organic compounds
4-Azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dinitrate
aInstitut Préparatoire aux Etudes d'Ingénieurs de Monastir, Avenue Ibn-El-Jazzar, 5019 Monastir, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, 2092 El Manar II, Tunis, Tunisia, and cInstitut Préparatoire aux Etudes d'Ingénieurs de Nabeul, Campus Universitaire Mrazka, 8000 Nabeul, Tunisia
*Correspondence e-mail: chebhamouda@yahoo.fr
In the 9H22N22+·2NO3−, the piperidine ring of the dication adopts a chair conformation and the orientation of the C—NH3 bond is equatorial. The ions are linked by normal and bifurcated N—H⋯O hydrogen bonds in R22(6), two R42(8) and R34(14) graf-set motifs, generating a three-dimensional network.
of the title salt, CCCDC reference: 1000438
Related literature
For related structures, see: Chebbi & Driss (2001); El Glaoui, Mrad, Jenneau & Ben Nasr (2010); Mrad et al. (2009); Huang & Deng (2007). For hydrogen bonding and graph-set motifs, see: Jeffrey (1997); Bernstein et al. (1995); Etter et al. (1990). For ring-puckering parameters, see: Cremer & Pople (1975); Spek (2009).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1000438
10.1107/S1600536814009787/nc2324sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009787/nc2324Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814009787/nc2324Isup3.cml
The title compound was prepared by dissolving 0.096 mmol (0.36 g) of bismuth(III) nitrate pentahydrate in 20 ml of distilled water; 0.096 mmol (0.15 g) of 4-amino-2,2,6,6-tetramethylpiperidine in 15 ml of ethanol (96%) and 1 ml of concentred nitric acid were then added. The mixture was stirred for 20 minutes and the solution is allowed to stand at room temperature. Dark brown crystals were obtained after 5 days of slow evaporation of the solvent. The X-ray analysis proves that the trivalent bismuth is not part of the structure and that the obtained phase is C9H22N22+·2NO3-.
All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in a Fourier map and were refined isotropically.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).Fig. 1. Asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are presented at the 50% probability level. H atoms are shown as sticks. | |
Fig. 2. Crystal structure of the title compound with view along the b axis, showing the formation of two sets of R42(8) hydrogen-bonding motifs. Hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding and –CH3 groups of 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication have been omitted for clarity. | |
Fig. 3. A perspective view of one chain of the title compound, showing R22(6) and R34(14) rings along [010] direction. Hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding and –CH3 groups of 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication have been omitted for clarity. Symmetry codes: (iv) x - 1/2, -y + 3/2, z + 1/2; (v) x - 1, y, z; (vi) -x + 1, -y + 2, -z. |
C9H22N22+·2NO3− | F(000) = 608 |
Mr = 282.31 | Dx = 1.345 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 10.367 (2) Å | θ = 10–15° |
b = 11.054 (1) Å | µ = 0.11 mm−1 |
c = 13.167 (2) Å | T = 298 K |
β = 112.45 (2)° | Prism, dark brown |
V = 1394.5 (4) Å3 | 0.45 × 0.30 × 0.25 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 1908 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.017 |
Graphite monochromator | θmax = 26.0°, θmin = 2.5° |
ω/2θ scans | h = −11→12 |
Absorption correction: ψ scan (North et al., 1968) | k = −13→0 |
Tmin = 0.860, Tmax = 0.978 | l = −16→0 |
2849 measured reflections | 2 standard reflections every 120 min |
2731 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.121 | w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3472P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2731 reflections | Δρmax = 0.24 e Å−3 |
261 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.022 (3) |
C9H22N22+·2NO3− | V = 1394.5 (4) Å3 |
Mr = 282.31 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.367 (2) Å | µ = 0.11 mm−1 |
b = 11.054 (1) Å | T = 298 K |
c = 13.167 (2) Å | 0.45 × 0.30 × 0.25 mm |
β = 112.45 (2)° |
Enraf–Nonius CAD-4 diffractometer | 1908 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.017 |
Tmin = 0.860, Tmax = 0.978 | 2 standard reflections every 120 min |
2849 measured reflections | intensity decay: 1.0% |
2731 independent reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.121 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.24 e Å−3 |
2731 reflections | Δρmin = −0.15 e Å−3 |
261 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.65815 (16) | 0.64785 (14) | 0.03529 (14) | 0.0327 (4) | |
H1A | 0.607 (2) | 0.614 (2) | −0.0322 (19) | 0.051 (6)* | |
H1B | 0.636 (2) | 0.6145 (19) | 0.0858 (17) | 0.041 (6)* | |
N2 | 0.8793 (2) | 0.8680 (2) | −0.10476 (17) | 0.0459 (5) | |
H2A | 0.972 (3) | 0.854 (2) | −0.085 (2) | 0.072 (8)* | |
H2B | 0.857 (3) | 0.950 (3) | −0.109 (2) | 0.076 (9)* | |
H2C | 0.838 (3) | 0.834 (2) | −0.170 (2) | 0.059 (7)* | |
C1 | 0.80955 (19) | 0.61008 (17) | 0.06283 (15) | 0.0356 (5) | |
C2 | 0.8620 (2) | 0.67784 (19) | −0.01499 (17) | 0.0392 (5) | |
H2D | 0.959 (2) | 0.666 (2) | 0.0075 (17) | 0.050 (6)* | |
H2E | 0.820 (2) | 0.6457 (19) | −0.0867 (18) | 0.047 (6)* | |
C3 | 0.8315 (2) | 0.81240 (18) | −0.02154 (16) | 0.0360 (5) | |
H3 | 0.881 (2) | 0.8515 (17) | 0.0414 (16) | 0.034 (5)* | |
C4 | 0.6767 (2) | 0.8365 (2) | −0.05477 (18) | 0.0396 (5) | |
H4A | 0.627 (2) | 0.8029 (18) | −0.1287 (18) | 0.044 (6)* | |
H4B | 0.660 (2) | 0.921 (2) | −0.0601 (17) | 0.046 (6)* | |
C5 | 0.6175 (2) | 0.78055 (17) | 0.02436 (16) | 0.0366 (5) | |
C6 | 0.8059 (3) | 0.4739 (2) | 0.0425 (3) | 0.0533 (6) | |
H6A | 0.759 (3) | 0.455 (2) | −0.032 (2) | 0.067 (8)* | |
H6B | 0.772 (3) | 0.431 (2) | 0.091 (2) | 0.068 (8)* | |
H6C | 0.899 (3) | 0.449 (3) | 0.060 (2) | 0.082 (9)* | |
C7 | 0.8987 (3) | 0.6347 (3) | 0.18384 (18) | 0.0512 (6) | |
H7A | 0.848 (3) | 0.609 (3) | 0.229 (2) | 0.088 (9)* | |
H7B | 0.922 (3) | 0.721 (3) | 0.201 (2) | 0.075 (8)* | |
H7C | 0.983 (3) | 0.587 (2) | 0.201 (2) | 0.072 (8)* | |
C8 | 0.6690 (3) | 0.8427 (2) | 0.1367 (2) | 0.0530 (6) | |
H8A | 0.625 (3) | 0.921 (3) | 0.127 (2) | 0.075 (8)* | |
H8B | 0.774 (3) | 0.854 (2) | 0.1702 (19) | 0.062 (7)* | |
H8C | 0.640 (2) | 0.798 (2) | 0.186 (2) | 0.059 (7)* | |
C9 | 0.4579 (2) | 0.7821 (2) | −0.0251 (2) | 0.0513 (6) | |
H9A | 0.430 (3) | 0.867 (3) | −0.038 (2) | 0.072 (8)* | |
H9B | 0.425 (2) | 0.742 (2) | 0.0249 (19) | 0.052 (6)* | |
H9C | 0.423 (3) | 0.732 (2) | −0.099 (2) | 0.068 (7)* | |
N3 | 0.97658 (17) | 1.01245 (16) | 0.27175 (13) | 0.0414 (4) | |
O1 | 0.96306 (16) | 0.99288 (15) | 0.36111 (11) | 0.0581 (5) | |
O2 | 0.9133 (2) | 1.09726 (19) | 0.21402 (16) | 0.0806 (6) | |
O3 | 1.0499 (2) | 0.94507 (17) | 0.24364 (15) | 0.0735 (6) | |
N4 | 1.24475 (18) | 0.83006 (17) | 0.15347 (14) | 0.0452 (4) | |
O4 | 1.16626 (17) | 0.87793 (16) | 0.06514 (12) | 0.0578 (5) | |
O5 | 1.2237 (2) | 0.72440 (15) | 0.17517 (14) | 0.0692 (5) | |
O6 | 1.34062 (19) | 0.88941 (19) | 0.21907 (14) | 0.0779 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0349 (9) | 0.0339 (9) | 0.0300 (8) | −0.0027 (7) | 0.0131 (7) | 0.0000 (7) |
N2 | 0.0492 (12) | 0.0511 (13) | 0.0432 (11) | −0.0107 (10) | 0.0242 (9) | 0.0002 (9) |
C1 | 0.0318 (10) | 0.0372 (11) | 0.0366 (10) | 0.0014 (8) | 0.0115 (8) | 0.0010 (8) |
C2 | 0.0348 (11) | 0.0467 (12) | 0.0383 (11) | 0.0011 (9) | 0.0165 (9) | −0.0018 (9) |
C3 | 0.0367 (10) | 0.0423 (11) | 0.0298 (10) | −0.0076 (9) | 0.0136 (8) | −0.0026 (9) |
C4 | 0.0411 (11) | 0.0366 (12) | 0.0404 (11) | 0.0002 (9) | 0.0149 (9) | 0.0060 (9) |
C5 | 0.0392 (11) | 0.0316 (10) | 0.0409 (11) | 0.0008 (8) | 0.0176 (9) | 0.0004 (8) |
C6 | 0.0536 (15) | 0.0400 (13) | 0.0697 (17) | 0.0061 (11) | 0.0273 (14) | 0.0030 (12) |
C7 | 0.0458 (13) | 0.0594 (16) | 0.0384 (12) | 0.0019 (12) | 0.0049 (10) | 0.0069 (11) |
C8 | 0.0714 (17) | 0.0443 (14) | 0.0518 (14) | −0.0047 (12) | 0.0332 (13) | −0.0113 (11) |
C9 | 0.0405 (12) | 0.0452 (14) | 0.0740 (17) | 0.0067 (11) | 0.0284 (12) | 0.0114 (13) |
N3 | 0.0442 (10) | 0.0464 (10) | 0.0364 (9) | −0.0044 (8) | 0.0184 (8) | −0.0020 (8) |
O1 | 0.0696 (11) | 0.0758 (12) | 0.0380 (8) | 0.0214 (9) | 0.0308 (8) | 0.0116 (8) |
O2 | 0.0791 (13) | 0.0862 (14) | 0.0787 (13) | 0.0209 (11) | 0.0326 (10) | 0.0404 (11) |
O3 | 0.0933 (13) | 0.0714 (12) | 0.0814 (13) | 0.0112 (10) | 0.0620 (11) | −0.0097 (10) |
N4 | 0.0438 (10) | 0.0528 (12) | 0.0404 (10) | 0.0018 (9) | 0.0178 (8) | 0.0005 (9) |
O4 | 0.0591 (10) | 0.0670 (11) | 0.0409 (8) | 0.0074 (8) | 0.0121 (7) | 0.0089 (8) |
O5 | 0.0950 (14) | 0.0465 (10) | 0.0616 (11) | −0.0037 (9) | 0.0247 (10) | 0.0053 (8) |
O6 | 0.0676 (12) | 0.0939 (15) | 0.0564 (10) | −0.0306 (11) | 0.0061 (9) | −0.0065 (10) |
N1—C5 | 1.518 (2) | C5—C8 | 1.530 (3) |
N1—C1 | 1.528 (2) | C6—H6A | 0.94 (3) |
N1—H1A | 0.93 (2) | C6—H6B | 0.97 (3) |
N1—H1B | 0.87 (2) | C6—H6C | 0.95 (3) |
N2—C3 | 1.496 (2) | C7—H7A | 0.97 (3) |
N2—H2A | 0.90 (3) | C7—H7B | 0.99 (3) |
N2—H2B | 0.93 (3) | C7—H7C | 0.97 (3) |
N2—H2C | 0.88 (3) | C8—H8A | 0.97 (3) |
C1—C2 | 1.527 (3) | C8—H8B | 1.01 (2) |
C1—C6 | 1.527 (3) | C8—H8C | 0.95 (3) |
C1—C7 | 1.530 (3) | C9—H9A | 0.98 (3) |
C2—C3 | 1.516 (3) | C9—H9B | 0.95 (2) |
C2—H2D | 0.94 (2) | C9—H9C | 1.05 (3) |
C2—H2E | 0.95 (2) | N3—O3 | 1.219 (2) |
C3—C4 | 1.517 (3) | N3—O2 | 1.227 (2) |
C3—H3 | 0.90 (2) | N3—O1 | 1.256 (2) |
C4—C5 | 1.527 (3) | N4—O6 | 1.228 (2) |
C4—H4A | 0.98 (2) | N4—O5 | 1.241 (2) |
C4—H4B | 0.95 (2) | N4—O4 | 1.254 (2) |
C5—C9 | 1.530 (3) | ||
C5—N1—C1 | 120.63 (14) | N1—C5—C4 | 106.67 (15) |
C5—N1—H1A | 105.5 (14) | N1—C5—C9 | 105.52 (16) |
C1—N1—H1A | 106.3 (14) | C4—C5—C9 | 110.84 (17) |
C5—N1—H1B | 109.7 (14) | N1—C5—C8 | 111.14 (17) |
C1—N1—H1B | 104.7 (14) | C4—C5—C8 | 113.24 (18) |
H1A—N1—H1B | 109.7 (19) | C9—C5—C8 | 109.1 (2) |
C3—N2—H2A | 109.4 (16) | C1—C6—H6A | 111.5 (16) |
C3—N2—H2B | 107.5 (17) | C1—C6—H6B | 111.3 (15) |
H2A—N2—H2B | 113 (2) | H6A—C6—H6B | 114 (2) |
C3—N2—H2C | 111.5 (16) | C1—C6—H6C | 107.1 (17) |
H2A—N2—H2C | 106 (2) | H6A—C6—H6C | 105 (2) |
H2B—N2—H2C | 109 (2) | H6B—C6—H6C | 107 (2) |
C2—C1—C6 | 110.92 (18) | C1—C7—H7A | 109.7 (17) |
C2—C1—N1 | 107.66 (15) | C1—C7—H7B | 113.9 (15) |
C6—C1—N1 | 105.86 (17) | H7A—C7—H7B | 106 (2) |
C2—C1—C7 | 112.54 (18) | C1—C7—H7C | 106.3 (15) |
C6—C1—C7 | 108.8 (2) | H7A—C7—H7C | 110 (2) |
N1—C1—C7 | 110.82 (17) | H7B—C7—H7C | 111 (2) |
C3—C2—C1 | 113.53 (16) | C5—C8—H8A | 107.8 (15) |
C3—C2—H2D | 109.4 (14) | C5—C8—H8B | 113.4 (13) |
C1—C2—H2D | 109.2 (13) | H8A—C8—H8B | 109 (2) |
C3—C2—H2E | 107.8 (13) | C5—C8—H8C | 110.5 (14) |
C1—C2—H2E | 109.8 (13) | H8A—C8—H8C | 107 (2) |
H2D—C2—H2E | 107.0 (18) | H8B—C8—H8C | 109 (2) |
N2—C3—C2 | 108.91 (17) | C5—C9—H9A | 106.6 (15) |
N2—C3—C4 | 109.06 (17) | C5—C9—H9B | 108.1 (14) |
C2—C3—C4 | 111.33 (17) | H9A—C9—H9B | 114 (2) |
N2—C3—H3 | 104.1 (12) | C5—C9—H9C | 108.5 (14) |
C2—C3—H3 | 112.6 (12) | H9A—C9—H9C | 112 (2) |
C4—C3—H3 | 110.5 (12) | H9B—C9—H9C | 107.9 (19) |
C3—C4—C5 | 112.84 (16) | O3—N3—O2 | 121.79 (19) |
C3—C4—H4A | 108.2 (12) | O3—N3—O1 | 119.03 (18) |
C5—C4—H4A | 109.2 (12) | O2—N3—O1 | 119.16 (18) |
C3—C4—H4B | 110.0 (13) | O6—N4—O5 | 120.45 (19) |
C5—C4—H4B | 109.7 (13) | O6—N4—O4 | 119.4 (2) |
H4A—C4—H4B | 106.7 (17) | O5—N4—O4 | 120.12 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.93 (2) | 1.99 (2) | 2.868 (2) | 156.9 (19) |
N1—H1B···O1ii | 0.87 (2) | 1.97 (2) | 2.772 (2) | 152.9 (19) |
N2—H2A···O4 | 0.90 (3) | 2.24 (3) | 2.964 (3) | 137 (2) |
N2—H2A···O2iii | 0.90 (3) | 2.48 (3) | 3.034 (3) | 120 (2) |
N2—H2B···O4iii | 0.93 (3) | 2.03 (3) | 2.928 (3) | 161 (2) |
N2—H2B···O3iii | 0.93 (3) | 2.59 (3) | 3.030 (3) | 109 (2) |
N2—H2C···O5i | 0.88 (3) | 2.03 (3) | 2.910 (3) | 172 (2) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.93 (2) | 1.99 (2) | 2.868 (2) | 156.9 (19) |
N1—H1B···O1ii | 0.87 (2) | 1.97 (2) | 2.772 (2) | 152.9 (19) |
N2—H2A···O4 | 0.90 (3) | 2.24 (3) | 2.964 (3) | 137 (2) |
N2—H2A···O2iii | 0.90 (3) | 2.48 (3) | 3.034 (3) | 120 (2) |
N2—H2B···O4iii | 0.93 (3) | 2.03 (3) | 2.928 (3) | 161 (2) |
N2—H2B···O3iii | 0.93 (3) | 2.59 (3) | 3.030 (3) | 109 (2) |
N2—H2C···O5i | 0.88 (3) | 2.03 (3) | 2.910 (3) | 172 (2) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+2, −y+2, −z. |
Acknowledgements
The authors thank Professor Dr Ahmed Driss for many helpful discussions.
References
Bernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369–1370. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
El Glaoui, M., Mrad, M. L., Jeanneau, E. & Ben Nasr, C. (2010). J. Chem. 7, 1562–1570. CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Huang, P.-M. & Deng, Y. (2007). Acta Cryst. E63, o4170. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Mrad, M. L., Akriche, S., Rzaigui, M. & Ben Nasr, C. (2009). Acta Cryst. E65, o757–o758. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C9H22N22+·2NO3-, was synthesized unexpectedly from 4-amino-2,2,6,6-tetramethylpiperidine, bismuth(III) nitrate pentahydrate and nitric acid. We report in this paper it's structure; its homologues obtained with chlorate, phosphate and tetrachlorozincate anions has been described previously (Huang & Deng, 2007; Mrad et al., 2009; El Glaoui et al., 2010).
The asymmetric unit of the title compound contains one 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication and two nitrate anions (Fig. 1) with all atoms are located on general Wykoff position 4 e.
The piperidine ring adopts a chair conformation, with puckering parameters (calculated with PLATON (Spek, 2009)): Q = 0.535 Å, Θ = 6.63 ° and Φ = 205.565 ° (Cremer & Pople, 1975). This conformation has also been noticed in other 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium salts (Chebbi & Driss, 2001; Huang & Deng, 2007; Mrad et al., 2009; El Glaoui et al., 2010).
The three-dimensional extensive hydrogen-bonding network is built and linked through moderate hydrogen-bond interactions (Table 1) (Jeffrey, 1997) between the NH3 and NH2 groups of the dications and the nitrate anions, located in the vicinity of the protonated amine groups. Each organic entity is bounded to six different nitrate anions through seven N—H···O hydrogen bonds (Fig. 2). Indeed, N1—H1A···O1, N2—H2C···O5, N2—H2A···O2 and bifurcated N2—H2B···O3(O4) hydrogen bonds (Table 1) link dications and anions into chains along [010] direction, which generate R34(14) and R22(6) ring motifs (Etter et al., 1990; Bernstein, et al., 1995) (Fig. 3). These chains are interconnected by N1—H1B···O1 and N2—H2A···O4 hydrogen bonds (Table 1),which generate two sets of R42(8) ring motifs (Fig. 2). This arrangement results in the formation of a complicated three-dimensional network.