metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­{2-[(di­methyl­amino)­meth­yl]benzene­seleno­lato-κ2N,Se}(tri­phenyl­phosphane-κP)palladium(II)

aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland
*Correspondence e-mail: raija.oilunkaniemi@oulu.fi

Edited by G. S. Nichol, University of Edinburgh, Scotland (Received 14 March 2014; accepted 9 May 2014; online 17 May 2014)

The asymmetric unit of the title compound, [PdCl(C9H12NSe)(C18H15P)], contains two independent mol­ecules. In both cases, the Pd2+ cations are coordinated by the Se and N atoms of the chelating bidentate 2-[(di­methyl­amino)­meth­yl]benzene­seleno­late ligand. The chloride ligand lies trans to selenium and the tri­phenyl­phosphane ligand is trans to nitro­gen. The Pd—Se bond lengths in the two independent coordination environments of Pd are 2.3801 (4) and 2.3852 (4) Å, the Pd—P bond lengths are 2.2562 (8) and 2.2471 (8) Å, the Pd—N bond lengths are 2.172 (2) and 2.158 (2) Å, and the Pd—Cl bond lengths are 2.3816 (8) and 2.3801 (8) Å. The square-planar coordination around one Pd2+ cation is less distorted than that around the other.

Related literature

For the related structure of a palladium complex with an iodide ligand, see: Chakraborty et al. (2011[Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782-2788.]). For examples of mononuclear platinum complexes, see: Hannu et al. (2000[Hannu, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2000). Inorg. Chem. Commun. 3, 397-399.]); Hannu-Kuure et al. (2003a[Hannu-Kuure, M. S., Komulainen, J., Oilunkaniemi, R., Laitinen, R. S., Suontamo, R. & Ahlgren, M. (2003a). J. Organomet. Chem. 666, 111-120.]). For mononuclear palladium complexes, see: Risto et al. (2007[Risto, M., Jahr, E. M., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2007). J. Organomet. Chem. 692, 2193-2204.]). For di- and polynuclear palladium complexes, see: Hannu-Kuure et al. (2003b[Hannu-Kuure, M. S., Paldan, K., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2003b). J. Organomet. Chem. 687, 538-544.], 2004[Hannu-Kuure, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2004). Acta Cryst. E60, m214-m216.]); Wagner et al. (2005[Wagner, A., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2005). Acta Cryst. E61, m2198-m2200.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl(C9H12NSe)(C18H15P)]

  • Mr = 617.28

  • Triclinic, [P \overline 1]

  • a = 13.3528 (3) Å

  • b = 15.0683 (4) Å

  • c = 15.0721 (3) Å

  • α = 78.857 (1)°

  • β = 66.385 (1)°

  • γ = 63.820 (1)°

  • V = 2493.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 120 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.796, Tmax = 0.832

  • 36674 measured reflections

  • 9759 independent reflections

  • 7312 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.058

  • S = 0.99

  • 9759 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The ligand exchange reactions of [MCl2(PPh3)2] (M = Pd, Pt) by organoselenolates afford mononuclear metal complexes in the case of platinum, (see for instance, Hannu et al., 2000, Hannu-Kuure et al., 2003a), but in case of palladium dinuclear or complexes of even higher nuclearity are generally obtained, as exemplified by Hannu-Kuure et al. (2003b, 2004) and Wagner et al. (2005). Mononuclear palladium complexes can be obtained by using chelating phosphines such as 1,2-bis(diphenylphosphino)ethane (Risto et al., 2007). Organoselenolates containing additional donor atoms can also form stable monomeric palladium complexes. We are interested in the use of the monomeric palladium chalcogenolato complexes as building blocks for the systematic construction of polynuclear metal complexes.

[PdX(C9H12NSe)(C18H15P)] (X = Br, I) has recently been prepared by the oxidative addition of [2-(N,N-dimethylamino)methyl]phenylselenenylbromide or -iodide to [(Ph3P)4Pd] by Chakraborty et al. (2011). They also reported the crystal structure of [PdI(C9H12NSe)(C18H15P)]. In this work, the title compound, [PdCl(C9H12NSe)(C18H15P)], was formed by the ligand exchange reaction of [PdCl2(PPh3)2] and lithium [2-(N,N-dimethylamino)methyl]benzeneselenolate. The 77Se NMR spectrum showed, in addition to the chemical shift of the title compound at 258 p.p.m., also a resonance at 422 p.p.m.. It is possible that the selenolate has been oxidized during the reaction and formed a diselenide, the chemical shift of which has also been reported by Chakraborty et al. (2011).

The asymmetric unit of the title compound contains two discrete complexes. Both Pd atoms show a distorted square-planar coordination. The bidentate [2-(N,N-dimethylamino)methyl]benzeneselenolato chelating ligand is bonded to the metal center via selenium and nitrogen donor atoms. The chlorido ligand lies trans to selenium and the triphenylphosphine ligand trans to nitrogen. While the P—Pd—Cl and Cl—Pd—N angles in both independent complexes in the asymmetric unit are almost identical (P1—Pd1—Cl1 86.56 (3)°, P2—Pd2—Cl2 86.75 (3)° and Cl1—Pd1—N1 90.80 (7)°, Cl2—Pd2—N2 90.79 (7)°), the differences are more prominent in the case of the P—Pd—Se and Se—Pd—N angles (P1—Pd1—Se1 90.14 (2)°, P2—Pd2—Se2 88.69 (2)° and Se1—Pd1—N1 92.62 (6)°, Se2—Pd2—N2 94.53 (7)°). The sum of the bond angles around Pd1 is 360.12° and around Pd2 360.76°. However, the computation of the least-squares planes of the square-planar coordination environments involving Pd1 and Pd2 indicates that in both cases the atoms deviate from planarity. The distortion is more prominent for Pd2 than for Pd1.

The bond lengths and angles around the Pd atoms are shown in Table 1. The Pd1—Se1 bond length is 2.3801 (4) Å and Pd2—Se2 2.3852 (4) Å. They are consistent with the Pd—Se bond (2.4218 (3) Å, 295 (2) K) in the iodido analogue (Chakraborty et al., 2011). The Pd—N bond lengths are 2.172 (2) Å and 2.158 (2) Å, the Pd—Cl are lengths 2.3816 (8) Å and 2.3801 (8) Å, and the Pd—P lengths are 2.2562 (8) Å and 2.2471 (8) Å. The Pd—N and Pd—P lengths in the iodido complex are 2.1958 (18) Å and 2.2429 (5) Å, respectively (Chakraborty et al., 2011).

Related literature top

For the related structure of a palladium complex with an iodide ligand, see: Chakraborty et al. (2011). For examples of mononuclear platinum complexes, see Hannu et al. (2000); Hannu-Kuure et al. (2003a). For mononuclear palladium complexes, see: Risto et al. (2007). For di- and polynuclear palladium complexes, see: Hannu-Kuure et al. (2003b,2004); Wagner et al. (2005).

Experimental top

Freshly prepared diethyl ether solution of lithium[2-(N,N-dimethylamino)methyl]benzeneselenolate (2 ml; 0.089 mmol/ml) was added to [PdCl2(PPh3)2] (0.051 g, 0.073 mmol) in 4 ml of THF in an 10 mm NMR tube under an argon atmosphere. The solution immediately turned red and the 31P and 77Se NMR spectra were recorded. Slow evaporation of the solution gave a small crop of red crystals of [PdCl(C9H12NSe)(C18H15P)]. NMR data of the title compound: 77Se NMR 258 p.p.m., 31P NMR 32.2 p.p.m..

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C) and 0.98 Å and Uiso(H) = 1.2 Ueq(C) for the aryl and methyl H atoms, respectively.

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound indicating the numbering of the atoms. The thermal ellipsoids have been drawn at 50% probability. The hydrogen atoms have been omitted for clarity.
Chlorido{2-[(dimethylamino)methyl]benzeneselenolato-κ2N,Se}(triphenylphosphane-κP)palladium(II) top
Crystal data top
[PdCl(C9H12NSe)(C18H15P)]Z = 4
Mr = 617.28F(000) = 1232
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.3528 (3) ÅCell parameters from 7312 reflections
b = 15.0683 (4) Åθ = 1.5–26.0°
c = 15.0721 (3) ŵ = 2.39 mm1
α = 78.857 (1)°T = 120 K
β = 66.385 (1)°Block, red
γ = 63.820 (1)°0.1 × 0.1 × 0.08 mm
V = 2493.06 (10) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
9759 independent reflections
Radiation source: fine-focus sealed tube7312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS in SHELXTL; Sheldrick, 2008)
h = 1615
Tmin = 0.796, Tmax = 0.832k = 1818
36674 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0251P)2]
where P = (Fo2 + 2Fc2)/3
9759 reflections(Δ/σ)max = 0.001
581 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[PdCl(C9H12NSe)(C18H15P)]γ = 63.820 (1)°
Mr = 617.28V = 2493.06 (10) Å3
Triclinic, P1Z = 4
a = 13.3528 (3) ÅMo Kα radiation
b = 15.0683 (4) ŵ = 2.39 mm1
c = 15.0721 (3) ÅT = 120 K
α = 78.857 (1)°0.1 × 0.1 × 0.08 mm
β = 66.385 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
9759 independent reflections
Absorption correction: multi-scan
(SADABS in SHELXTL; Sheldrick, 2008)
7312 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.832Rint = 0.044
36674 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 0.99Δρmax = 0.65 e Å3
9759 reflectionsΔρmin = 0.40 e Å3
581 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1449 (3)0.2371 (2)0.5732 (2)0.0164 (7)
C120.2527 (3)0.2295 (2)0.4999 (2)0.0164 (7)
C130.3578 (3)0.1528 (2)0.5048 (2)0.0220 (8)
H130.43180.14680.45480.026*
C140.3564 (3)0.0852 (3)0.5809 (3)0.0280 (9)
H140.42920.03460.58460.034*
C150.2487 (3)0.0916 (3)0.6518 (2)0.0270 (8)
H150.24710.04410.70340.032*
C160.1434 (3)0.1667 (3)0.6478 (2)0.0235 (8)
H160.06940.17030.69630.028*
C170.2546 (3)0.3041 (2)0.4188 (2)0.0179 (7)
H17A0.33870.29390.38020.022*
H17B0.21270.37100.44640.022*
C180.2621 (3)0.2010 (2)0.3097 (2)0.0229 (8)
H18A0.23180.19970.26080.034*
H18B0.24980.15140.36050.034*
H18C0.34770.18630.27920.034*
C190.2155 (3)0.3743 (3)0.2741 (2)0.0270 (9)
H19A0.30120.35830.24130.040*
H19B0.17530.44020.30190.040*
H19C0.18200.37350.22730.040*
C210.9319 (3)0.2784 (2)0.0904 (2)0.0158 (7)
C220.9714 (3)0.2729 (2)0.0157 (2)0.0166 (7)
C231.0138 (3)0.3420 (3)0.0142 (2)0.0216 (8)
H231.03870.33980.03740.026*
C241.0201 (3)0.4135 (3)0.0864 (2)0.0225 (8)
H241.05090.45910.08530.027*
C250.9815 (3)0.4183 (3)0.1603 (2)0.0235 (8)
H250.98670.46690.21050.028*
C260.9355 (3)0.3528 (2)0.1612 (2)0.0203 (8)
H260.90580.35850.21070.024*
C270.9727 (3)0.1921 (3)0.0590 (2)0.0204 (8)
H27A1.01650.19340.09810.024*
H27B1.01760.12800.02580.024*
C280.8720 (3)0.1153 (3)0.1977 (2)0.0330 (10)
H28A0.91780.12200.23130.050*
H28B0.91700.05210.16430.050*
H28C0.79500.11730.24500.050*
C290.7846 (3)0.2930 (3)0.1772 (2)0.0301 (9)
H29A0.71020.29330.22780.045*
H29B0.76610.34750.13090.045*
H29C0.83340.30110.20670.045*
C1110.2885 (3)0.4327 (2)0.5935 (2)0.0146 (7)
C1120.3750 (3)0.5292 (2)0.6058 (2)0.0192 (8)
H1120.38540.56960.55070.023*
C1130.4464 (3)0.5669 (3)0.6979 (2)0.0233 (8)
H1130.50500.63300.70530.028*
C1140.4328 (3)0.5097 (3)0.7779 (2)0.0238 (8)
H1140.48160.53610.84080.029*
C1150.3473 (3)0.4126 (3)0.7673 (2)0.0219 (8)
H1150.33810.37260.82300.026*
C1160.2757 (3)0.3745 (2)0.6758 (2)0.0191 (7)
H1160.21740.30820.66880.023*
C1210.2355 (3)0.2802 (2)0.4760 (2)0.0147 (7)
C1220.1492 (3)0.1870 (2)0.4420 (2)0.0174 (7)
H1220.06710.17580.41600.021*
C1230.1819 (3)0.1108 (2)0.4459 (2)0.0222 (8)
H1230.12250.04720.42310.027*
C1240.3016 (3)0.1273 (3)0.4829 (2)0.0260 (8)
H1240.32430.07530.48460.031*
C1250.3882 (3)0.2190 (3)0.5175 (2)0.0260 (8)
H1250.47020.23010.54310.031*
C1260.3553 (3)0.2948 (3)0.5148 (2)0.0200 (8)
H1260.41500.35760.53960.024*
C1310.2533 (3)0.4777 (2)0.3930 (2)0.0143 (7)
C1320.2229 (3)0.5584 (2)0.3751 (2)0.0178 (7)
H1320.17160.56010.40320.021*
C1330.2671 (3)0.6358 (3)0.3165 (2)0.0222 (8)
H1330.24800.69170.30570.027*
C1340.3391 (3)0.6323 (3)0.2736 (2)0.0228 (8)
H1340.36880.68530.23260.027*
C1350.3678 (3)0.5526 (3)0.2899 (2)0.0241 (8)
H1350.41710.55040.25980.029*
C1360.3258 (3)0.4747 (2)0.3500 (2)0.0186 (7)
H1360.34670.41980.36140.022*
C2110.7140 (3)0.0859 (2)0.1210 (2)0.0146 (7)
C2120.7818 (3)0.0143 (2)0.1386 (2)0.0195 (8)
H2120.78710.05980.08570.023*
C2130.8420 (3)0.0487 (3)0.2323 (2)0.0213 (8)
H2130.88910.11740.24350.026*
C2140.8334 (3)0.0167 (3)0.3097 (2)0.0203 (8)
H2140.87480.00670.37410.024*
C2150.7646 (3)0.1163 (3)0.2930 (2)0.0229 (8)
H2150.75760.16120.34610.028*
C2160.7056 (3)0.1514 (2)0.1993 (2)0.0198 (8)
H2160.65930.22020.18860.024*
C2210.5052 (3)0.2371 (2)0.0011 (2)0.0165 (7)
C2220.4255 (3)0.2250 (3)0.0284 (2)0.0236 (8)
H2220.44290.16200.04810.028*
C2230.3209 (3)0.3047 (3)0.0290 (2)0.0295 (9)
H2230.26500.29560.04640.035*
C2240.2978 (3)0.3969 (3)0.0045 (2)0.0337 (10)
H2240.22670.45160.00620.040*
C2250.3771 (3)0.4106 (3)0.0227 (2)0.0313 (9)
H2250.36110.47450.03920.038*
C2260.4803 (3)0.3304 (2)0.0255 (2)0.0227 (8)
H2260.53480.33960.04450.027*
C2310.6093 (3)0.0362 (2)0.0808 (2)0.0156 (7)
C2320.7025 (3)0.0437 (2)0.1021 (2)0.0212 (8)
H2320.78220.04880.06940.025*
C2330.6809 (3)0.1148 (3)0.1694 (2)0.0249 (8)
H2330.74540.17000.18140.030*
C2340.5645 (3)0.1058 (3)0.2197 (2)0.0258 (8)
H2340.54880.15350.26820.031*
C2350.4721 (3)0.0279 (3)0.1993 (2)0.0246 (8)
H2350.39240.02220.23370.029*
C2360.4932 (3)0.0425 (2)0.1294 (2)0.0195 (7)
H2360.42870.09500.11450.023*
N10.1976 (2)0.30004 (19)0.35255 (17)0.0147 (6)
N20.8515 (2)0.1977 (2)0.12601 (18)0.0190 (6)
P10.19223 (7)0.38005 (6)0.47282 (6)0.01370 (18)
P20.64356 (7)0.13454 (6)0.00150 (6)0.01466 (18)
Cl10.00473 (7)0.31983 (6)0.26248 (5)0.01847 (18)
Cl20.59361 (7)0.18539 (6)0.21434 (5)0.02087 (19)
Se10.00116 (3)0.34635 (3)0.57421 (2)0.02091 (9)
Se20.87847 (3)0.18355 (3)0.10148 (2)0.02016 (8)
Pd10.00710 (2)0.335783 (18)0.415702 (17)0.01296 (6)
Pd20.74755 (2)0.175273 (18)0.060536 (17)0.01408 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0159 (17)0.0198 (19)0.0172 (17)0.0060 (15)0.0080 (15)0.0068 (15)
C120.0178 (17)0.0214 (19)0.0167 (17)0.0086 (15)0.0094 (15)0.0062 (15)
C130.0183 (18)0.025 (2)0.0248 (19)0.0054 (16)0.0098 (16)0.0074 (16)
C140.028 (2)0.024 (2)0.032 (2)0.0002 (17)0.0180 (18)0.0084 (17)
C150.041 (2)0.024 (2)0.0214 (19)0.0131 (18)0.0179 (18)0.0029 (16)
C160.0261 (19)0.031 (2)0.0172 (18)0.0149 (17)0.0081 (16)0.0001 (16)
C170.0152 (17)0.024 (2)0.0187 (18)0.0103 (15)0.0035 (15)0.0076 (15)
C180.0153 (17)0.029 (2)0.0243 (19)0.0041 (16)0.0086 (15)0.0100 (16)
C190.029 (2)0.039 (2)0.0212 (19)0.0238 (18)0.0107 (17)0.0099 (17)
C210.0094 (15)0.0208 (19)0.0161 (17)0.0059 (14)0.0022 (14)0.0038 (14)
C220.0100 (16)0.0215 (19)0.0143 (17)0.0027 (14)0.0033 (14)0.0033 (14)
C230.0132 (17)0.037 (2)0.0186 (18)0.0087 (16)0.0074 (15)0.0080 (16)
C240.0144 (17)0.027 (2)0.027 (2)0.0096 (16)0.0025 (16)0.0098 (17)
C250.0199 (18)0.025 (2)0.0208 (19)0.0079 (16)0.0051 (16)0.0003 (16)
C260.0179 (17)0.029 (2)0.0146 (18)0.0093 (16)0.0062 (15)0.0006 (15)
C270.0108 (16)0.032 (2)0.0183 (18)0.0068 (15)0.0058 (14)0.0038 (16)
C280.0223 (19)0.060 (3)0.024 (2)0.0245 (19)0.0142 (17)0.0173 (19)
C290.0189 (18)0.048 (3)0.029 (2)0.0178 (18)0.0016 (17)0.0186 (19)
C1110.0108 (16)0.0181 (18)0.0164 (17)0.0092 (14)0.0012 (14)0.0036 (14)
C1120.0151 (17)0.022 (2)0.0256 (19)0.0114 (15)0.0066 (15)0.0017 (16)
C1130.0178 (18)0.0162 (19)0.034 (2)0.0076 (15)0.0020 (16)0.0110 (16)
C1140.0224 (19)0.030 (2)0.0216 (19)0.0173 (17)0.0020 (16)0.0126 (17)
C1150.0247 (19)0.033 (2)0.0164 (18)0.0208 (17)0.0053 (16)0.0008 (16)
C1160.0172 (17)0.0212 (19)0.0223 (19)0.0103 (15)0.0070 (15)0.0018 (15)
C1210.0197 (17)0.0166 (18)0.0119 (16)0.0098 (15)0.0096 (14)0.0059 (14)
C1220.0180 (17)0.0203 (19)0.0133 (17)0.0078 (15)0.0051 (14)0.0002 (14)
C1230.032 (2)0.0174 (19)0.0165 (18)0.0094 (16)0.0065 (16)0.0049 (15)
C1240.040 (2)0.027 (2)0.024 (2)0.0241 (19)0.0130 (18)0.0017 (17)
C1250.0245 (19)0.034 (2)0.027 (2)0.0195 (18)0.0089 (17)0.0005 (17)
C1260.0179 (18)0.022 (2)0.0199 (18)0.0068 (15)0.0077 (15)0.0010 (15)
C1310.0114 (16)0.0131 (18)0.0130 (17)0.0006 (14)0.0032 (14)0.0021 (14)
C1320.0174 (17)0.022 (2)0.0151 (17)0.0086 (15)0.0070 (15)0.0010 (15)
C1330.0261 (19)0.022 (2)0.0163 (18)0.0127 (16)0.0025 (16)0.0008 (15)
C1340.0246 (19)0.023 (2)0.0169 (18)0.0066 (16)0.0093 (16)0.0031 (15)
C1350.0249 (19)0.030 (2)0.0226 (19)0.0097 (17)0.0154 (16)0.0010 (16)
C1360.0152 (17)0.0168 (19)0.0234 (19)0.0069 (14)0.0051 (15)0.0025 (15)
C2110.0117 (16)0.0195 (19)0.0138 (17)0.0085 (14)0.0026 (14)0.0016 (14)
C2120.0176 (17)0.022 (2)0.0196 (18)0.0043 (15)0.0106 (15)0.0026 (15)
C2130.0172 (17)0.021 (2)0.027 (2)0.0041 (15)0.0100 (16)0.0070 (16)
C2140.0158 (17)0.031 (2)0.0145 (18)0.0111 (16)0.0020 (15)0.0059 (16)
C2150.0257 (19)0.028 (2)0.0177 (18)0.0148 (17)0.0067 (16)0.0006 (16)
C2160.0216 (18)0.0163 (19)0.0206 (19)0.0078 (15)0.0054 (15)0.0026 (15)
C2210.0169 (17)0.0217 (19)0.0079 (16)0.0065 (15)0.0038 (14)0.0014 (14)
C2220.0185 (18)0.032 (2)0.0182 (18)0.0051 (16)0.0064 (15)0.0085 (16)
C2230.0161 (18)0.048 (3)0.021 (2)0.0057 (18)0.0103 (16)0.0032 (18)
C2240.025 (2)0.038 (3)0.019 (2)0.0052 (18)0.0094 (17)0.0032 (18)
C2250.037 (2)0.025 (2)0.020 (2)0.0004 (18)0.0109 (18)0.0052 (17)
C2260.0244 (19)0.025 (2)0.0177 (18)0.0084 (16)0.0084 (16)0.0006 (16)
C2310.0204 (18)0.0168 (18)0.0111 (16)0.0090 (15)0.0046 (14)0.0023 (14)
C2320.0197 (18)0.028 (2)0.0166 (18)0.0102 (16)0.0061 (15)0.0002 (16)
C2330.031 (2)0.023 (2)0.0191 (19)0.0068 (17)0.0103 (17)0.0027 (16)
C2340.039 (2)0.021 (2)0.0196 (19)0.0161 (18)0.0081 (17)0.0008 (16)
C2350.026 (2)0.032 (2)0.0208 (19)0.0188 (18)0.0019 (16)0.0065 (17)
C2360.0209 (18)0.0200 (19)0.0200 (18)0.0085 (15)0.0072 (15)0.0052 (15)
N10.0144 (14)0.0196 (15)0.0125 (14)0.0097 (12)0.0042 (11)0.0005 (12)
N20.0173 (14)0.0288 (17)0.0142 (14)0.0112 (13)0.0069 (12)0.0001 (13)
P10.0127 (4)0.0143 (5)0.0145 (4)0.0053 (4)0.0048 (4)0.0016 (4)
P20.0136 (4)0.0166 (5)0.0137 (4)0.0053 (4)0.0051 (4)0.0016 (4)
Cl10.0187 (4)0.0233 (5)0.0154 (4)0.0082 (4)0.0076 (3)0.0022 (3)
Cl20.0169 (4)0.0301 (5)0.0160 (4)0.0119 (4)0.0004 (3)0.0076 (4)
Se10.01454 (17)0.0306 (2)0.01433 (18)0.00349 (15)0.00578 (14)0.00631 (15)
Se20.02192 (18)0.0287 (2)0.01329 (17)0.01509 (16)0.00248 (15)0.00404 (15)
Pd10.01155 (12)0.01608 (14)0.01212 (13)0.00552 (10)0.00456 (10)0.00157 (10)
Pd20.01134 (12)0.01862 (15)0.01210 (13)0.00543 (11)0.00354 (10)0.00296 (10)
Geometric parameters (Å, º) top
C11—C161.390 (4)C123—C1241.384 (5)
C11—C121.391 (4)C123—H1230.9500
C11—Se11.915 (3)C124—C1251.380 (5)
C12—C131.388 (4)C124—H1240.9500
C12—C171.493 (4)C125—C1261.382 (4)
C13—C141.380 (5)C125—H1250.9500
C13—H130.9500C126—H1260.9500
C14—C151.381 (5)C131—C1361.384 (4)
C14—H140.9500C131—C1321.391 (4)
C15—C161.377 (5)C131—P11.822 (3)
C15—H150.9500C132—C1331.379 (4)
C16—H160.9500C132—H1320.9500
C17—N11.501 (4)C133—C1341.380 (4)
C17—H17A0.9900C133—H1330.9500
C17—H17B0.9900C134—C1351.366 (5)
C18—N11.476 (4)C134—H1340.9500
C18—H18A0.9800C135—C1361.388 (4)
C18—H18B0.9800C135—H1350.9500
C18—H18C0.9800C136—H1360.9500
C19—N11.485 (4)C211—C2121.387 (4)
C19—H19A0.9800C211—C2161.392 (4)
C19—H19B0.9800C211—P21.831 (3)
C19—H19C0.9800C212—C2131.385 (4)
C21—C261.395 (4)C212—H2120.9500
C21—C221.398 (4)C213—C2141.381 (4)
C21—Se21.914 (3)C213—H2130.9500
C22—C231.394 (4)C214—C2151.379 (5)
C22—C271.489 (4)C214—H2140.9500
C23—C241.380 (5)C215—C2161.387 (4)
C23—H230.9500C215—H2150.9500
C24—C251.381 (4)C216—H2160.9500
C24—H240.9500C221—C2261.383 (4)
C25—C261.378 (4)C221—C2221.396 (4)
C25—H250.9500C221—P21.813 (3)
C26—H260.9500C222—C2231.385 (4)
C27—N21.500 (4)C222—H2220.9500
C27—H27A0.9900C223—C2241.376 (5)
C27—H27B0.9900C223—H2230.9500
C28—N21.485 (4)C224—C2251.380 (5)
C28—H28A0.9800C224—H2240.9500
C28—H28B0.9800C225—C2261.385 (5)
C28—H28C0.9800C225—H2250.9500
C29—N21.482 (4)C226—H2260.9500
C29—H29A0.9800C231—C2361.392 (4)
C29—H29B0.9800C231—C2321.397 (4)
C29—H29C0.9800C231—P21.819 (3)
C111—C1121.390 (4)C232—C2331.370 (4)
C111—C1161.398 (4)C232—H2320.9500
C111—P11.837 (3)C233—C2341.385 (5)
C112—C1131.387 (4)C233—H2330.9500
C112—H1120.9500C234—C2351.372 (5)
C113—C1141.367 (5)C234—H2340.9500
C113—H1130.9500C235—C2361.381 (4)
C114—C1151.392 (5)C235—H2350.9500
C114—H1140.9500C236—H2360.9500
C115—C1161.383 (4)N1—Pd12.172 (2)
C115—H1150.9500N2—Pd22.158 (2)
C116—H1160.9500P1—Pd12.2562 (8)
C121—C1261.392 (4)P2—Pd22.2471 (8)
C121—C1221.392 (4)Cl1—Pd12.3816 (8)
C121—P11.822 (3)Cl2—Pd22.3801 (8)
C122—C1231.383 (4)Se1—Pd12.3801 (4)
C122—H1220.9500Se2—Pd22.3852 (4)
C16—C11—C12119.9 (3)C136—C131—P1123.6 (2)
C16—C11—Se1119.7 (2)C132—C131—P1116.8 (2)
C12—C11—Se1120.4 (2)C133—C132—C131120.1 (3)
C13—C12—C11118.9 (3)C133—C132—H132120.0
C13—C12—C17121.0 (3)C131—C132—H132120.0
C11—C12—C17120.1 (3)C132—C133—C134120.0 (3)
C14—C13—C12121.0 (3)C132—C133—H133120.0
C14—C13—H13119.5C134—C133—H133120.0
C12—C13—H13119.5C135—C134—C133120.1 (3)
C13—C14—C15119.6 (3)C135—C134—H134119.9
C13—C14—H14120.2C133—C134—H134119.9
C15—C14—H14120.2C134—C135—C136120.7 (3)
C16—C15—C14120.2 (3)C134—C135—H135119.7
C16—C15—H15119.9C136—C135—H135119.7
C14—C15—H15119.9C131—C136—C135119.5 (3)
C15—C16—C11120.3 (3)C131—C136—H136120.3
C15—C16—H16119.8C135—C136—H136120.3
C11—C16—H16119.8C212—C211—C216118.8 (3)
C12—C17—N1114.1 (2)C212—C211—P2121.7 (2)
C12—C17—H17A108.7C216—C211—P2119.3 (2)
N1—C17—H17A108.7C213—C212—C211120.8 (3)
C12—C17—H17B108.7C213—C212—H212119.6
N1—C17—H17B108.7C211—C212—H212119.6
H17A—C17—H17B107.6C214—C213—C212120.0 (3)
N1—C18—H18A109.5C214—C213—H213120.0
N1—C18—H18B109.5C212—C213—H213120.0
H18A—C18—H18B109.5C215—C214—C213119.7 (3)
N1—C18—H18C109.5C215—C214—H214120.2
H18A—C18—H18C109.5C213—C214—H214120.2
H18B—C18—H18C109.5C214—C215—C216120.5 (3)
N1—C19—H19A109.5C214—C215—H215119.7
N1—C19—H19B109.5C216—C215—H215119.7
H19A—C19—H19B109.5C215—C216—C211120.1 (3)
N1—C19—H19C109.5C215—C216—H216119.9
H19A—C19—H19C109.5C211—C216—H216119.9
H19B—C19—H19C109.5C226—C221—C222118.8 (3)
C26—C21—C22119.2 (3)C226—C221—P2119.9 (2)
C26—C21—Se2118.7 (2)C222—C221—P2121.2 (3)
C22—C21—Se2122.1 (2)C223—C222—C221120.1 (3)
C23—C22—C21119.1 (3)C223—C222—H222119.9
C23—C22—C27120.4 (3)C221—C222—H222119.9
C21—C22—C27120.5 (3)C224—C223—C222120.0 (3)
C24—C23—C22121.0 (3)C224—C223—H223120.0
C24—C23—H23119.5C222—C223—H223120.0
C22—C23—H23119.5C223—C224—C225120.5 (3)
C23—C24—C25119.7 (3)C223—C224—H224119.7
C23—C24—H24120.2C225—C224—H224119.7
C25—C24—H24120.2C224—C225—C226119.4 (4)
C26—C25—C24120.1 (3)C224—C225—H225120.3
C26—C25—H25119.9C226—C225—H225120.3
C24—C25—H25119.9C221—C226—C225121.0 (3)
C25—C26—C21120.8 (3)C221—C226—H226119.5
C25—C26—H26119.6C225—C226—H226119.5
C21—C26—H26119.6C236—C231—C232118.6 (3)
C22—C27—N2114.7 (3)C236—C231—P2122.9 (2)
C22—C27—H27A108.6C232—C231—P2118.1 (2)
N2—C27—H27A108.6C233—C232—C231121.0 (3)
C22—C27—H27B108.6C233—C232—H232119.5
N2—C27—H27B108.6C231—C232—H232119.5
H27A—C27—H27B107.6C232—C233—C234119.7 (3)
N2—C28—H28A109.5C232—C233—H233120.1
N2—C28—H28B109.5C234—C233—H233120.1
H28A—C28—H28B109.5C235—C234—C233119.8 (3)
N2—C28—H28C109.5C235—C234—H234120.1
H28A—C28—H28C109.5C233—C234—H234120.1
H28B—C28—H28C109.5C234—C235—C236120.9 (3)
N2—C29—H29A109.5C234—C235—H235119.6
N2—C29—H29B109.5C236—C235—H235119.6
H29A—C29—H29B109.5C235—C236—C231119.8 (3)
N2—C29—H29C109.5C235—C236—H236120.1
H29A—C29—H29C109.5C231—C236—H236120.1
H29B—C29—H29C109.5C18—N1—C19108.6 (3)
C112—C111—C116118.6 (3)C18—N1—C17108.6 (2)
C112—C111—P1121.9 (2)C19—N1—C17105.9 (2)
C116—C111—P1119.5 (2)C18—N1—Pd1109.80 (18)
C113—C112—C111120.6 (3)C19—N1—Pd1107.16 (19)
C113—C112—H112119.7C17—N1—Pd1116.46 (18)
C111—C112—H112119.7C29—N2—C28109.0 (3)
C114—C113—C112120.4 (3)C29—N2—C27108.9 (2)
C114—C113—H113119.8C28—N2—C27106.3 (2)
C112—C113—H113119.8C29—N2—Pd2111.12 (19)
C113—C114—C115120.0 (3)C28—N2—Pd2105.39 (19)
C113—C114—H114120.0C27—N2—Pd2115.78 (18)
C115—C114—H114120.0C121—P1—C131107.71 (14)
C116—C115—C114120.0 (3)C121—P1—C111101.72 (14)
C116—C115—H115120.0C131—P1—C111102.65 (14)
C114—C115—H115120.0C121—P1—Pd1114.11 (10)
C115—C116—C111120.5 (3)C131—P1—Pd1107.54 (10)
C115—C116—H116119.8C111—P1—Pd1121.91 (10)
C111—C116—H116119.8C221—P2—C231109.16 (14)
C126—C121—C122118.8 (3)C221—P2—C211104.05 (14)
C126—C121—P1120.6 (2)C231—P2—C211105.09 (14)
C122—C121—P1120.6 (2)C221—P2—Pd2112.71 (11)
C123—C122—C121120.6 (3)C231—P2—Pd2105.96 (10)
C123—C122—H122119.7C211—P2—Pd2119.38 (10)
C121—C122—H122119.7C11—Se1—Pd1100.25 (9)
C122—C123—C124119.8 (3)C21—Se2—Pd2101.44 (9)
C122—C123—H123120.1N1—Pd1—P1176.14 (7)
C124—C123—H123120.1N1—Pd1—Se192.62 (6)
C125—C124—C123120.3 (3)P1—Pd1—Se190.14 (2)
C125—C124—H124119.9N1—Pd1—Cl190.80 (7)
C123—C124—H124119.9P1—Pd1—Cl186.56 (3)
C124—C125—C126119.9 (3)Se1—Pd1—Cl1175.71 (2)
C124—C125—H125120.0N2—Pd2—P2173.26 (8)
C126—C125—H125120.0N2—Pd2—Cl290.79 (7)
C125—C126—C121120.7 (3)P2—Pd2—Cl286.75 (3)
C125—C126—H126119.7N2—Pd2—Se294.53 (7)
C121—C126—H126119.7P2—Pd2—Se288.69 (2)
C136—C131—C132119.6 (3)Cl2—Pd2—Se2171.36 (2)
C16—C11—C12—C132.1 (4)C122—C121—P1—C131117.2 (2)
Se1—C11—C12—C13176.0 (2)C126—C121—P1—C11143.0 (3)
C16—C11—C12—C17179.0 (3)C122—C121—P1—C111135.3 (2)
Se1—C11—C12—C172.9 (4)C126—C121—P1—Pd1176.2 (2)
C11—C12—C13—C140.4 (5)C122—C121—P1—Pd12.1 (3)
C17—C12—C13—C14178.4 (3)C136—C131—P1—C1213.9 (3)
C12—C13—C14—C152.4 (5)C132—C131—P1—C121175.5 (2)
C13—C14—C15—C161.8 (5)C136—C131—P1—C111103.0 (3)
C14—C15—C16—C110.8 (5)C132—C131—P1—C11177.6 (3)
C12—C11—C16—C152.7 (5)C136—C131—P1—Pd1127.3 (2)
Se1—C11—C16—C15175.4 (2)C132—C131—P1—Pd152.1 (3)
C13—C12—C17—N1113.2 (3)C112—C111—P1—C121116.8 (3)
C11—C12—C17—N168.0 (4)C116—C111—P1—C12162.8 (3)
C26—C21—C22—C230.2 (5)C112—C111—P1—C1315.4 (3)
Se2—C21—C22—C23177.3 (2)C116—C111—P1—C131174.2 (2)
C26—C21—C22—C27177.8 (3)C112—C111—P1—Pd1114.9 (2)
Se2—C21—C22—C270.2 (4)C116—C111—P1—Pd165.6 (3)
C21—C22—C23—C241.7 (5)C226—C221—P2—C231124.1 (3)
C27—C22—C23—C24175.9 (3)C222—C221—P2—C23159.3 (3)
C22—C23—C24—C251.5 (5)C226—C221—P2—C211124.2 (3)
C23—C24—C25—C260.8 (5)C222—C221—P2—C21152.5 (3)
C24—C25—C26—C212.8 (5)C226—C221—P2—Pd26.6 (3)
C22—C21—C26—C252.5 (5)C222—C221—P2—Pd2176.7 (2)
Se2—C21—C26—C25175.2 (2)C236—C231—P2—C2211.5 (3)
C23—C22—C27—N2114.0 (3)C232—C231—P2—C221171.0 (2)
C21—C22—C27—N268.4 (4)C236—C231—P2—C211109.6 (3)
C116—C111—C112—C1130.5 (4)C232—C231—P2—C21177.9 (3)
P1—C111—C112—C113179.9 (2)C236—C231—P2—Pd2123.1 (2)
C111—C112—C113—C1140.1 (5)C232—C231—P2—Pd249.4 (3)
C112—C113—C114—C1150.3 (5)C212—C211—P2—C221145.9 (3)
C113—C114—C115—C1160.4 (5)C216—C211—P2—C22138.1 (3)
C114—C115—C116—C1110.0 (5)C212—C211—P2—C23131.2 (3)
C112—C111—C116—C1150.4 (4)C216—C211—P2—C231152.8 (2)
P1—C111—C116—C115180.0 (2)C212—C211—P2—Pd287.4 (3)
C126—C121—C122—C1230.6 (4)C216—C211—P2—Pd288.6 (2)
P1—C121—C122—C123179.0 (2)C16—C11—Se1—Pd1128.3 (2)
C121—C122—C123—C1240.6 (5)C12—C11—Se1—Pd153.6 (2)
C122—C123—C124—C1251.1 (5)C26—C21—Se2—Pd2135.3 (2)
C123—C124—C125—C1260.2 (5)C22—C21—Se2—Pd247.1 (3)
C124—C125—C126—C1211.1 (5)C18—N1—Pd1—P1106.3 (10)
C122—C121—C126—C1251.5 (5)C19—N1—Pd1—P111.5 (12)
P1—C121—C126—C125179.8 (2)C17—N1—Pd1—P1129.8 (10)
C136—C131—C132—C1331.5 (5)C18—N1—Pd1—Se1117.90 (19)
P1—C131—C132—C133179.1 (2)C19—N1—Pd1—Se1124.29 (19)
C131—C132—C133—C1341.7 (5)C17—N1—Pd1—Se16.0 (2)
C132—C133—C134—C1350.7 (5)C18—N1—Pd1—Cl159.52 (19)
C133—C134—C135—C1360.4 (5)C19—N1—Pd1—Cl158.29 (19)
C132—C131—C136—C1350.4 (5)C17—N1—Pd1—Cl1176.5 (2)
P1—C131—C136—C135179.8 (2)C121—P1—Pd1—N1115.4 (11)
C134—C135—C136—C1310.5 (5)C131—P1—Pd1—N14.0 (11)
C216—C211—C212—C2131.1 (5)C111—P1—Pd1—N1121.9 (11)
P2—C211—C212—C213174.9 (2)C121—P1—Pd1—Se1108.76 (10)
C211—C212—C213—C2140.9 (5)C131—P1—Pd1—Se1131.84 (11)
C212—C213—C214—C2150.1 (5)C111—P1—Pd1—Se113.97 (12)
C213—C214—C215—C2161.1 (5)C121—P1—Pd1—Cl168.50 (11)
C214—C215—C216—C2110.9 (5)C131—P1—Pd1—Cl150.90 (11)
C212—C211—C216—C2150.2 (5)C111—P1—Pd1—Cl1168.77 (13)
P2—C211—C216—C215175.9 (2)C11—Se1—Pd1—N140.01 (12)
C226—C221—C222—C2232.7 (5)C11—Se1—Pd1—P1142.68 (10)
P2—C221—C222—C223179.4 (3)C11—Se1—Pd1—Cl1103.0 (3)
C221—C222—C223—C2242.7 (5)C29—N2—Pd2—P2127.4 (6)
C222—C223—C224—C2251.2 (5)C28—N2—Pd2—P29.4 (8)
C223—C224—C225—C2260.3 (5)C27—N2—Pd2—P2107.8 (6)
C222—C221—C226—C2251.1 (5)C29—N2—Pd2—Cl258.9 (2)
P2—C221—C226—C225177.9 (3)C28—N2—Pd2—Cl259.1 (2)
C224—C225—C226—C2210.4 (5)C27—N2—Pd2—Cl2176.3 (2)
C236—C231—C232—C2330.0 (5)C29—N2—Pd2—Se2114.3 (2)
P2—C231—C232—C233172.8 (2)C28—N2—Pd2—Se2127.74 (19)
C231—C232—C233—C2342.3 (5)C27—N2—Pd2—Se210.6 (2)
C232—C233—C234—C2352.5 (5)C221—P2—Pd2—N2138.4 (6)
C233—C234—C235—C2360.4 (5)C231—P2—Pd2—N219.1 (6)
C234—C235—C236—C2311.9 (5)C211—P2—Pd2—N299.1 (6)
C232—C231—C236—C2352.1 (4)C221—P2—Pd2—Cl269.70 (11)
P2—C231—C236—C235170.4 (2)C231—P2—Pd2—Cl249.62 (11)
C12—C17—N1—C1859.8 (3)C211—P2—Pd2—Cl2167.78 (12)
C12—C17—N1—C19176.3 (3)C221—P2—Pd2—Se2102.97 (11)
C12—C17—N1—Pd164.7 (3)C231—P2—Pd2—Se2137.71 (11)
C22—C27—N2—C2959.3 (3)C211—P2—Pd2—Se219.56 (12)
C22—C27—N2—C28176.6 (3)C21—Se2—Pd2—N234.07 (12)
C22—C27—N2—Pd266.7 (3)C21—Se2—Pd2—P2151.86 (10)
C126—C121—P1—C13164.5 (3)C21—Se2—Pd2—Cl293.78 (19)
Selected geometric parameters (Å, º) top
N1—Pd12.172 (2)Cl1—Pd12.3816 (8)
N2—Pd22.158 (2)Cl2—Pd22.3801 (8)
P1—Pd12.2562 (8)Se1—Pd12.3801 (4)
P2—Pd22.2471 (8)Se2—Pd22.3852 (4)
N1—Pd1—Se192.62 (6)N2—Pd2—Cl290.79 (7)
P1—Pd1—Se190.14 (2)P2—Pd2—Cl286.75 (3)
N1—Pd1—Cl190.80 (7)N2—Pd2—Se294.53 (7)
P1—Pd1—Cl186.56 (3)P2—Pd2—Se288.69 (2)
 

Acknowledgements

Financial support from the Jenni and Antti Wihuri Foundation (EMT) and the Academy of Finland is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHannu, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2000). Inorg. Chem. Commun. 3, 397–399.  Web of Science CSD CrossRef CAS Google Scholar
First citationHannu-Kuure, M. S., Komulainen, J., Oilunkaniemi, R., Laitinen, R. S., Suontamo, R. & Ahlgren, M. (2003a). J. Organomet. Chem. 666, 111–120.  CAS Google Scholar
First citationHannu-Kuure, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2004). Acta Cryst. E60, m214–m216.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHannu-Kuure, M. S., Paldan, K., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2003b). J. Organomet. Chem. 687, 538–544.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRisto, M., Jahr, E. M., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2007). J. Organomet. Chem. 692, 2193–2204.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, A., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2005). Acta Cryst. E61, m2198–m2200.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds