organic compounds
3-(2-Methyl-1,3-benzothiazol-3-ium-3-yl)propane-1-sulfonate monohydrate
aDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn
In the title hydrated zwitterion, C11H13NO3S2·H2O, the N—C—C—C and C—C—C—S torsion angles in the side-chain are 171.06 (14) and 173.73 (12)°, respectively. In the crystal, inversion-related molecules are π-stacked with an interplanar separation of 3.3847 (2) Å. O—H⋯O hydrogen bonds link inversion-related molecules with a pair of water molecules to form R42(8) rings. The closest S⋯S contact is 3.4051 (15) Å between inversion-related molecules.
CCDC reference: 1004303
Related literature
The ). An analysis of bond angles in the thiazole ring system has been given by Muir et al. (1987). Applications of benzothiazole derivatives have been described by Vicini et al. (2003); Bondock et al. (2010); Paramashivappa et al. (2003) and Sayama et al. (2002).
of a related benzothiazole derivative is described by Lynch (2002Experimental
Crystal data
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1004303
10.1107/S1600536814011660/pk2524sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011660/pk2524Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814011660/pk2524Isup3.cml
The title complex, 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate, was prepared by mixing 2-methylbenzo[d]thiazole (1.49 g, 0.010 mol) with 1,2-oxathiolane 2,2-dioxide (1.47 g, 0.012 mol) in toluene (20 ml). The mixture was heated to reflux for 4 h. After the reaction was complete, the solution was cooled to room temperature. The mixture was filtered and washed with ethanol 3 times to give a white solid. Colorless block-shaped crystals were grown by slow evaporation an acetonitrile/ethanol mixture. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 8.43 (t, 2H), 7.90 (t, 1H), 7.80 (t, 1H), 4.90 (t, 2H), 3.20 (s, 3H), 2.65 (t, 2H), 2.15 (q, 2H).
The water H atoms were located in a difference map and refined isotropically with Uiso(H) = 1.5 Ueq(O). Other hydrogens were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(CMe).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. : The molecular structure of the title compound showing 30% probability displacement ellipsoids. | |
Fig. 2. : View of the R24(8) ring formed by O4—H12···O3 and O4—H11···O3i intermolecular interactions, showing O—H···O hydrogen-bonding interactions as dashed lines. | |
Fig. 3. : Packing diagram of the title compound. |
C11H13NO3S2·H2O | F(000) = 608 |
Mr = 289.36 | Dx = 1.552 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 7517 reflections |
a = 10.936 (5) Å | θ = 2.8–27.1° |
b = 8.708 (5) Å | µ = 0.44 mm−1 |
c = 13.794 (5) Å | T = 296 K |
β = 109.529 (5)° | Block, white |
V = 1238.0 (10) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2182 independent reflections |
Radiation source: fine-focus sealed tube | 2105 reflections with I > 2sσ(I) |
Graphite monochromator | Rint = 0.016 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −13→12 |
Tmin = 0.880, Tmax = 0.919 | k = −10→10 |
8500 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.799P] where P = (Fo2 + 2Fc2)/3 |
2182 reflections | (Δ/σ)max < 0.001 |
164 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C11H13NO3S2·H2O | V = 1238.0 (10) Å3 |
Mr = 289.36 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.936 (5) Å | µ = 0.44 mm−1 |
b = 8.708 (5) Å | T = 296 K |
c = 13.794 (5) Å | 0.30 × 0.20 × 0.20 mm |
β = 109.529 (5)° |
Bruker SMART CCD area-detector diffractometer | 2182 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2105 reflections with I > 2sσ(I) |
Tmin = 0.880, Tmax = 0.919 | Rint = 0.016 |
8500 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.31 e Å−3 |
2182 reflections | Δρmin = −0.42 e Å−3 |
164 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.04082 (15) | 0.49554 (19) | 0.80688 (12) | 0.0271 (3) | |
H1A | −0.0210 | 0.6044 | 0.8110 | 0.033* | |
H1B | −0.0771 | 0.4720 | 0.8604 | 0.033* | |
C2 | 0.08437 (15) | 0.4060 (2) | 0.82760 (12) | 0.0294 (4) | |
H2A | 0.1180 | 0.4207 | 0.7715 | 0.035* | |
H2B | 0.0682 | 0.2972 | 0.8327 | 0.035* | |
C3 | 0.18249 (16) | 0.46262 (19) | 0.92775 (13) | 0.0301 (4) | |
H3A | 0.2076 | 0.5670 | 0.9186 | 0.036* | |
H3B | 0.1426 | 0.4636 | 0.9809 | 0.036* | |
C4 | 0.23671 (18) | 0.2245 (2) | 1.09534 (14) | 0.0388 (4) | |
H4A | 0.2531 | 0.2983 | 1.1499 | 0.058* | |
H4B | 0.2549 | 0.1232 | 1.1240 | 0.058* | |
H4C | 0.1474 | 0.2306 | 1.0522 | 0.058* | |
C5 | 0.32123 (15) | 0.25761 (19) | 1.03338 (12) | 0.0272 (3) | |
C6 | 0.49490 (15) | 0.26655 (18) | 0.95809 (12) | 0.0264 (3) | |
C7 | 0.60073 (16) | 0.2548 (2) | 0.92365 (13) | 0.0333 (4) | |
H7 | 0.6661 | 0.1832 | 0.9517 | 0.040* | |
C8 | 0.60501 (18) | 0.3533 (2) | 0.84639 (14) | 0.0390 (4) | |
H8 | 0.6733 | 0.3465 | 0.8207 | 0.047* | |
C9 | 0.50797 (19) | 0.4631 (2) | 0.80639 (13) | 0.0383 (4) | |
H9 | 0.5145 | 0.5296 | 0.7556 | 0.046* | |
C10 | 0.40270 (17) | 0.4758 (2) | 0.83992 (13) | 0.0328 (4) | |
H10 | 0.3387 | 0.5494 | 0.8131 | 0.039* | |
C11 | 0.39668 (15) | 0.37330 (18) | 0.91581 (12) | 0.0258 (3) | |
N1 | 0.29980 (13) | 0.36398 (15) | 0.96126 (10) | 0.0257 (3) | |
O1 | −0.18774 (14) | 0.29348 (16) | 0.68281 (11) | 0.0490 (4) | |
O2 | −0.26970 (12) | 0.55228 (16) | 0.68129 (11) | 0.0447 (3) | |
O3 | −0.10098 (14) | 0.50116 (19) | 0.60890 (10) | 0.0487 (4) | |
O4 | 0.09084 (19) | 0.6948 (3) | 0.55198 (17) | 0.0951 (8) | |
H11 | 0.0932 | 0.6459 | 0.5068 | 0.143* | |
H12 | 0.0523 | 0.6424 | 0.5819 | 0.143* | |
S1 | −0.15982 (4) | 0.45636 (5) | 0.68522 (3) | 0.02836 (14) | |
S2 | 0.46338 (4) | 0.16183 (5) | 1.05392 (3) | 0.02926 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0260 (8) | 0.0278 (8) | 0.0252 (8) | 0.0026 (7) | 0.0053 (6) | −0.0020 (6) |
C2 | 0.0262 (8) | 0.0304 (8) | 0.0289 (8) | 0.0044 (7) | 0.0058 (7) | −0.0041 (7) |
C3 | 0.0282 (8) | 0.0283 (8) | 0.0295 (8) | 0.0087 (7) | 0.0039 (7) | −0.0034 (6) |
C4 | 0.0365 (9) | 0.0464 (11) | 0.0353 (9) | 0.0047 (8) | 0.0144 (8) | 0.0022 (8) |
C5 | 0.0269 (8) | 0.0271 (8) | 0.0238 (7) | 0.0020 (6) | 0.0035 (6) | −0.0043 (6) |
C6 | 0.0265 (8) | 0.0243 (8) | 0.0254 (8) | −0.0021 (6) | 0.0049 (6) | −0.0043 (6) |
C7 | 0.0266 (8) | 0.0352 (9) | 0.0368 (9) | −0.0014 (7) | 0.0089 (7) | −0.0075 (7) |
C8 | 0.0353 (10) | 0.0461 (11) | 0.0382 (10) | −0.0124 (8) | 0.0156 (8) | −0.0107 (8) |
C9 | 0.0457 (11) | 0.0394 (10) | 0.0283 (9) | −0.0146 (8) | 0.0102 (8) | −0.0020 (7) |
C10 | 0.0351 (9) | 0.0292 (9) | 0.0269 (8) | −0.0042 (7) | 0.0010 (7) | 0.0001 (7) |
C11 | 0.0253 (8) | 0.0245 (8) | 0.0244 (7) | −0.0025 (6) | 0.0039 (6) | −0.0052 (6) |
N1 | 0.0247 (7) | 0.0250 (7) | 0.0243 (6) | 0.0036 (5) | 0.0038 (5) | −0.0029 (5) |
O1 | 0.0500 (8) | 0.0333 (7) | 0.0562 (9) | −0.0105 (6) | 0.0079 (7) | −0.0086 (6) |
O2 | 0.0295 (7) | 0.0515 (8) | 0.0460 (8) | 0.0109 (6) | 0.0032 (6) | 0.0044 (6) |
O3 | 0.0504 (8) | 0.0678 (10) | 0.0303 (7) | −0.0090 (7) | 0.0166 (6) | 0.0000 (6) |
O4 | 0.0798 (13) | 0.1204 (18) | 0.1083 (16) | −0.0428 (13) | 0.0622 (12) | −0.0642 (14) |
S1 | 0.0254 (2) | 0.0311 (2) | 0.0257 (2) | −0.00197 (15) | 0.00465 (17) | −0.00040 (15) |
S2 | 0.0295 (2) | 0.0272 (2) | 0.0296 (2) | 0.00697 (16) | 0.00785 (17) | 0.00262 (16) |
C1—C2 | 1.518 (2) | C6—C7 | 1.394 (2) |
C1—S1 | 1.7793 (16) | C6—S2 | 1.7329 (17) |
C1—H1A | 0.9700 | C7—C8 | 1.381 (3) |
C1—H1B | 0.9700 | C7—H7 | 0.9300 |
C2—C3 | 1.521 (2) | C8—C9 | 1.397 (3) |
C2—H2A | 0.9700 | C8—H8 | 0.9300 |
C2—H2B | 0.9700 | C9—C10 | 1.381 (3) |
C3—N1 | 1.484 (2) | C9—H9 | 0.9300 |
C3—H3A | 0.9700 | C10—C11 | 1.394 (2) |
C3—H3B | 0.9700 | C10—H10 | 0.9300 |
C4—C5 | 1.482 (2) | C11—N1 | 1.402 (2) |
C4—H4A | 0.9600 | O1—S1 | 1.4489 (16) |
C4—H4B | 0.9600 | O2—S1 | 1.4495 (14) |
C4—H4C | 0.9600 | O3—S1 | 1.4587 (14) |
C5—N1 | 1.322 (2) | O4—H11 | 0.7630 |
C5—S2 | 1.7024 (17) | O4—H12 | 0.8203 |
C6—C11 | 1.393 (2) | ||
C2—C1—S1 | 114.11 (11) | C11—C6—S2 | 110.39 (12) |
C2—C1—H1A | 108.7 | C7—C6—S2 | 128.39 (13) |
S1—C1—H1A | 108.7 | C8—C7—C6 | 117.63 (17) |
C2—C1—H1B | 108.7 | C8—C7—H7 | 121.2 |
S1—C1—H1B | 108.7 | C6—C7—H7 | 121.2 |
H1A—C1—H1B | 107.6 | C7—C8—C9 | 120.82 (17) |
C1—C2—C3 | 108.81 (13) | C7—C8—H8 | 119.6 |
C1—C2—H2A | 109.9 | C9—C8—H8 | 119.6 |
C3—C2—H2A | 109.9 | C10—C9—C8 | 122.04 (17) |
C1—C2—H2B | 109.9 | C10—C9—H9 | 119.0 |
C3—C2—H2B | 109.9 | C8—C9—H9 | 119.0 |
H2A—C2—H2B | 108.3 | C9—C10—C11 | 117.02 (16) |
N1—C3—C2 | 111.67 (13) | C9—C10—H10 | 121.5 |
N1—C3—H3A | 109.3 | C11—C10—H10 | 121.5 |
C2—C3—H3A | 109.3 | C6—C11—C10 | 121.23 (16) |
N1—C3—H3B | 109.3 | C6—C11—N1 | 111.50 (14) |
C2—C3—H3B | 109.3 | C10—C11—N1 | 127.25 (15) |
H3A—C3—H3B | 107.9 | C5—N1—C11 | 114.00 (13) |
C5—C4—H4A | 109.5 | C5—N1—C3 | 123.89 (14) |
C5—C4—H4B | 109.5 | C11—N1—C3 | 122.08 (13) |
H4A—C4—H4B | 109.5 | H11—O4—H12 | 105.3 |
C5—C4—H4C | 109.5 | O1—S1—O2 | 113.43 (9) |
H4A—C4—H4C | 109.5 | O1—S1—O3 | 112.69 (9) |
H4B—C4—H4C | 109.5 | O2—S1—O3 | 112.28 (9) |
N1—C5—C4 | 125.63 (15) | O1—S1—C1 | 106.94 (8) |
N1—C5—S2 | 113.01 (12) | O2—S1—C1 | 105.11 (8) |
C4—C5—S2 | 121.31 (13) | O3—S1—C1 | 105.63 (9) |
C11—C6—C7 | 121.22 (16) | C5—S2—C6 | 91.07 (8) |
S1—C1—C2—C3 | 173.73 (12) | C4—C5—N1—C3 | −3.1 (2) |
C1—C2—C3—N1 | 171.06 (14) | S2—C5—N1—C3 | 179.33 (11) |
C11—C6—C7—C8 | 0.3 (2) | C6—C11—N1—C5 | −0.11 (19) |
S2—C6—C7—C8 | −179.16 (13) | C10—C11—N1—C5 | −178.36 (15) |
C6—C7—C8—C9 | 1.6 (3) | C6—C11—N1—C3 | −178.26 (13) |
C7—C8—C9—C10 | −1.6 (3) | C10—C11—N1—C3 | 3.5 (2) |
C8—C9—C10—C11 | −0.2 (2) | C2—C3—N1—C5 | −100.77 (18) |
C7—C6—C11—C10 | −2.2 (2) | C2—C3—N1—C11 | 77.20 (19) |
S2—C6—C11—C10 | 177.37 (12) | C2—C1—S1—O1 | 59.13 (15) |
C7—C6—C11—N1 | 179.47 (14) | C2—C1—S1—O2 | 179.98 (13) |
S2—C6—C11—N1 | −1.01 (16) | C2—C1—S1—O3 | −61.12 (15) |
C9—C10—C11—C6 | 2.1 (2) | N1—C5—S2—C6 | −1.51 (12) |
C9—C10—C11—N1 | −179.81 (15) | C4—C5—S2—C6 | −179.18 (14) |
C4—C5—N1—C11 | 178.76 (15) | C11—C6—S2—C5 | 1.41 (12) |
S2—C5—N1—C11 | 1.21 (17) | C7—C6—S2—C5 | −179.11 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H11···O3i | 0.76 | 2.07 | 2.831 (2) | 176 |
O4—H12···O3 | 0.82 | 2.21 | 2.994 (3) | 160 |
C3—H3A···O1ii | 0.97 | 2.39 | 3.269 (3) | 151 |
C4—H4C···O4iii | 0.96 | 2.54 | 3.487 (3) | 169 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H11···O3i | 0.76 | 2.07 | 2.831 (2) | 175.7 |
O4—H12···O3 | 0.82 | 2.21 | 2.994 (3) | 160.3 |
C3—H3A···O1ii | 0.97 | 2.39 | 3.269 (3) | 151.3 |
C4—H4C···O4iii | 0.96 | 2.54 | 3.487 (3) | 169.3 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2. |
Acknowledgements
This work was supported by the Anhui Provincial Natural Science Foundation (1308085MB24) and the Educational Commission of Anhui Province of China (KJ2012A025).
References
Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison. Wisconsin. USA. Google Scholar
Lynch, D. E. (2002). Acta Cryst. E58, o1139–o1141. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258–1261. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Paramashivappa, R., Kumar, P. P., Rao, P. V. S. & Rao, A. S. (2003). Bioorg. Med. Chem. Lett. 13, 657–660. Web of Science CrossRef PubMed CAS Google Scholar
Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawa, H. (2002). J. Phys. Chem. B, 106, 1363–1371. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785–4789. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzothiazole, a small and simple heterocyclic molecule, has raised considerable interest. It can be used to synthesize some Schiff bases (Vicini et al., 2003), and other derivatives that are antimicrobial (Bondock et al., 2010) and bioactive (Paramashivappa et al., 2003). They have also been used in dye-sensitized solar cells (Sayama et al., 2002). Spurred by this, we synthesized 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate (Fig. 1), which contains a sulfonic group, with the aim of increased solubility. The single-crystal structure contains one water molecule. Comparing with C7H5N3O2S1·H2O (Lynch, 2002), both of them are in a hydrogen-bonding network with water molecules. The water H atoms are connected with O atoms of sulfonic moieties and the molecules are interconnected, via hydrogen bonds (Table 1) [O4—H11···O3i, symmetry codes: (i) -x, -y + 1, -z + 1; C3—H3A···O1ii, symmetry codes: (ii) -x, y + 1/2, -z + 3/2; C4—H4C···O4iii, symmetry codes: (iii) -x, y - 1/2, -z + 3/2]. There is a R24(8) ring formed by hydrogen-bonded water to O3—S1 interactions. Two characteristic O4—H12···O3 and O4—H11···O3i distances are 2.994 (3) Å and 2.831 (2) Å, respectively (Fig.2). In the crystal, inversion related (1-x,1-y,2-z) molecules are π-stacked with an interplanar separation of 3.3847 (2) Å. O—H···O hydrogen bonds link inversion-related (-x,1-y,1-z) molecules with a pair of water molecules to form R24(8) rings. The closest ring S···S contact is 3.4051 (15) Å between inversion-related (1-x,-y,2-z) molecules (Fig.3). The bond length between N1 and C5 [1.3216 (2) Å] indicates some double bond character and is conjugated with neighbouring bonds. The two distances of S2—C6 and S2—C5 are nearly the same [1.7327 (19) Å and 1.7024 (18) Å, respectively]. In addition, the large size of the S atom compared with N results in a reduction of the C5—S2—C6 angle [91.069 (8)°] compared with the C5—N1—C11 angle [114.001 (14)°] in thiazole ring. This reveals that the S atom might be using unhybridized p-orbitals for bonding (Muir et al., 1987).