
C8—N4—P3124.7 (2)H37—C16—H38108.3
C22—C17—C18—C191.5 (4)C40—C35—B1—C23154.8 (2)
B1—C17—C18—C19177.8 (3)C28—C23—B1—C17148.3 (3)
C17—C18—C19—C201.0 (5)C24—C23—B1—C1735.6 (3)
C18—C19—C20—C210.2 (5)C28—C23—B1—C2927.4 (4)
C19—C20—C21—C220.0 (5)C24—C23—B1—C29156.4 (3)
C20—C21—C22—C170.6 (5)C28—C23—B1—C3592.3 (3)
C18—C17—C22—C211.3 (4)C24—C23—B1—C3583.8 (3)
B1—C17—C22—C21178.1 (3)N3—P2—N1—C2148.8 (3)
C28—C23—C24—C251.9 (4)N2—P2—N1—C233.0 (3)
B1—C23—C24—C25174.6 (3)P1—P2—N1—C290.5 (3)
C23—C24—C25—C261.7 (5)N3—P2—N1—C160.6 (3)
C24—C25—C26—C270.4 (5)N2—P2—N1—C1176.4 (2)
C25—C26—C27—C280.5 (5)P1—P2—N1—C160.0 (2)
C26—C27—C28—C230.2 (5)N3—P2—N2—C3170.1 (2)
C24—C23—C28—C271.0 (4)N1—P2—N2—C379.5 (3)
B1—C23—C28—C27175.4 (3)P1—P2—N2—C338.3 (3)
C34—C29—C30—C311.7 (4)N3—P2—N2—C422.2 (3)
B1—C29—C30—C31178.7 (3)N1—P2—N2—C488.3 (3)
C29—C30—C31—C321.6 (5)P1—P2—N2—C4154.0 (2)
C30—C31—C32—C330.1 (5)N2—P2—N3—C6109.8 (3)
C31—C32—C33—C341.2 (5)N1—P2—N3—C6135.2 (3)
C30—C29—C34—C330.2 (4)P1—P2—N3—C621.8 (3)
B1—C29—C34—C33179.8 (3)N2—P2—N3—C575.9 (3)
C32—C33—C34—C291.2 (5)N1—P2—N3—C539.1 (3)
C40—C35—C36—C370.4 (4)P1—P2—N3—C5152.5 (2)
B1—C35—C36—C37176.2 (3)N6—P3—N4—C770.3 (3)
C35—C36—C37—C380.3 (5)N5—P3—N4—C7174.5 (2)
C36—C37—C38—C390.3 (4)P1—P3—N4—C742.0 (3)
C37—C38—C39—C400.4 (4)N6—P3—N4—C885.9 (3)
C38—C39—C40—C350.5 (4)N5—P3—N4—C829.3 (3)
C36—C35—C40—C390.5 (4)P1—P3—N4—C8161.8 (2)
B1—C35—C40—C39176.1 (3)N6—P3—N5—C10168.4 (2)
C18—C17—B1—C29104.7 (3)N4—P3—N5—C1052.7 (3)
C22—C17—B1—C2974.7 (3)P1—P3—N5—C1073.3 (3)
C18—C17—B1—C3514.4 (4)N6—P3—N5—C921.8 (3)
C22—C17—B1—C35166.2 (3)N4—P3—N5—C9137.5 (2)
C18—C17—B1—C23134.1 (3)P1—P3—N5—C996.5 (2)
C22—C17—B1—C2346.5 (3)N4—P3—N6—C12160.7 (2)
C34—C29—B1—C1711.2 (4)N5—P3—N6—C1287.5 (3)
C30—C29—B1—C17168.4 (2)P1—P3—N6—C1242.6 (3)
C34—C29—B1—C35130.4 (3)N4—P3—N6—C1140.3 (3)
C30—C29—B1—C3549.2 (3)N5—P3—N6—C1171.6 (2)
C34—C29—B1—C23109.6 (3)P1—P3—N6—C11158.4 (2)
C30—C29—B1—C2370.9 (3)C16—O1—C13—C1426.1 (5)
C36—C35—B1—C1790.9 (3)O1—C13—C14—C1526.5 (5)
C40—C35—B1—C1785.4 (3)C13—C14—C15—C1617.1 (6)
C36—C35—B1—C29149.5 (3)C13—O1—C16—C1514.8 (6)
C40—C35—B1—C2934.2 (3)C14—C15—C16—O11.7 (6)
C36—C35—B1—C2328.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H33···O1i0.982.523.454 (4)158
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H33···O1i0.982.523.454 (4)158.2
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The funding that has enabled this work has been provided by the Natural Sciences and Engineering Research Council (Canada), the Canada Foundation for Innovation, and the Ontario Ministry of Research and Innovation.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAppel, R., Baumeister, U. & Knoch, F. (1983). Chem. Ber. 116, 2275–2284.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoffer, P. K. & Dillon, K. B. (2013). Coord. Chem. Rev. 257, 910–923.  CAS Google Scholar
First citationDriess, M., Aust, J., Merz, K. & van Wullen, C. (1999). Angew. Chem. Int. Ed. 38, 3677–3680.  CrossRef CAS Google Scholar
First citationEllis, B. D. & Macdonald, C. L. B. (2006). Acta Cryst. E62, m1869–m1870.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEllis, B. D. & Macdonald, C. L. B. (2007). Coord. Chem. Rev. 251, 936–973.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidpeter, A. (1999). Heteroat. Chem. 10, 529–537.  Web of Science CrossRef CAS Google Scholar
First citationSchmidpeter, A. & Lochschmidt, S. (1986). Angew. Chem. Int. Ed. Engl. 25, 253–254.  CrossRef Web of Science Google Scholar
First citationSchmidpeter, A., Lochschmidt, S. & Willhalm, A. (1983). Angew. Chem. Int. Ed. Engl. 22, 545–546.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds