organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o692-o693

3-(4-Bromo­phen­yl)cyclo­pent-2-en-1-one

aDepartment of Chemistry and Chemistry Research Center, 2355 Fairchild Drive, Suite 2N 225, United States Air Force Academy, Colorado Springs, CO 80840, USA
*Correspondence e-mail: gary.balaich@usafa.edu

Edited by J. T. Mague, Tulane University, USA (Received 25 April 2014; accepted 9 May 2014; online 21 May 2014)

In the title compound, C11H9BrO, the cyclo­pentenone ring is almost planar with an r.m.s. deviation of 0.0097 Å. The largest inter-ring torsion angles [2.4 (3), 1.3 (3) and 3.53 (2)°] reveal only a very small twist between the rings, and suggest that the two rings are conjugated. The mol­ecule is slightly bowed, as shown by the small dihedral angle between the rings [5.3 (1)°]. The crystal packing pattern consists of parallel sheets that stack parallel to the ac plane. Each sheet consists of mol­ecules that pack side-to-side with the same relative orientation of phenyl and cyclo­pentenone rings along the a- and c-axis directions. Slipped side-to-side, face-to-face and edge-to-face inter­actions exist between pairs of sheets with edge-to-edge and edge-to-face O⋯H—C(sp2) weak hydrogen-bond contacts. A relatively short edge-to-face contact (2.77 Å) also exists between pairs of sheets.

Related literature

For structures of related 3-Ph substituted cyclo­pent-2-ene-1-ones, see: Zhao et al. (2008[Zhao, Z., Zhang, Y., Jin, X. & Yang, X. (2008). Acta Cryst. E64, o516.]); Marjani et al. (2007[Marjani, K., Sharifi Moghadam, M., Arazi, O. & Mousavi, M. (2007). Acta Cryst. E63, o3519.], 2008[Marjani, K., Mousavi, M., Ashouri, A., Arazi, O., Bourghani, S. & Asgari, M. (2008). J. Chem. Res. pp. 398-401.]); Jedrzejas et al. (1996[Jedrzejas, M. J., Rubin, M. D., Baker, R. J., Masnovi, J. & Towns, R. L. R. (1996). Acta Cryst. C52, 2936-2939.]). For leading references on the synthesis and uses of substituted cyclo­pentenones, see: Gibson et al. (2004[Gibson, S. E., Lewis, S. E. & Mainolfi, N. (2004). J. Organomet. Chem. 689, 3873-3890.]); Gibson & Mainolfi (2005[Gibson, S. E. & Mainolfi, N. (2005). Angew. Chem. Int. Ed. 44, 3022-3037.]); Liu et al. (2013[Liu, B., Zheng, G., Liu, X., Xu, C., Liu, J. & Wang, M. (2013). Chem. Commun. 49, 2201-2203.]); Barluenga et al. (2012[Barluenga, J., Alvarez-Fernandez, A., Suarez-Sobrino, A. L. & Tomas, M. (2012). Angew. Chem. Int. Ed. 51, 183-186.]); Varea et al. (2012[Varea, T., Alcalde, A., Lopez de Dicastillo, C., Ramirez de Arellano, C., Cossio, F. P. & Asensio, G. (2012). J. Org. Chem. 77, 6327-6331.]). For materials chemistry applications, see: Peloquin et al. (2012[Peloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371-6376.]); Li et al. (2008[Li, J., Ma, J., Liu, F., Wu, X., Dong, Y. & Huang, R. (2008). Organometallics, 27, 5446-5452.]). For the synthesis of the title compound, see: Heck (1965[Heck, R. F. (1965). J. Org. Chem. 30, 2205-2208.]). For weak hydrogen bonds, see: Arunan et al. (2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem.. 83, 1637-1641.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9BrO

  • Mr = 237.09

  • Monoclinic, P 21 /c

  • a = 10.0219 (12) Å

  • b = 9.7818 (11) Å

  • c = 9.9945 (12) Å

  • β = 107.4375 (14)°

  • V = 934.76 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.35 mm−1

  • T = 100 K

  • 0.30 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.53, Tmax = 0.75

  • 9994 measured reflections

  • 2316 independent reflections

  • 1917 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.02

  • 2316 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.58 3.465 (2) 154
C7—H7⋯O1i 0.95 2.58 3.484 (3) 158
C10—H10⋯O1ii 0.95 2.52 3.377 (2) 150
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Substituted cyclo­pentenones are found most frequently as inter­mediates for or parts of complex bioactive molecules and are synthesized by a variety of metal- and non-metal-mediated methodologies (Liu et al. (2013), Barluenga et al. (2012), Varea et al. (2012), Gibson et al. (2005), Gibson et al. (2004)). We are inter­ested in the use of substituted cyclo­pentenones as inter­mediates in the synthesis of fulvenes or fulvene-based polymers with optoelectronic properties suitable for possible molecular electronics applications (Peloquin et al. (2012)). The title compound was targeted due to the importance of the Br substituent in Sonagashira or Suzuki coupling methods which will be used to extend the π conjugation of the cyclo­pentenone and resulting fulvene molecular frameworks. In the course of purifying the title compound, crystals were obtained and, as its structure had not been published, its structure was determined.

The title compound (Fig. 1) consists of a planar Ph ring and an almost planar cyclo­pentenone ring with r.m.s deviations from the least squares planes of 0.0062 Å (Ph) and 0.0097 Å (cyclo­pentenone). Conjugation of both rings is evident from the small torsion angles about the C3—C6 bond (C2C3C6C7 = 2.4 (3)°, C4C3C6C11 = 1.3 (3)° and C4C3C6C7 = 3.53 (2)°). The dihedral angle between the phenyl and cyclo­pentenone rings is 5.3 (1)° resulting in the molecule being slightly bowed along its long axis.

The crystal packing pattern consists of parallel sheets of cyclo­pentenone molecules (sheets A—D, Fig. 2) that stack parallel to the ac plane. Each sheet consists of molecules that pack side-to-side with the same relative orientation of Ph and cyclo­pentenone groups along the a- and c-axis directions. Slipped side-to-side, face-to-face and edge-to-face inter­actions exist between pairs of sheets AB, CD, BC, and AD. The shortest inter­molecular contacts are weak O···H—C(sp2) hydrogen bonds (Table 1) with molecules in edge-to-edge and edge-to-face orientations. Although the D—H···A angles (Table 1) deviate substanti­ally from the 180° expected for strong hydrogen bonds, they are large enough to be classified as weak hydrogen bonds (Arunan et al. (2011). Furthermore, the H···A distances are shorter than the sum of the H and O van der Waals radii (2.72 Å) (Arunan et al. (2011)). The shortest inter­molecular contact besides the noted weak hydrogen bonds is the edge-to-face C11–H8 distance (2.77 Å).

Experimental top

The synthesis of the title compound was carried out using a modification to the original literature procedure (Heck (1965)). The diketone, 1-(4-bromo­phenyl)-1,4-pentane­dione (10.0 g, 39.2 mmol) was combined with 0.5 M NaOH (1 L) and the reaction mixture vigorously stirred and heated at 90 °C for 4 hours. Aliquots were periodically removed to monitor the progress of the reaction by MS-TOF. The reaction mixture was allowed to cool and subsequently neutralized with 1M H2SO4. The resulting precipitate was collected by vacuum filtration, washed with water (100 mL), and vacuum dried to give a light brown crude product. Purification was best achieved by column chromatography (dry loaded from CH2Cl2) using an EtOAc/hexane mobile phase. A mobile phase of 10% EtOAc/hexane was used to initially remove the colored impurities. This process was followed by 20% EtOAc/hexane to obtain 3-(4-bromo­phenyl)­cyclo­pent-2-en-1-one as a yellow solid (Yield 5.85 g, 63%). 1H NMR (CDCl3) d 2.55, 2.98 (m, 4H, CH2); 6.52 (t, 1H, CHCO, 4J = 2 Hz); 7.48, 7.55 (m, 4H, BrPhH). 13C NMR (CDCl3) d 28.5, 35.2 (CH2); 125.6, 127.8, 128.1, 132.1, 132.9 (CH and C); 172.3 (CBr); 208.8 (CO). MS-TOF [M+H]+calcd. For C11H9BrO 236.9915; found 236.9927.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model (aryl C—H = 0.95 Å, methyl­ene C—H = 0.99 Å; Uiso(H) = 1.2 Ueq(C)).

Related literature top

For structures of related 3-Ph substituted cyclopent-2-ene-1-ones, see: Zhao et al. (2008); Marjani et al. (2007, 2008); Jedrzejas et al. (1996). For leading references on the synthesis and uses of substituted cyclopentenones, see: Gibson et al. (2004); Gibson & Mainolfi (2005); Liu et al. (2013); Barluenga et al. (2012); Varea et al. (2012). For materials chemistry applications, see: Peloquin et al. (2012); Li et al. (2008). For the synthesis of the title compound, see: Heck (1965). For weak hydrogen bonds, see: Arunan et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS-2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2013 (Sheldrick, 2008); molecular graphics: SHELXP (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 3-(4-bromophenyl)cyclopent-2-en-1-one. Ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing view of 3-(4-bromophenyl)cyclopent-2-en-1-one. View is down the a axis, and shows sheets A-D which stack parallel to the ac plane. Ellipsoids are shown at the 50% probability level. Hydrogen atoms were omitted for clarity.
[Figure 3] Fig. 3. Molecular packing motifs depicting side-to-side and face-to-face intermolecular contacts. The bottom left diagram depicts the bowed molecular axis. The bottom right diagram indicates the C6–Ph ring centroid distance (3.43 Å), which is within error of the C7–C11 distances (3.42 Å, dashed lines). Ellipsoids are shown at the 50% probability level. Distances shown are in Å.
3-(4-Bromophenyl)cyclopent-2-en-1-one top
Crystal data top
C11H9BrODx = 1.685 Mg m3
Mr = 237.09Melting point: 127.0 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0219 (12) ÅCell parameters from 3089 reflections
b = 9.7818 (11) Åθ = 3.0–28.6°
c = 9.9945 (12) ŵ = 4.35 mm1
β = 107.4375 (14)°T = 100 K
V = 934.76 (19) Å3Rectangular prism, colourless
Z = 40.30 × 0.13 × 0.07 mm
F(000) = 472
Data collection top
Bruker SMART APEX CCD
diffractometer
2316 independent reflections
Radiation source: fine focus sealed tube1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1313
Absorption correction: multi-scan
SADABS (Bruker, 2013)
k = 1213
Tmin = 0.53, Tmax = 0.75l = 1313
9994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0233P)2 + 0.4987P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C11H9BrOV = 934.76 (19) Å3
Mr = 237.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0219 (12) ŵ = 4.35 mm1
b = 9.7818 (11) ÅT = 100 K
c = 9.9945 (12) Å0.30 × 0.13 × 0.07 mm
β = 107.4375 (14)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2316 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2013)
1917 reflections with I > 2σ(I)
Tmin = 0.53, Tmax = 0.75Rint = 0.031
9994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
2316 reflectionsΔρmin = 0.46 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30717 (2)0.07926 (2)0.08100 (2)0.02888 (8)
O10.59890 (14)0.08928 (13)0.72449 (14)0.0228 (3)
C10.4771 (2)0.12867 (19)0.68736 (19)0.0181 (4)
C20.3642 (2)0.07755 (19)0.56825 (19)0.0181 (4)
H20.37430.00670.5070.022*
C30.2442 (2)0.14462 (17)0.55725 (18)0.0154 (4)
C40.2622 (2)0.24952 (19)0.67199 (19)0.0204 (4)
H4A0.20250.22740.7320.024*
H4B0.23770.3420.63190.024*
C50.4180 (2)0.2416 (2)0.7563 (2)0.0229 (4)
H5A0.46550.32950.75190.027*
H5B0.42940.21940.85580.027*
C60.10968 (19)0.12424 (18)0.44782 (18)0.0152 (4)
C70.0981 (2)0.03111 (18)0.33801 (19)0.0177 (4)
H70.17670.02280.33680.021*
C80.0265 (2)0.01702 (19)0.23155 (19)0.0198 (4)
H80.03380.04650.15780.024*
C90.1403 (2)0.09624 (19)0.23345 (19)0.0187 (4)
C100.1341 (2)0.18783 (19)0.34090 (19)0.0191 (4)
H100.21350.24060.34160.023*
C110.0086 (2)0.20035 (18)0.44772 (19)0.0181 (4)
H110.00290.26220.52250.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02309 (12)0.03472 (13)0.02207 (11)0.00371 (9)0.00349 (8)0.00033 (8)
O10.0171 (7)0.0241 (7)0.0251 (7)0.0006 (5)0.0031 (6)0.0043 (6)
C10.0187 (10)0.0163 (8)0.0192 (9)0.0016 (7)0.0054 (8)0.0006 (7)
C20.0183 (10)0.0187 (9)0.0179 (9)0.0011 (7)0.0063 (8)0.0043 (7)
C30.0189 (9)0.0134 (8)0.0157 (8)0.0017 (7)0.0077 (7)0.0018 (6)
C40.0223 (10)0.0172 (9)0.0218 (9)0.0016 (7)0.0068 (8)0.0031 (7)
C50.0239 (10)0.0203 (9)0.0226 (9)0.0004 (8)0.0039 (8)0.0071 (8)
C60.0168 (9)0.0135 (8)0.0159 (8)0.0017 (7)0.0061 (7)0.0033 (6)
C70.0169 (10)0.0175 (8)0.0202 (9)0.0012 (7)0.0078 (8)0.0007 (7)
C80.0219 (10)0.0197 (9)0.0180 (9)0.0028 (7)0.0063 (8)0.0013 (7)
C90.0167 (10)0.0215 (9)0.0161 (9)0.0004 (7)0.0021 (7)0.0053 (7)
C100.0181 (10)0.0178 (9)0.0222 (9)0.0041 (7)0.0073 (8)0.0028 (7)
C110.0211 (10)0.0166 (8)0.0177 (9)0.0011 (7)0.0076 (8)0.0009 (7)
Geometric parameters (Å, º) top
Br1—C91.9022 (19)C5—H5B0.99
O1—C11.226 (2)C6—C111.399 (3)
C1—C21.463 (3)C6—C71.404 (3)
C1—C51.514 (3)C7—C81.383 (3)
C2—C31.346 (3)C7—H70.95
C2—H20.95C8—C91.384 (3)
C3—C61.473 (3)C8—H80.95
C3—C41.509 (2)C9—C101.386 (3)
C4—C51.538 (3)C10—C111.391 (3)
C4—H4A0.99C10—H100.95
C4—H4B0.99C11—H110.95
C5—H5A0.99
O1—C1—C2126.57 (17)H5A—C5—H5B108.8
O1—C1—C5125.55 (17)C11—C6—C7118.25 (17)
C2—C1—C5107.87 (16)C11—C6—C3120.99 (16)
C3—C2—C1110.76 (16)C7—C6—C3120.72 (16)
C3—C2—H2124.6C8—C7—C6120.64 (18)
C1—C2—H2124.6C8—C7—H7119.7
C2—C3—C6126.28 (17)C6—C7—H7119.7
C2—C3—C4111.66 (16)C7—C8—C9119.44 (18)
C6—C3—C4122.05 (16)C7—C8—H8120.3
C3—C4—C5104.63 (15)C9—C8—H8120.3
C3—C4—H4A110.8C8—C9—C10121.80 (18)
C5—C4—H4A110.8C8—C9—Br1118.07 (14)
C3—C4—H4B110.8C10—C9—Br1120.11 (14)
C5—C4—H4B110.8C9—C10—C11118.16 (17)
H4A—C4—H4B108.9C9—C10—H10120.9
C1—C5—C4105.03 (15)C11—C10—H10120.9
C1—C5—H5A110.7C10—C11—C6121.68 (17)
C4—C5—H5A110.7C10—C11—H11119.2
C1—C5—H5B110.7C6—C11—H11119.2
C4—C5—H5B110.7
O1—C1—C2—C3179.48 (18)C4—C3—C6—C7176.47 (16)
C5—C1—C2—C30.5 (2)C11—C6—C7—C81.1 (3)
C1—C2—C3—C6177.94 (16)C3—C6—C7—C8176.78 (16)
C1—C2—C3—C41.0 (2)C6—C7—C8—C90.3 (3)
C2—C3—C4—C52.0 (2)C7—C8—C9—C101.3 (3)
C6—C3—C4—C5176.98 (16)C7—C8—C9—Br1177.38 (14)
O1—C1—C5—C4179.30 (18)C8—C9—C10—C110.9 (3)
C2—C1—C5—C41.7 (2)Br1—C9—C10—C11177.78 (13)
C3—C4—C5—C12.16 (19)C9—C10—C11—C60.5 (3)
C2—C3—C6—C11179.84 (18)C7—C6—C11—C101.5 (3)
C4—C3—C6—C111.3 (3)C3—C6—C11—C10176.34 (16)
C2—C3—C6—C72.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.583.465 (2)154
C7—H7···O1i0.952.583.484 (3)158
C10—H10···O1ii0.952.523.377 (2)150
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.583.465 (2)154
C7—H7···O1i0.952.583.484 (3)158
C10—H10···O1ii0.952.523.377 (2)150
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y+1/2, z1/2.
 

Acknowledgements

We acknowledge funding support from the Defense Threat Reduction Agency (DTRA) - Joint Science and Technology Office for Chemcial and Biological Defense (MIPR No. HDTRA13964). The Air Force Office of Scientific Research is also acknowledged for partial financial support. ES was supported through the National Research Council (NRC) Research Associate Program.

References

First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem.. 83, 1637–1641.  Web of Science CrossRef CAS Google Scholar
First citationBarluenga, J., Alvarez-Fernandez, A., Suarez-Sobrino, A. L. & Tomas, M. (2012). Angew. Chem. Int. Ed. 51, 183–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGibson, S. E., Lewis, S. E. & Mainolfi, N. (2004). J. Organomet. Chem. 689, 3873–3890.  Web of Science CrossRef CAS Google Scholar
First citationGibson, S. E. & Mainolfi, N. (2005). Angew. Chem. Int. Ed. 44, 3022–3037.  Web of Science CrossRef CAS Google Scholar
First citationHeck, R. F. (1965). J. Org. Chem. 30, 2205–2208.  CrossRef CAS Web of Science Google Scholar
First citationJedrzejas, M. J., Rubin, M. D., Baker, R. J., Masnovi, J. & Towns, R. L. R. (1996). Acta Cryst. C52, 2936–2939.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J., Ma, J., Liu, F., Wu, X., Dong, Y. & Huang, R. (2008). Organometallics, 27, 5446–5452.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, B., Zheng, G., Liu, X., Xu, C., Liu, J. & Wang, M. (2013). Chem. Commun. 49, 2201–2203.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarjani, K., Sharifi Moghadam, M., Arazi, O. & Mousavi, M. (2007). Acta Cryst. E63, o3519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarjani, K., Mousavi, M., Ashouri, A., Arazi, O., Bourghani, S. & Asgari, M. (2008). J. Chem. Res. pp. 398–401.  CrossRef Google Scholar
First citationPeloquin, A. J., Stone, R. L., Avila, S. E., Rudico, E. R., Horn, C. B., Gardner, K. A., Ball, D. W., Johnson, J. E. B., Iacono, S. T. & Balaich, G. J. (2012). J. Org. Chem. 77, 6371–6376.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarea, T., Alcalde, A., Lopez de Dicastillo, C., Ramirez de Arellano, C., Cossio, F. P. & Asensio, G. (2012). J. Org. Chem. 77, 6327–6331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, Z., Zhang, Y., Jin, X. & Yang, X. (2008). Acta Cryst. E64, o516.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o692-o693
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds