organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Aza­niumyl-2,2,6,6-tetra­methyl­piperidin-1-ium dinitrate

aInstitut Préparatoire aux Etudes d'Ingénieurs de Monastir, Avenue Ibn-El-Jazzar, 5019 Monastir, Tunisia, bLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, 2092 El Manar II, Tunis, Tunisia, and cInstitut Préparatoire aux Etudes d'Ingénieurs de Nabeul, Campus Universitaire Mrazka, 8000 Nabeul, Tunisia
*Correspondence e-mail: chebhamouda@yahoo.fr

Edited by C. Näther, Universität Kiel, Germany (Received 11 April 2014; accepted 30 April 2014; online 10 May 2014)

In the crystal structure of the title salt, C9H22N22+·2NO3, the piperidine ring of the dication adopts a chair conformation and the orientation of the C—NH3 bond is equatorial. The ions are linked by normal and bifurcated N—H⋯O hydrogen bonds in R22(6), two R42(8) and R34(14) graf-set motifs, generating a three-dimensional network.

Related literature

For related structures, see: Chebbi & Driss (2001[Chebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369-1370.]); El Glaoui, Mrad, Jenneau & Ben Nasr (2010[El Glaoui, M., Mrad, M. L., Jeanneau, E. & Ben Nasr, C. (2010). J. Chem. 7, 1562-1570. ]); Mrad et al. (2009[Mrad, M. L., Akriche, S., Rzaigui, M. & Ben Nasr, C. (2009). Acta Cryst. E65, o757-o758.]); Huang & Deng (2007[Huang, P.-M. & Deng, Y. (2007). Acta Cryst. E63, o4170.]). For hydrogen bonding and graph-set motifs, see: Jeffrey (1997[Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.]); Bernstein et al. (1995[Bernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C9H22N22+·2NO3

  • Mr = 282.31

  • Monoclinic, P 21 /n

  • a = 10.367 (2) Å

  • b = 11.054 (1) Å

  • c = 13.167 (2) Å

  • β = 112.45 (2)°

  • V = 1394.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.860, Tmax = 0.978

  • 2849 measured reflections

  • 2731 independent reflections

  • 1908 reflections with I > 2σ(I)

  • Rint = 0.017

  • 2 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.05

  • 2731 reflections

  • 261 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.93 (2) 1.99 (2) 2.868 (2) 156.9 (19)
N1—H1B⋯O1ii 0.87 (2) 1.97 (2) 2.772 (2) 152.9 (19)
N2—H2A⋯O4 0.90 (3) 2.24 (3) 2.964 (3) 137 (2)
N2—H2A⋯O2iii 0.90 (3) 2.48 (3) 3.034 (3) 120 (2)
N2—H2B⋯O4iii 0.93 (3) 2.03 (3) 2.928 (3) 161 (2)
N2—H2B⋯O3iii 0.93 (3) 2.59 (3) 3.030 (3) 109 (2)
N2—H2C⋯O5i 0.88 (3) 2.03 (3) 2.910 (3) 172 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, C9H22N22+·2NO3-, was synthesized unexpectedly from 4-amino-2,2,6,6-tetramethylpiperidine, bismuth(III) nitrate pentahydrate and nitric acid. We report in this paper it's structure; its homologues obtained with chlorate, phosphate and tetrachlorozincate anions has been described previously (Huang & Deng, 2007; Mrad et al., 2009; El Glaoui et al., 2010).

The asymmetric unit of the title compound contains one 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication and two nitrate anions (Fig. 1) with all atoms are located on general Wykoff position 4 e.

The piperidine ring adopts a chair conformation, with puckering parameters (calculated with PLATON (Spek, 2009)): Q = 0.535 Å, Θ = 6.63 ° and Φ = 205.565 ° (Cremer & Pople, 1975). This conformation has also been noticed in other 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium salts (Chebbi & Driss, 2001; Huang & Deng, 2007; Mrad et al., 2009; El Glaoui et al., 2010).

The three-dimensional extensive hydrogen-bonding network is built and linked through moderate hydrogen-bond interactions (Table 1) (Jeffrey, 1997) between the NH3 and NH2 groups of the dications and the nitrate anions, located in the vicinity of the protonated amine groups. Each organic entity is bounded to six different nitrate anions through seven N—H···O hydrogen bonds (Fig. 2). Indeed, N1—H1A···O1, N2—H2C···O5, N2—H2A···O2 and bifurcated N2—H2B···O3(O4) hydrogen bonds (Table 1) link dications and anions into chains along [010] direction, which generate R34(14) and R22(6) ring motifs (Etter et al., 1990; Bernstein, et al., 1995) (Fig. 3). These chains are interconnected by N1—H1B···O1 and N2—H2A···O4 hydrogen bonds (Table 1),which generate two sets of R42(8) ring motifs (Fig. 2). This arrangement results in the formation of a complicated three-dimensional network.

Related literature top

For related structures, see: Chebbi & Driss (2001); El Glaoui, Mrad, Jenneau & Ben Nasr (2010); Mrad et al. (2009); Huang & Deng (2007). For hydrogen bonding and graph-set motifs, see: Jeffrey (1997); Bernstein et al. (1995); Etter et al. (1990). For ring-puckering parameters, see: Cremer & Pople (1975); Spek (2009).

Experimental top

The title compound was prepared by dissolving 0.096 mmol (0.36 g) of bismuth(III) nitrate pentahydrate in 20 ml of distilled water; 0.096 mmol (0.15 g) of 4-amino-2,2,6,6-tetramethylpiperidine in 15 ml of ethanol (96%) and 1 ml of concentred nitric acid were then added. The mixture was stirred for 20 minutes and the solution is allowed to stand at room temperature. Dark brown crystals were obtained after 5 days of slow evaporation of the solvent. The X-ray analysis proves that the trivalent bismuth is not part of the structure and that the obtained phase is C9H22N22+·2NO3-.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. All H atoms were located in a Fourier map and were refined isotropically.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are presented at the 50% probability level. H atoms are shown as sticks.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b axis, showing the formation of two sets of R42(8) hydrogen-bonding motifs. Hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding and –CH3 groups of 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication have been omitted for clarity.
[Figure 3] Fig. 3. A perspective view of one chain of the title compound, showing R22(6) and R34(14) rings along [010] direction. Hydrogen bonds are represented by dashed lines. H atoms not involved in hydrogen bonding and –CH3 groups of 4-azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dication have been omitted for clarity. Symmetry codes: (iv) x - 1/2, -y + 3/2, z + 1/2; (v) x - 1, y, z; (vi) -x + 1, -y + 2, -z.
4-Azaniumyl-2,2,6,6-tetramethylpiperidin-1-ium dinitrate top
Crystal data top
C9H22N22+·2NO3F(000) = 608
Mr = 282.31Dx = 1.345 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.367 (2) Åθ = 10–15°
b = 11.054 (1) ŵ = 0.11 mm1
c = 13.167 (2) ÅT = 298 K
β = 112.45 (2)°Prism, dark brown
V = 1394.5 (4) Å30.45 × 0.30 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1908 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ω/2θ scansh = 1112
Absorption correction: ψ scan
(North et al., 1968)
k = 130
Tmin = 0.860, Tmax = 0.978l = 160
2849 measured reflections2 standard reflections every 120 min
2731 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3472P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2731 reflectionsΔρmax = 0.24 e Å3
261 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
C9H22N22+·2NO3V = 1394.5 (4) Å3
Mr = 282.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.367 (2) ŵ = 0.11 mm1
b = 11.054 (1) ÅT = 298 K
c = 13.167 (2) Å0.45 × 0.30 × 0.25 mm
β = 112.45 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1908 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.860, Tmax = 0.9782 standard reflections every 120 min
2849 measured reflections intensity decay: 1.0%
2731 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121All H-atom parameters refined
S = 1.05Δρmax = 0.24 e Å3
2731 reflectionsΔρmin = 0.15 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65815 (16)0.64785 (14)0.03529 (14)0.0327 (4)
H1A0.607 (2)0.614 (2)0.0322 (19)0.051 (6)*
H1B0.636 (2)0.6145 (19)0.0858 (17)0.041 (6)*
N20.8793 (2)0.8680 (2)0.10476 (17)0.0459 (5)
H2A0.972 (3)0.854 (2)0.085 (2)0.072 (8)*
H2B0.857 (3)0.950 (3)0.109 (2)0.076 (9)*
H2C0.838 (3)0.834 (2)0.170 (2)0.059 (7)*
C10.80955 (19)0.61008 (17)0.06283 (15)0.0356 (5)
C20.8620 (2)0.67784 (19)0.01499 (17)0.0392 (5)
H2D0.959 (2)0.666 (2)0.0075 (17)0.050 (6)*
H2E0.820 (2)0.6457 (19)0.0867 (18)0.047 (6)*
C30.8315 (2)0.81240 (18)0.02154 (16)0.0360 (5)
H30.881 (2)0.8515 (17)0.0414 (16)0.034 (5)*
C40.6767 (2)0.8365 (2)0.05477 (18)0.0396 (5)
H4A0.627 (2)0.8029 (18)0.1287 (18)0.044 (6)*
H4B0.660 (2)0.921 (2)0.0601 (17)0.046 (6)*
C50.6175 (2)0.78055 (17)0.02436 (16)0.0366 (5)
C60.8059 (3)0.4739 (2)0.0425 (3)0.0533 (6)
H6A0.759 (3)0.455 (2)0.032 (2)0.067 (8)*
H6B0.772 (3)0.431 (2)0.091 (2)0.068 (8)*
H6C0.899 (3)0.449 (3)0.060 (2)0.082 (9)*
C70.8987 (3)0.6347 (3)0.18384 (18)0.0512 (6)
H7A0.848 (3)0.609 (3)0.229 (2)0.088 (9)*
H7B0.922 (3)0.721 (3)0.201 (2)0.075 (8)*
H7C0.983 (3)0.587 (2)0.201 (2)0.072 (8)*
C80.6690 (3)0.8427 (2)0.1367 (2)0.0530 (6)
H8A0.625 (3)0.921 (3)0.127 (2)0.075 (8)*
H8B0.774 (3)0.854 (2)0.1702 (19)0.062 (7)*
H8C0.640 (2)0.798 (2)0.186 (2)0.059 (7)*
C90.4579 (2)0.7821 (2)0.0251 (2)0.0513 (6)
H9A0.430 (3)0.867 (3)0.038 (2)0.072 (8)*
H9B0.425 (2)0.742 (2)0.0249 (19)0.052 (6)*
H9C0.423 (3)0.732 (2)0.099 (2)0.068 (7)*
N30.97658 (17)1.01245 (16)0.27175 (13)0.0414 (4)
O10.96306 (16)0.99288 (15)0.36111 (11)0.0581 (5)
O20.9133 (2)1.09726 (19)0.21402 (16)0.0806 (6)
O31.0499 (2)0.94507 (17)0.24364 (15)0.0735 (6)
N41.24475 (18)0.83006 (17)0.15347 (14)0.0452 (4)
O41.16626 (17)0.87793 (16)0.06514 (12)0.0578 (5)
O51.2237 (2)0.72440 (15)0.17517 (14)0.0692 (5)
O61.34062 (19)0.88941 (19)0.21907 (14)0.0779 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0349 (9)0.0339 (9)0.0300 (8)0.0027 (7)0.0131 (7)0.0000 (7)
N20.0492 (12)0.0511 (13)0.0432 (11)0.0107 (10)0.0242 (9)0.0002 (9)
C10.0318 (10)0.0372 (11)0.0366 (10)0.0014 (8)0.0115 (8)0.0010 (8)
C20.0348 (11)0.0467 (12)0.0383 (11)0.0011 (9)0.0165 (9)0.0018 (9)
C30.0367 (10)0.0423 (11)0.0298 (10)0.0076 (9)0.0136 (8)0.0026 (9)
C40.0411 (11)0.0366 (12)0.0404 (11)0.0002 (9)0.0149 (9)0.0060 (9)
C50.0392 (11)0.0316 (10)0.0409 (11)0.0008 (8)0.0176 (9)0.0004 (8)
C60.0536 (15)0.0400 (13)0.0697 (17)0.0061 (11)0.0273 (14)0.0030 (12)
C70.0458 (13)0.0594 (16)0.0384 (12)0.0019 (12)0.0049 (10)0.0069 (11)
C80.0714 (17)0.0443 (14)0.0518 (14)0.0047 (12)0.0332 (13)0.0113 (11)
C90.0405 (12)0.0452 (14)0.0740 (17)0.0067 (11)0.0284 (12)0.0114 (13)
N30.0442 (10)0.0464 (10)0.0364 (9)0.0044 (8)0.0184 (8)0.0020 (8)
O10.0696 (11)0.0758 (12)0.0380 (8)0.0214 (9)0.0308 (8)0.0116 (8)
O20.0791 (13)0.0862 (14)0.0787 (13)0.0209 (11)0.0326 (10)0.0404 (11)
O30.0933 (13)0.0714 (12)0.0814 (13)0.0112 (10)0.0620 (11)0.0097 (10)
N40.0438 (10)0.0528 (12)0.0404 (10)0.0018 (9)0.0178 (8)0.0005 (9)
O40.0591 (10)0.0670 (11)0.0409 (8)0.0074 (8)0.0121 (7)0.0089 (8)
O50.0950 (14)0.0465 (10)0.0616 (11)0.0037 (9)0.0247 (10)0.0053 (8)
O60.0676 (12)0.0939 (15)0.0564 (10)0.0306 (11)0.0061 (9)0.0065 (10)
Geometric parameters (Å, º) top
N1—C51.518 (2)C5—C81.530 (3)
N1—C11.528 (2)C6—H6A0.94 (3)
N1—H1A0.93 (2)C6—H6B0.97 (3)
N1—H1B0.87 (2)C6—H6C0.95 (3)
N2—C31.496 (2)C7—H7A0.97 (3)
N2—H2A0.90 (3)C7—H7B0.99 (3)
N2—H2B0.93 (3)C7—H7C0.97 (3)
N2—H2C0.88 (3)C8—H8A0.97 (3)
C1—C21.527 (3)C8—H8B1.01 (2)
C1—C61.527 (3)C8—H8C0.95 (3)
C1—C71.530 (3)C9—H9A0.98 (3)
C2—C31.516 (3)C9—H9B0.95 (2)
C2—H2D0.94 (2)C9—H9C1.05 (3)
C2—H2E0.95 (2)N3—O31.219 (2)
C3—C41.517 (3)N3—O21.227 (2)
C3—H30.90 (2)N3—O11.256 (2)
C4—C51.527 (3)N4—O61.228 (2)
C4—H4A0.98 (2)N4—O51.241 (2)
C4—H4B0.95 (2)N4—O41.254 (2)
C5—C91.530 (3)
C5—N1—C1120.63 (14)N1—C5—C4106.67 (15)
C5—N1—H1A105.5 (14)N1—C5—C9105.52 (16)
C1—N1—H1A106.3 (14)C4—C5—C9110.84 (17)
C5—N1—H1B109.7 (14)N1—C5—C8111.14 (17)
C1—N1—H1B104.7 (14)C4—C5—C8113.24 (18)
H1A—N1—H1B109.7 (19)C9—C5—C8109.1 (2)
C3—N2—H2A109.4 (16)C1—C6—H6A111.5 (16)
C3—N2—H2B107.5 (17)C1—C6—H6B111.3 (15)
H2A—N2—H2B113 (2)H6A—C6—H6B114 (2)
C3—N2—H2C111.5 (16)C1—C6—H6C107.1 (17)
H2A—N2—H2C106 (2)H6A—C6—H6C105 (2)
H2B—N2—H2C109 (2)H6B—C6—H6C107 (2)
C2—C1—C6110.92 (18)C1—C7—H7A109.7 (17)
C2—C1—N1107.66 (15)C1—C7—H7B113.9 (15)
C6—C1—N1105.86 (17)H7A—C7—H7B106 (2)
C2—C1—C7112.54 (18)C1—C7—H7C106.3 (15)
C6—C1—C7108.8 (2)H7A—C7—H7C110 (2)
N1—C1—C7110.82 (17)H7B—C7—H7C111 (2)
C3—C2—C1113.53 (16)C5—C8—H8A107.8 (15)
C3—C2—H2D109.4 (14)C5—C8—H8B113.4 (13)
C1—C2—H2D109.2 (13)H8A—C8—H8B109 (2)
C3—C2—H2E107.8 (13)C5—C8—H8C110.5 (14)
C1—C2—H2E109.8 (13)H8A—C8—H8C107 (2)
H2D—C2—H2E107.0 (18)H8B—C8—H8C109 (2)
N2—C3—C2108.91 (17)C5—C9—H9A106.6 (15)
N2—C3—C4109.06 (17)C5—C9—H9B108.1 (14)
C2—C3—C4111.33 (17)H9A—C9—H9B114 (2)
N2—C3—H3104.1 (12)C5—C9—H9C108.5 (14)
C2—C3—H3112.6 (12)H9A—C9—H9C112 (2)
C4—C3—H3110.5 (12)H9B—C9—H9C107.9 (19)
C3—C4—C5112.84 (16)O3—N3—O2121.79 (19)
C3—C4—H4A108.2 (12)O3—N3—O1119.03 (18)
C5—C4—H4A109.2 (12)O2—N3—O1119.16 (18)
C3—C4—H4B110.0 (13)O6—N4—O5120.45 (19)
C5—C4—H4B109.7 (13)O6—N4—O4119.4 (2)
H4A—C4—H4B106.7 (17)O5—N4—O4120.12 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.93 (2)1.99 (2)2.868 (2)156.9 (19)
N1—H1B···O1ii0.87 (2)1.97 (2)2.772 (2)152.9 (19)
N2—H2A···O40.90 (3)2.24 (3)2.964 (3)137 (2)
N2—H2A···O2iii0.90 (3)2.48 (3)3.034 (3)120 (2)
N2—H2B···O4iii0.93 (3)2.03 (3)2.928 (3)161 (2)
N2—H2B···O3iii0.93 (3)2.59 (3)3.030 (3)109 (2)
N2—H2C···O5i0.88 (3)2.03 (3)2.910 (3)172 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.93 (2)1.99 (2)2.868 (2)156.9 (19)
N1—H1B···O1ii0.87 (2)1.97 (2)2.772 (2)152.9 (19)
N2—H2A···O40.90 (3)2.24 (3)2.964 (3)137 (2)
N2—H2A···O2iii0.90 (3)2.48 (3)3.034 (3)120 (2)
N2—H2B···O4iii0.93 (3)2.03 (3)2.928 (3)161 (2)
N2—H2B···O3iii0.93 (3)2.59 (3)3.030 (3)109 (2)
N2—H2C···O5i0.88 (3)2.03 (3)2.910 (3)172 (2)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+2, z.
 

Acknowledgements

The authors thank Professor Dr Ahmed Driss for many helpful discussions.

References

First citationBernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChebbi, H. & Driss, A. (2001). Acta Cryst. C57, 1369–1370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl Glaoui, M., Mrad, M. L., Jeanneau, E. & Ben Nasr, C. (2010). J. Chem. 7, 1562–1570.   CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, P.-M. & Deng, Y. (2007). Acta Cryst. E63, o4170.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMrad, M. L., Akriche, S., Rzaigui, M. & Ben Nasr, C. (2009). Acta Cryst. E65, o757–o758.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds