organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o730-o731

N′-[(4Z)-1-(3-Methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­­idene)hex­yl]benzene­sulfono­hydrazide

aDepartment of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, and bSchool of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
*Correspondence e-mail: oguejiofo.ujam@unn.edu.ng

(Received 29 April 2014; accepted 23 May 2014; online 31 May 2014)

In the title compound, C22H26N4O3S, the dihedral angle between the pyrazoloneand phenyl rings is 21.73 (4)°. The benzensulfono­hydrazide group adopts a gauche conformation about the N—N vector. The C—N—N—S torsion angle is −109.88 (13)°. The mol­ecule exists as the enamine tautomeric form (C=C—NH). An intra­molecular N—H⋯O=C hydrogen bond occurs. In the crystal, mol­ecules are linked by pairs of N—H⋯O=C hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the synthesis of 4-acyl-3-methyl-1-phenyl­pyrazol-5-one, see: Okafor (1983[Okafor, E. C. (1983). Polyhedron, 2, 309-316.]). For related studies of 4-acyl­pyrazol-5-one Schiff bases, see: Xu et al. (2008[Xu, G. C., Zhang, L., Lang, L., Liu, G. & Jia, D. Z. (2008). Polyhedron, 27, 12-24.]); Peng et al. (2005[Peng, B., Liu, G., Liu, L. & Jia, D. (2005). Tetrahedron, 61, 5926-5932.]); Yang et al. (2007[Yang, Y., Zang, L., Liu, L., Liu, G., Guo, J. & Jia, D. (2007). Struct. Chem. 18, 909-915.]). For their ligating ability towards metal ions and their biological activity, see: Parmar & Teraiya, (2009[Parmar, N. J. & Teraiya, S. B. (2009). J. Coord. Chem. 62, 2388-2398.]); Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Raman et al. (2001[Raman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131-135.]); Uzoukwu et al. (1996[Uzoukwu, B. A., Adiukwu, P. U., Al-Juaid, S. S., Hitchcook, P. B. & Smith, J. D. (1996). Inorg. Chim. Acta, 250, 173-176.]); Yang et al. (2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]); Chiba et al. 1998[Chiba, P., Holzer, W., Landau, M., Beckmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, J. (1998). J. Med. Chem. 41, 4001-4011.]). For their use as efficient extractants of metal ions in solution and recently as photochromic agents, see: Marchetti et al. (2005[Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909-2945.]); Marchetti et al. (2000[Marchetti, F., Pettinari, C., Pettinari, R., Arriva, D., Troyanov, S. & Drozdov, A. (2000). Inorg. Chim. Acta, 307, 97-105.]); Wu et al. (2009[Wu, D., Jia, D., Liu, L. & Liu, A. (2009). Int. J. Quantum Chem. 109, 1341-1347.]). For related pyrazolone derivative structures, see: Sawusch et al. (1999[Sawusch, S., Jäger, N., Schilde, U. & Uhlemann, E. (1999). Struct. Chem. 10, 105-119.]); Sun et al. (2007[Sun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Cui, Y.-P. (2007). Acta Cryst. E63, o2005-o2006.]); Liu et al. (2002[Liu, L., Jia, D., Qiao, Y., Ji, Y. & Yu, K. (2002). J. Chem. Crystallogr. 32, 255-259.]); Sun & Cui, (2008[Sun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, o690.]); Gallardo et al. (2009[Gallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040-o2041.]); Chi et al. (2010[Chi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N4O3S

  • Mr = 426.53

  • Monoclinic, P 21 /n

  • a = 10.8672 (8) Å

  • b = 14.0435 (10) Å

  • c = 14.3584 (10) Å

  • β = 104.302 (4)°

  • V = 2123.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 99 K

  • 0.26 × 0.26 × 0.24 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.633, Tmax = 0.746

  • 25355 measured reflections

  • 4980 independent reflections

  • 4185 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.11

  • 4980 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.87 (2) 1.94 (2) 2.7823 (17) 165.0 (18)
N2—H2N⋯O3 0.85 (2) 1.998 (19) 2.6953 (16) 138.5 (17)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Heterocyclic β-diketones with a pyrazol core and their derivatives have been the subject of investigation for decades because of their inter­esting ligating ability towards metal centres and biological activities (Parmar and Teraiya, 2009; Bedia et al., 2006; Raman et al., 2001; Uzoukwu et al. 1996; Yang et al. 2000; Chiba et al. 1998). They are also known to act as efficient extra­cta­nts of metal ions in solution and recently as photochromic agents (Marchetti, et al., 2005; Marchetti et al., 2000; Wu et al.,2009). The title compound, N'-[(4Z)-1-(3-methyl-5-oxo-1-phenyl-4,5-di­hydro-1H-pyrazol-4-yl­idene)hexyl]­benzene­sulfono­hydrazide is a new derivative prepared as a part of an on-going research to study the coordination chemistry and biological activities of heterocyclic β-diketone Schiff bases. In view of the novelty of the title compound we decided to undertake its crystallographic study to determine the structure and define the overall conformation of the molecule, and to understand the H-bonding inter­actions. The asymmetric unit (Figure 1) comprises the title compound. The bond distances and angles are similar to those observed in closely related compounds (Sawusch et al., 1999). The molecule is expectedly not planar. The dihedral angle between the pyrazolone ring (N3 N4 C13 C14 C15) and the phenyl group (C17 C18 C19 C20 C21 C22) planes is 21.73 (4)°. The benzensulfono­hydrazide moiety adopts a gauche conformation about the N1–N2 vector, presumably due to steric repulsion associated with the high electron density on the O=S=O group so that the C7–N1–N2–S1 torsion angle is 109.88 (13)°. The molecule exists as the enamine tautomeric form (C=C—NH) in the solid state as found in 2'-[(Phenyl)(1-phenyl-3-methyl-5-oxo-4,5-di­hydro-1H-pyrazole-4-yl­idene)methyl]-1-naphtho­hydrazide (Sun et al., 2007) and N'-[(Z)-3-methyl-5-oxo-1-phenyl-1,5-di­hydro-4H-pyrazole-4-yl­idene)(phenyl)(methyl]­benzohydrazide (Sawusch et al., 1999). The C=O group acts as a H-bond acceptor for an intra­molecular bond from N2–H2n···O3 and for an inter­molecular bond from N1'–H1n'···O3 (Figure 2). The packing shows H-bonded centrosymmetric dimers in the unit cell (Figure 3).

Experimental top

A solution of 4-hexanoyl-5-methyl-2-phenyl-2,4-di­hydro-3H-pyrazol-3-one [2.72 mg, 0.01 mmol] in ethanol (30 mL) was mixed with a solution of benzene­sulfono­hydrazide [1.72 mg, 0.01 mmol] in ethanol (20 mL). The mixture was refluxed for 3 h and cooled. The yellow product was isolated by gravity filtration and recrystallized from ethanol. Crystals suitable for X-ray crystallographic analysis were obtained by slow dissolution of the compound in ethanol by warming, and addition of few drops of di­methyl sulphoxide (DMSO), followed by slow evaporation of the solvent at room temperature for 11 days.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 - 0.97 Å and refined using a riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2 Ueq(C) for aromatic and methyl­ene groups, Uiso(H) = 1.5 Ueq(C) for methyl group, except for the two N—H hydrogen atoms which were located in a penultimate difference map and refined with free x, y, z, Uiso parameters.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For synthesis of 4-acyl-3-methyl-1-phenylpyrazol-5-one, see: Okafor (1983). For related studies of 4-acylpyrazol-5-one Schiff bases, see: Xu et al. (2008); Peng et al. (2005); Yang et al. (2007). For their ligating ability towards metal centres and biological activities, see: Parmar & Teraiya, (2009); Bedia et al. (2006); Raman et al. (2001); Uzoukwu et al. (1996); Yang et al. (2000); Chiba et al. 1998). For their use as efficient extractants of metal ions in solution and recently as photochromic agents, see: Marchetti et al. (2005); Marchetti et al. (2000); Wu et al. (2009). For related pyrazolone derivative structures, see: Sawusch et al. (1999); Sun et al. (2007); Liu et al. (2002); Sun & Cui, (2008); Gallardo et al. (2009); Chi et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering of the title compound with displacement parameters drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Crystal structure of the compound showing the intramolecular N2–H2n···O3 hydrogen bond and intermolecular N1'–H1n'···O3 hydrogen bond (dotted lines) forming centrosymmetric dimers. [Symmetry code: (i) -x + 1, -y + 1, -z + 1)]
[Figure 3] Fig. 3. A view of the packing diagram of the title compound showing the H-bonded centrosymmetric dimers in the unit cell.
N'-[(4Z)-1-(3-Methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylidene)hexyl]benzenesulfonohydrazide top
Crystal data top
C22H26N4O3SF(000) = 904
Mr = 426.53Dx = 1.334 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9478 reflections
a = 10.8672 (8) Åθ = 2–27°
b = 14.0435 (10) ŵ = 0.18 mm1
c = 14.3584 (10) ÅT = 99 K
β = 104.302 (4)°Block, colourless
V = 2123.4 (3) Å30.26 × 0.26 × 0.24 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
4980 independent reflections
Radiation source: fine-focus sealed tube4185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 512 pixels mm-1θmax = 27.8°, θmin = 2.1°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick 2003)
k = 1817
Tmin = 0.633, Tmax = 0.746l = 1818
25355 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.5899P]
where P = (Fo2 + 2Fc2)/3
4980 reflections(Δ/σ)max = 0.002
281 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C22H26N4O3SV = 2123.4 (3) Å3
Mr = 426.53Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8672 (8) ŵ = 0.18 mm1
b = 14.0435 (10) ÅT = 99 K
c = 14.3584 (10) Å0.26 × 0.26 × 0.24 mm
β = 104.302 (4)°
Data collection top
Siemens SMART CCD
diffractometer
4980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick 2003)
4185 reflections with I > 2σ(I)
Tmin = 0.633, Tmax = 0.746Rint = 0.062
25355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.34 e Å3
4980 reflectionsΔρmin = 0.49 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Four low-angle reflections for which Fc differed from Fo by more than 10 σ were omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.83554 (15)0.58407 (11)0.46768 (11)0.0211 (3)
H10.87670.54760.52220.025*
C20.84984 (16)0.68239 (11)0.46701 (11)0.0245 (3)
H20.90050.71380.52180.029*
C30.79021 (16)0.73473 (11)0.38641 (11)0.0228 (3)
H30.80220.80170.38590.027*
C40.71306 (15)0.69017 (11)0.30635 (11)0.0210 (3)
H40.67170.72680.25200.025*
C50.69679 (14)0.59246 (10)0.30602 (10)0.0181 (3)
H50.64390.56150.25190.022*
C60.75948 (14)0.54000 (10)0.38658 (10)0.0162 (3)
C70.61260 (13)0.32615 (10)0.56998 (10)0.0157 (3)
C80.60209 (14)0.23025 (10)0.52353 (10)0.0176 (3)
H8A0.63580.18150.57310.021*
H8B0.65470.22900.47630.021*
C90.46369 (15)0.20498 (12)0.47215 (11)0.0232 (3)
H9A0.41770.18500.52040.028*
H9B0.42080.26220.43890.028*
C100.45813 (16)0.12465 (11)0.39871 (11)0.0232 (3)
H10A0.52150.07540.42720.028*
H10B0.37310.09470.38520.028*
C110.48371 (17)0.15861 (12)0.30424 (11)0.0263 (4)
H11A0.56950.18730.31750.032*
H11B0.42140.20870.27630.032*
C120.47532 (18)0.07856 (12)0.23097 (12)0.0301 (4)
H12A0.53980.03020.25680.045*
H12B0.49000.10450.17130.045*
H12C0.39080.04950.21770.045*
C130.61852 (13)0.43759 (10)0.70637 (10)0.0160 (3)
C140.61630 (14)0.34310 (10)0.66620 (10)0.0162 (3)
C150.61461 (15)0.27967 (11)0.74490 (10)0.0195 (3)
C160.60908 (19)0.17333 (11)0.74752 (12)0.0300 (4)
H16A0.59750.15270.81000.045*
H16B0.68840.14680.73790.045*
H16C0.53770.15080.69640.045*
C170.62532 (14)0.49222 (10)0.87539 (10)0.0165 (3)
C180.58753 (15)0.58638 (11)0.85585 (11)0.0201 (3)
H180.55810.60750.79130.024*
C190.59322 (15)0.64913 (11)0.93165 (11)0.0228 (3)
H190.56820.71360.91860.027*
C200.63510 (15)0.61877 (12)1.02633 (11)0.0241 (3)
H200.63700.66181.07770.029*
C210.67404 (16)0.52526 (12)1.04537 (11)0.0240 (3)
H210.70370.50451.11000.029*
C220.67002 (15)0.46168 (11)0.97043 (10)0.0203 (3)
H220.69750.39780.98380.024*
N10.60894 (13)0.39080 (9)0.41610 (9)0.0172 (3)
N20.61477 (13)0.40250 (9)0.51387 (8)0.0180 (3)
N30.61865 (12)0.42409 (8)0.80069 (8)0.0170 (3)
N40.61620 (13)0.32701 (9)0.82394 (9)0.0207 (3)
O10.71266 (12)0.38720 (8)0.28385 (8)0.0258 (3)
O20.84341 (11)0.37306 (8)0.45227 (8)0.0273 (3)
O30.61915 (10)0.51729 (7)0.66509 (7)0.0181 (2)
S0.74133 (4)0.41560 (2)0.38252 (2)0.01761 (12)
H1N0.5412 (19)0.4172 (13)0.3810 (14)0.025 (5)*
H2N0.6204 (18)0.4578 (14)0.5389 (13)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (8)0.0235 (8)0.0156 (7)0.0012 (6)0.0037 (6)0.0003 (5)
C20.0313 (9)0.0239 (8)0.0180 (7)0.0065 (7)0.0057 (6)0.0058 (6)
C30.0311 (9)0.0171 (7)0.0235 (7)0.0033 (6)0.0129 (6)0.0021 (6)
C40.0222 (8)0.0228 (8)0.0195 (7)0.0011 (6)0.0079 (6)0.0031 (6)
C50.0184 (7)0.0212 (7)0.0148 (7)0.0013 (6)0.0042 (5)0.0017 (5)
C60.0173 (7)0.0160 (7)0.0169 (7)0.0005 (5)0.0070 (5)0.0020 (5)
C70.0134 (7)0.0159 (7)0.0177 (7)0.0009 (5)0.0038 (5)0.0010 (5)
C80.0194 (7)0.0158 (7)0.0181 (7)0.0001 (6)0.0054 (5)0.0003 (5)
C90.0192 (8)0.0274 (8)0.0252 (8)0.0048 (6)0.0094 (6)0.0071 (6)
C100.0236 (8)0.0229 (8)0.0248 (8)0.0082 (6)0.0094 (6)0.0058 (6)
C110.0322 (9)0.0232 (8)0.0245 (8)0.0063 (7)0.0090 (7)0.0037 (6)
C120.0331 (10)0.0316 (9)0.0275 (9)0.0071 (7)0.0114 (7)0.0083 (7)
C130.0140 (7)0.0180 (7)0.0151 (6)0.0006 (5)0.0021 (5)0.0011 (5)
C140.0163 (7)0.0152 (7)0.0167 (7)0.0001 (5)0.0031 (5)0.0017 (5)
C150.0236 (8)0.0174 (7)0.0173 (7)0.0012 (6)0.0045 (6)0.0020 (5)
C160.0510 (11)0.0168 (8)0.0233 (8)0.0008 (7)0.0114 (7)0.0034 (6)
C170.0144 (7)0.0203 (7)0.0154 (7)0.0016 (6)0.0045 (5)0.0010 (5)
C180.0190 (7)0.0218 (8)0.0183 (7)0.0003 (6)0.0026 (6)0.0007 (5)
C190.0209 (8)0.0204 (7)0.0278 (8)0.0008 (6)0.0074 (6)0.0042 (6)
C200.0236 (8)0.0293 (8)0.0219 (7)0.0054 (7)0.0105 (6)0.0082 (6)
C210.0255 (8)0.0320 (9)0.0157 (7)0.0028 (7)0.0071 (6)0.0022 (6)
C220.0212 (7)0.0231 (7)0.0173 (7)0.0002 (6)0.0061 (6)0.0016 (6)
N10.0188 (6)0.0196 (6)0.0128 (6)0.0001 (5)0.0032 (5)0.0010 (5)
N20.0265 (7)0.0147 (6)0.0130 (6)0.0005 (5)0.0054 (5)0.0009 (4)
N30.0211 (6)0.0147 (6)0.0147 (6)0.0007 (5)0.0033 (5)0.0015 (4)
N40.0279 (7)0.0154 (6)0.0186 (6)0.0004 (5)0.0051 (5)0.0030 (5)
O10.0366 (7)0.0224 (6)0.0219 (6)0.0032 (5)0.0138 (5)0.0074 (4)
O20.0231 (6)0.0224 (6)0.0346 (6)0.0051 (5)0.0040 (5)0.0048 (5)
O30.0217 (5)0.0153 (5)0.0173 (5)0.0003 (4)0.0046 (4)0.0026 (4)
S0.0203 (2)0.01548 (19)0.0180 (2)0.00128 (13)0.00662 (14)0.00129 (12)
Geometric parameters (Å, º) top
C1—C21.390 (2)C12—H12C0.9800
C1—C61.395 (2)C13—O31.2672 (17)
C1—H10.9500C13—N31.3672 (18)
C2—C31.389 (2)C13—C141.4447 (19)
C2—H20.9500C14—C151.4425 (19)
C3—C41.393 (2)C15—N41.3118 (19)
C3—H30.9500C15—C161.495 (2)
C4—C51.383 (2)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.398 (2)C16—H16C0.9800
C5—H50.9500C17—C181.392 (2)
C6—S1.7575 (15)C17—C221.3981 (19)
C7—N21.3448 (18)C17—N31.4258 (18)
C7—C141.3927 (19)C18—C191.390 (2)
C7—C81.4947 (19)C18—H180.9500
C8—C91.544 (2)C19—C201.390 (2)
C8—H8A0.9900C19—H190.9500
C8—H8B0.9900C20—C211.386 (2)
C9—C101.535 (2)C20—H200.9500
C9—H9A0.9900C21—C221.391 (2)
C9—H9B0.9900C21—H210.9500
C10—C111.527 (2)C22—H220.9500
C10—H10A0.9900N1—N21.3992 (16)
C10—H10B0.9900N1—S1.6632 (13)
C11—C121.527 (2)N1—H1N0.87 (2)
C11—H11A0.9900N2—H2N0.85 (2)
C11—H11B0.9900N3—N41.4054 (17)
C12—H12A0.9800O1—S1.4301 (11)
C12—H12B0.9800O2—S1.4289 (12)
C2—C1—C6118.63 (14)H12B—C12—H12C109.5
C2—C1—H1120.7O3—C13—N3125.94 (13)
C6—C1—H1120.7O3—C13—C14128.76 (13)
C1—C2—C3120.11 (14)N3—C13—C14105.30 (12)
C1—C2—H2119.9C7—C14—C15131.96 (13)
C3—C2—H2119.9C7—C14—C13123.13 (13)
C2—C3—C4120.78 (14)C15—C14—C13104.88 (12)
C2—C3—H3119.6N4—C15—C14111.39 (13)
C4—C3—H3119.6N4—C15—C16118.45 (13)
C5—C4—C3119.92 (14)C14—C15—C16130.15 (13)
C5—C4—H4120.0C15—C16—H16A109.5
C3—C4—H4120.0C15—C16—H16B109.5
C4—C5—C6118.95 (13)H16A—C16—H16B109.5
C4—C5—H5120.5C15—C16—H16C109.5
C6—C5—H5120.5H16A—C16—H16C109.5
C1—C6—C5121.58 (14)H16B—C16—H16C109.5
C1—C6—S120.47 (11)C18—C17—C22120.13 (13)
C5—C6—S117.94 (11)C18—C17—N3121.88 (12)
N2—C7—C14117.23 (13)C22—C17—N3117.98 (13)
N2—C7—C8117.51 (12)C19—C18—C17119.38 (14)
C14—C7—C8125.24 (13)C19—C18—H18120.3
C7—C8—C9112.22 (12)C17—C18—H18120.3
C7—C8—H8A109.2C20—C19—C18120.79 (15)
C9—C8—H8A109.2C20—C19—H19119.6
C7—C8—H8B109.2C18—C19—H19119.6
C9—C8—H8B109.2C21—C20—C19119.60 (14)
H8A—C8—H8B107.9C21—C20—H20120.2
C10—C9—C8111.43 (13)C19—C20—H20120.2
C10—C9—H9A109.3C20—C21—C22120.40 (14)
C8—C9—H9A109.3C20—C21—H21119.8
C10—C9—H9B109.3C22—C21—H21119.8
C8—C9—H9B109.3C21—C22—C17119.68 (14)
H9A—C9—H9B108.0C21—C22—H22120.2
C11—C10—C9113.32 (13)C17—C22—H22120.2
C11—C10—H10A108.9N2—N1—S115.99 (10)
C9—C10—H10A108.9N2—N1—H1N110.8 (13)
C11—C10—H10B108.9S—N1—H1N114.4 (13)
C9—C10—H10B108.9C7—N2—N1120.28 (12)
H10A—C10—H10B107.7C7—N2—H2N118.9 (12)
C10—C11—C12112.91 (14)N1—N2—H2N120.8 (12)
C10—C11—H11A109.0C13—N3—N4111.99 (11)
C12—C11—H11A109.0C13—N3—C17129.76 (12)
C10—C11—H11B109.0N4—N3—C17118.21 (11)
C12—C11—H11B109.0C15—N4—N3106.44 (11)
H11A—C11—H11B107.8O2—S—O1121.28 (7)
C11—C12—H12A109.5O2—S—N1106.66 (7)
C11—C12—H12B109.5O1—S—N1103.68 (7)
H12A—C12—H12B109.5O2—S—C6109.33 (7)
C11—C12—H12C109.5O1—S—C6107.77 (7)
H12A—C12—H12C109.5N1—S—C6107.25 (7)
C6—C1—C2—C30.7 (2)C19—C20—C21—C220.7 (2)
C1—C2—C3—C41.6 (2)C20—C21—C22—C170.6 (2)
C2—C3—C4—C51.0 (2)C18—C17—C22—C211.3 (2)
C3—C4—C5—C60.5 (2)N3—C17—C22—C21177.93 (14)
C2—C1—C6—C50.8 (2)C14—C7—N2—N1178.82 (13)
C2—C1—C6—S178.44 (12)C8—C7—N2—N10.8 (2)
C4—C5—C6—C11.4 (2)S—N1—N2—C7109.88 (13)
C4—C5—C6—S177.89 (11)O3—C13—N3—N4179.25 (13)
N2—C7—C8—C981.70 (16)C14—C13—N3—N40.21 (16)
C14—C7—C8—C996.15 (17)O3—C13—N3—C173.2 (2)
C7—C8—C9—C10161.28 (13)C14—C13—N3—C17177.32 (14)
C8—C9—C10—C1179.10 (17)C18—C17—N3—C1323.8 (2)
C9—C10—C11—C12178.84 (14)C22—C17—N3—C13156.90 (15)
N2—C7—C14—C15179.53 (15)C18—C17—N3—N4158.75 (14)
C8—C7—C14—C151.7 (3)C22—C17—N3—N420.50 (19)
N2—C7—C14—C131.9 (2)C14—C15—N4—N30.16 (17)
C8—C7—C14—C13176.00 (13)C16—C15—N4—N3178.74 (14)
O3—C13—C14—C70.9 (2)C13—N3—N4—C150.04 (17)
N3—C13—C14—C7178.50 (13)C17—N3—N4—C15177.81 (13)
O3—C13—C14—C15179.16 (14)N2—N1—S—O244.46 (12)
N3—C13—C14—C150.29 (15)N2—N1—S—O1173.55 (10)
C7—C14—C15—N4178.27 (15)N2—N1—S—C672.59 (11)
C13—C14—C15—N40.29 (17)C1—C6—S—O219.91 (14)
C7—C14—C15—C160.5 (3)C5—C6—S—O2159.37 (12)
C13—C14—C15—C16178.45 (17)C1—C6—S—O1153.56 (12)
C22—C17—C18—C190.8 (2)C5—C6—S—O125.72 (14)
N3—C17—C18—C19178.44 (14)C1—C6—S—N195.37 (13)
C17—C18—C19—C200.5 (2)C5—C6—S—N185.35 (12)
C18—C19—C20—C211.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.94 (2)2.7823 (17)165.0 (18)
N2—H2N···O30.85 (2)1.998 (19)2.6953 (16)138.5 (17)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.87 (2)1.94 (2)2.7823 (17)165.0 (18)
N2—H2N···O30.85 (2)1.998 (19)2.6953 (16)138.5 (17)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria, for financial assistance. We also thank the Department of Chemistry, University of Auckland, New Zealand, where the data were collected and Professor Brian K. Nicholson, University of Waikato, Hamilton, New Zealand, for valuable assistance with the refinement.

References

First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, X., Xiao, J., Yin, Y. & Xia, M. (2010). Acta Cryst. E66, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChiba, P., Holzer, W., Landau, M., Beckmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, J. (1998). J. Med. Chem. 41, 4001–4011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGallardo, H., Girotto, E., Bortoluzzi, A. J. & Terra, G. G. (2009). Acta Cryst. E65, o2040–o2041.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, L., Jia, D., Qiao, Y., Ji, Y. & Yu, K. (2002). J. Chem. Crystallogr. 32, 255–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909–2945.  Web of Science CrossRef CAS Google Scholar
First citationMarchetti, F., Pettinari, C., Pettinari, R., Arriva, D., Troyanov, S. & Drozdov, A. (2000). Inorg. Chim. Acta, 307, 97–105.  Web of Science CrossRef CAS Google Scholar
First citationOkafor, E. C. (1983). Polyhedron, 2, 309–316.  CAS Google Scholar
First citationParmar, N. J. & Teraiya, S. B. (2009). J. Coord. Chem. 62, 2388–2398.  Web of Science CrossRef CAS Google Scholar
First citationPeng, B., Liu, G., Liu, L. & Jia, D. (2005). Tetrahedron, 61, 5926–5932.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131–135.  Web of Science CrossRef CAS Google Scholar
First citationSawusch, S., Jäger, N., Schilde, U. & Uhlemann, E. (1999). Struct. Chem. 10, 105–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F. & Cui, Y.-P. (2008). Acta Cryst. E64, o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Cui, Y.-P. (2007). Acta Cryst. E63, o2005–o2006.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationUzoukwu, B. A., Adiukwu, P. U., Al-Juaid, S. S., Hitchcook, P. B. & Smith, J. D. (1996). Inorg. Chim. Acta, 250, 173–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationWu, D., Jia, D., Liu, L. & Liu, A. (2009). Int. J. Quantum Chem. 109, 1341–1347.  Web of Science CrossRef CAS Google Scholar
First citationXu, G. C., Zhang, L., Lang, L., Liu, G. & Jia, D. Z. (2008). Polyhedron, 27, 12–24.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Y., Zang, L., Liu, L., Liu, G., Guo, J. & Jia, D. (2007). Struct. Chem. 18, 909–915.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o730-o731
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds