organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Methyl-1,3-benzo­thia­zol-3-ium-3-yl)propane-1-sulfonate monohydrate

aDeparment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn

Edited by S. Parkin, University of Kentucky, USA (Received 7 May 2014; accepted 20 May 2014; online 24 May 2014)

In the title hydrated zwitterion, C11H13NO3S2·H2O, the N—C—C—C and C—C—C—S torsion angles in the side-chain are 171.06 (14) and 173.73 (12)°, respectively. In the crystal, inversion-related mol­ecules are π-stacked with an inter­planar separation of 3.3847 (2) Å. O—H⋯O hydrogen bonds link inversion-related mol­ecules with a pair of water mol­ecules to form R42(8) rings. The closest S⋯S contact is 3.4051 (15) Å between inversion-related mol­ecules.

Related literature

The crystal structure of a related benzo­thia­zole derivative is described by Lynch (2002[Lynch, D. E. (2002). Acta Cryst. E58, o1139-o1141.]). An analysis of bond angles in the thia­zole ring system has been given by Muir et al. (1987[Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258-1261.]). Applications of benzo­thia­zole derivatives have been described by Vicini et al. (2003[Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785-4789.]); Bondock et al. (2010[Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692-3701.]); Paramashivappa et al. (2003[Paramashivappa, R., Kumar, P. P., Rao, P. V. S. & Rao, A. S. (2003). Bioorg. Med. Chem. Lett. 13, 657-660.]) and Sayama et al. (2002[Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawa, H. (2002). J. Phys. Chem. B, 106, 1363-1371.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO3S2·H2O

  • Mr = 289.36

  • Monoclinic, P 21 /c

  • a = 10.936 (5) Å

  • b = 8.708 (5) Å

  • c = 13.794 (5) Å

  • β = 109.529 (5)°

  • V = 1238.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.919

  • 8500 measured reflections

  • 2182 independent reflections

  • 2105 reflections with I > 2sσ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.01

  • 2182 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H11⋯O3i 0.76 2.07 2.831 (2) 176
O4—H12⋯O3 0.82 2.21 2.994 (3) 160
C3—H3A⋯O1ii 0.97 2.39 3.269 (3) 151
C4—H4C⋯O4iii 0.96 2.54 3.487 (3) 169
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison. Wisconsin. USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison. Wisconsin. USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiazole, a small and simple heterocyclic molecule, has raised considerable interest. It can be used to synthesize some Schiff bases (Vicini et al., 2003), and other derivatives that are antimicrobial (Bondock et al., 2010) and bioactive (Paramashivappa et al., 2003). They have also been used in dye-sensitized solar cells (Sayama et al., 2002). Spurred by this, we synthesized 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate (Fig. 1), which contains a sulfonic group, with the aim of increased solubility. The single-crystal structure contains one water molecule. Comparing with C7H5N3O2S1·H2O (Lynch, 2002), both of them are in a hydrogen-bonding network with water molecules. The water H atoms are connected with O atoms of sulfonic moieties and the molecules are interconnected, via hydrogen bonds (Table 1) [O4—H11···O3i, symmetry codes: (i) -x, -y + 1, -z + 1; C3—H3A···O1ii, symmetry codes: (ii) -x, y + 1/2, -z + 3/2; C4—H4C···O4iii, symmetry codes: (iii) -x, y - 1/2, -z + 3/2]. There is a R24(8) ring formed by hydrogen-bonded water to O3—S1 interactions. Two characteristic O4—H12···O3 and O4—H11···O3i distances are 2.994 (3) Å and 2.831 (2) Å, respectively (Fig.2). In the crystal, inversion related (1-x,1-y,2-z) molecules are π-stacked with an interplanar separation of 3.3847 (2) Å. O—H···O hydrogen bonds link inversion-related (-x,1-y,1-z) molecules with a pair of water molecules to form R24(8) rings. The closest ring S···S contact is 3.4051 (15) Å between inversion-related (1-x,-y,2-z) molecules (Fig.3). The bond length between N1 and C5 [1.3216 (2) Å] indicates some double bond character and is conjugated with neighbouring bonds. The two distances of S2—C6 and S2—C5 are nearly the same [1.7327 (19) Å and 1.7024 (18) Å, respectively]. In addition, the large size of the S atom compared with N results in a reduction of the C5—S2—C6 angle [91.069 (8)°] compared with the C5—N1—C11 angle [114.001 (14)°] in thiazole ring. This reveals that the S atom might be using unhybridized p-orbitals for bonding (Muir et al., 1987).

Related literature top

The crystal structure of a related benzothiazole derivative is described by Lynch (2002). An analysis of bond angles in the thiazole ring system has been given by Muir et al. (1987). Applications of benzothiazole derivatives have been described by Vicini et al. (2003); Bondock et al. (2010); Paramashivappa et al. (2003) and Sayama et al. (2002).

Experimental top

The title complex, 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate, was prepared by mixing 2-methylbenzo[d]thiazole (1.49 g, 0.010 mol) with 1,2-oxathiolane 2,2-dioxide (1.47 g, 0.012 mol) in toluene (20 ml). The mixture was heated to reflux for 4 h. After the reaction was complete, the solution was cooled to room temperature. The mixture was filtered and washed with ethanol 3 times to give a white solid. Colorless block-shaped crystals were grown by slow evaporation an acetonitrile/ethanol mixture. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 8.43 (t, 2H), 7.90 (t, 1H), 7.80 (t, 1H), 4.90 (t, 2H), 3.20 (s, 3H), 2.65 (t, 2H), 2.15 (q, 2H).

Refinement top

The water H atoms were located in a difference map and refined isotropically with Uiso(H) = 1.5 Ueq(O). Other hydrogens were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(CMe).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. : View of the R24(8) ring formed by O4—H12···O3 and O4—H11···O3i intermolecular interactions, showing O—H···O hydrogen-bonding interactions as dashed lines.
[Figure 3] Fig. 3. : Packing diagram of the title compound.
3-(2-Methyl-1,3-benzothiazol-3-ium-3-yl)propane-1-sulfonate monohydrate top
Crystal data top
C11H13NO3S2·H2OF(000) = 608
Mr = 289.36Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 7517 reflections
a = 10.936 (5) Åθ = 2.8–27.1°
b = 8.708 (5) ŵ = 0.44 mm1
c = 13.794 (5) ÅT = 296 K
β = 109.529 (5)°Block, white
V = 1238.0 (10) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2182 independent reflections
Radiation source: fine-focus sealed tube2105 reflections with I > 2sσ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1312
Tmin = 0.880, Tmax = 0.919k = 1010
8500 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.799P]
where P = (Fo2 + 2Fc2)/3
2182 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C11H13NO3S2·H2OV = 1238.0 (10) Å3
Mr = 289.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.936 (5) ŵ = 0.44 mm1
b = 8.708 (5) ÅT = 296 K
c = 13.794 (5) Å0.30 × 0.20 × 0.20 mm
β = 109.529 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2105 reflections with I > 2sσ(I)
Tmin = 0.880, Tmax = 0.919Rint = 0.016
8500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
2182 reflectionsΔρmin = 0.42 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04082 (15)0.49554 (19)0.80688 (12)0.0271 (3)
H1A0.02100.60440.81100.033*
H1B0.07710.47200.86040.033*
C20.08437 (15)0.4060 (2)0.82760 (12)0.0294 (4)
H2A0.11800.42070.77150.035*
H2B0.06820.29720.83270.035*
C30.18249 (16)0.46262 (19)0.92775 (13)0.0301 (4)
H3A0.20760.56700.91860.036*
H3B0.14260.46360.98090.036*
C40.23671 (18)0.2245 (2)1.09534 (14)0.0388 (4)
H4A0.25310.29831.14990.058*
H4B0.25490.12321.12400.058*
H4C0.14740.23061.05220.058*
C50.32123 (15)0.25761 (19)1.03338 (12)0.0272 (3)
C60.49490 (15)0.26655 (18)0.95809 (12)0.0264 (3)
C70.60073 (16)0.2548 (2)0.92365 (13)0.0333 (4)
H70.66610.18320.95170.040*
C80.60501 (18)0.3533 (2)0.84639 (14)0.0390 (4)
H80.67330.34650.82070.047*
C90.50797 (19)0.4631 (2)0.80639 (13)0.0383 (4)
H90.51450.52960.75560.046*
C100.40270 (17)0.4758 (2)0.83992 (13)0.0328 (4)
H100.33870.54940.81310.039*
C110.39668 (15)0.37330 (18)0.91581 (12)0.0258 (3)
N10.29980 (13)0.36398 (15)0.96126 (10)0.0257 (3)
O10.18774 (14)0.29348 (16)0.68281 (11)0.0490 (4)
O20.26970 (12)0.55228 (16)0.68129 (11)0.0447 (3)
O30.10098 (14)0.50116 (19)0.60890 (10)0.0487 (4)
O40.09084 (19)0.6948 (3)0.55198 (17)0.0951 (8)
H110.09320.64590.50680.143*
H120.05230.64240.58190.143*
S10.15982 (4)0.45636 (5)0.68522 (3)0.02836 (14)
S20.46338 (4)0.16183 (5)1.05392 (3)0.02926 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0260 (8)0.0278 (8)0.0252 (8)0.0026 (7)0.0053 (6)0.0020 (6)
C20.0262 (8)0.0304 (8)0.0289 (8)0.0044 (7)0.0058 (7)0.0041 (7)
C30.0282 (8)0.0283 (8)0.0295 (8)0.0087 (7)0.0039 (7)0.0034 (6)
C40.0365 (9)0.0464 (11)0.0353 (9)0.0047 (8)0.0144 (8)0.0022 (8)
C50.0269 (8)0.0271 (8)0.0238 (7)0.0020 (6)0.0035 (6)0.0043 (6)
C60.0265 (8)0.0243 (8)0.0254 (8)0.0021 (6)0.0049 (6)0.0043 (6)
C70.0266 (8)0.0352 (9)0.0368 (9)0.0014 (7)0.0089 (7)0.0075 (7)
C80.0353 (10)0.0461 (11)0.0382 (10)0.0124 (8)0.0156 (8)0.0107 (8)
C90.0457 (11)0.0394 (10)0.0283 (9)0.0146 (8)0.0102 (8)0.0020 (7)
C100.0351 (9)0.0292 (9)0.0269 (8)0.0042 (7)0.0010 (7)0.0001 (7)
C110.0253 (8)0.0245 (8)0.0244 (7)0.0025 (6)0.0039 (6)0.0052 (6)
N10.0247 (7)0.0250 (7)0.0243 (6)0.0036 (5)0.0038 (5)0.0029 (5)
O10.0500 (8)0.0333 (7)0.0562 (9)0.0105 (6)0.0079 (7)0.0086 (6)
O20.0295 (7)0.0515 (8)0.0460 (8)0.0109 (6)0.0032 (6)0.0044 (6)
O30.0504 (8)0.0678 (10)0.0303 (7)0.0090 (7)0.0166 (6)0.0000 (6)
O40.0798 (13)0.1204 (18)0.1083 (16)0.0428 (13)0.0622 (12)0.0642 (14)
S10.0254 (2)0.0311 (2)0.0257 (2)0.00197 (15)0.00465 (17)0.00040 (15)
S20.0295 (2)0.0272 (2)0.0296 (2)0.00697 (16)0.00785 (17)0.00262 (16)
Geometric parameters (Å, º) top
C1—C21.518 (2)C6—C71.394 (2)
C1—S11.7793 (16)C6—S21.7329 (17)
C1—H1A0.9700C7—C81.381 (3)
C1—H1B0.9700C7—H70.9300
C2—C31.521 (2)C8—C91.397 (3)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.381 (3)
C3—N11.484 (2)C9—H90.9300
C3—H3A0.9700C10—C111.394 (2)
C3—H3B0.9700C10—H100.9300
C4—C51.482 (2)C11—N11.402 (2)
C4—H4A0.9600O1—S11.4489 (16)
C4—H4B0.9600O2—S11.4495 (14)
C4—H4C0.9600O3—S11.4587 (14)
C5—N11.322 (2)O4—H110.7630
C5—S21.7024 (17)O4—H120.8203
C6—C111.393 (2)
C2—C1—S1114.11 (11)C11—C6—S2110.39 (12)
C2—C1—H1A108.7C7—C6—S2128.39 (13)
S1—C1—H1A108.7C8—C7—C6117.63 (17)
C2—C1—H1B108.7C8—C7—H7121.2
S1—C1—H1B108.7C6—C7—H7121.2
H1A—C1—H1B107.6C7—C8—C9120.82 (17)
C1—C2—C3108.81 (13)C7—C8—H8119.6
C1—C2—H2A109.9C9—C8—H8119.6
C3—C2—H2A109.9C10—C9—C8122.04 (17)
C1—C2—H2B109.9C10—C9—H9119.0
C3—C2—H2B109.9C8—C9—H9119.0
H2A—C2—H2B108.3C9—C10—C11117.02 (16)
N1—C3—C2111.67 (13)C9—C10—H10121.5
N1—C3—H3A109.3C11—C10—H10121.5
C2—C3—H3A109.3C6—C11—C10121.23 (16)
N1—C3—H3B109.3C6—C11—N1111.50 (14)
C2—C3—H3B109.3C10—C11—N1127.25 (15)
H3A—C3—H3B107.9C5—N1—C11114.00 (13)
C5—C4—H4A109.5C5—N1—C3123.89 (14)
C5—C4—H4B109.5C11—N1—C3122.08 (13)
H4A—C4—H4B109.5H11—O4—H12105.3
C5—C4—H4C109.5O1—S1—O2113.43 (9)
H4A—C4—H4C109.5O1—S1—O3112.69 (9)
H4B—C4—H4C109.5O2—S1—O3112.28 (9)
N1—C5—C4125.63 (15)O1—S1—C1106.94 (8)
N1—C5—S2113.01 (12)O2—S1—C1105.11 (8)
C4—C5—S2121.31 (13)O3—S1—C1105.63 (9)
C11—C6—C7121.22 (16)C5—S2—C691.07 (8)
S1—C1—C2—C3173.73 (12)C4—C5—N1—C33.1 (2)
C1—C2—C3—N1171.06 (14)S2—C5—N1—C3179.33 (11)
C11—C6—C7—C80.3 (2)C6—C11—N1—C50.11 (19)
S2—C6—C7—C8179.16 (13)C10—C11—N1—C5178.36 (15)
C6—C7—C8—C91.6 (3)C6—C11—N1—C3178.26 (13)
C7—C8—C9—C101.6 (3)C10—C11—N1—C33.5 (2)
C8—C9—C10—C110.2 (2)C2—C3—N1—C5100.77 (18)
C7—C6—C11—C102.2 (2)C2—C3—N1—C1177.20 (19)
S2—C6—C11—C10177.37 (12)C2—C1—S1—O159.13 (15)
C7—C6—C11—N1179.47 (14)C2—C1—S1—O2179.98 (13)
S2—C6—C11—N11.01 (16)C2—C1—S1—O361.12 (15)
C9—C10—C11—C62.1 (2)N1—C5—S2—C61.51 (12)
C9—C10—C11—N1179.81 (15)C4—C5—S2—C6179.18 (14)
C4—C5—N1—C11178.76 (15)C11—C6—S2—C51.41 (12)
S2—C5—N1—C111.21 (17)C7—C6—S2—C5179.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H11···O3i0.762.072.831 (2)176
O4—H12···O30.822.212.994 (3)160
C3—H3A···O1ii0.972.393.269 (3)151
C4—H4C···O4iii0.962.543.487 (3)169
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H11···O3i0.762.072.831 (2)175.7
O4—H12···O30.822.212.994 (3)160.3
C3—H3A···O1ii0.972.393.269 (3)151.3
C4—H4C···O4iii0.962.543.487 (3)169.3
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Anhui Provincial Natural Science Foundation (1308085MB24) and the Educational Commission of Anhui Province of China (KJ2012A025).

References

First citationBondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison. Wisconsin. USA.  Google Scholar
First citationLynch, D. E. (2002). Acta Cryst. E58, o1139–o1141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258–1261.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParamashivappa, R., Kumar, P. P., Rao, P. V. S. & Rao, A. S. (2003). Bioorg. Med. Chem. Lett. 13, 657–660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawa, H. (2002). J. Phys. Chem. B, 106, 1363–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785–4789.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds