organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-4-(4-Bromo­phen­yl)-2-{2-[(1E)-cyclo­pentyl­­idene]hydrazin-1-yl­­idene}-3-phenyl-2,3-di­hydro-1,3-thia­zole

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 9 May 2014; accepted 12 May 2014; online 17 May 2014)

In the title compound, C20H18BrN3S, the cyclo­pentane ring adopts a half-chair conformation. The 4-bromo­phenyl and phenyl rings make dihedral angles of 34.6 (1) and 68.52 (6)°, respectively, with the di­hydro­thia­zole ring. In the crystal, the mol­ecules pack in sheets approximately parallel to (101) which are formed by weak C—H⋯Br inter­actions

Related literature

For variuos medicinal applications of thia­zole scaffold compounds, see: Mahajan et al. (2008[Mahajan, N. S., Pattan, S. R., Jadhav, R. L., Pimpodkar, N. V. & Manikrao, A. M. (2008). Int. J. Chem. Sci. 6, 800-806.]); Abbs et al. (2008[Abbs, T. F., Reji, F., Devi, S. K. C., Thomas, K. K., Sreejalekshmi, K. G., Manju, S. L., Francis, M., Philip, S. K., Bharathan, A. & Rajasekharan, K. N. (2008). Indian J. Chem. Sect. B, 47, 1145-1150.]); Chowki et al. (2008[Chowki, A. A., Magdum, C. S., Ladda, P. L. & Mohite, S. K. (2008). International Journal of Chemical Science, 6, 1600-1605.]); Karabasanagouda et al. (2008[Karabasanagouda, T., Adhikari, A. V., Ramgopal, D. & Parameshwarappa, G. (2008). Indian J. Chem. Sect. B, 47, 144-152.]); Basavaraja et al. (2008[Basavaraja, K. M., Somasekhar, B. & Appalaraju, S. (2008). Indian J. Heterocycl. Chem. 18, 69-72.]); Bhusari et al. (2000[Bhusari, K. P., Khedekar, P. B., Umathe, S. N., Bahekar, R. H. & Raghu, R. R. A. (2000). Indian J. Heterocycl. Chem. 9, 275-278.]); Basawaraj et al. (2005[Basawaraj, R., Suresh, M. & Sangapure, S. S. (2005). Indian J. Heterocycl. Chem. 15, 153-156.]). For similar structures, see: Akkurt et al. (2014[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478-o479.]); Mague et al. (2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328-o329.]); Mohamed et al. (2013[Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1563-o1564.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18BrN3S

  • Mr = 412.34

  • Monoclinic, P 21 /c

  • a = 12.5079 (3) Å

  • b = 5.5728 (1) Å

  • c = 25.3761 (6) Å

  • β = 96.8480 (11)°

  • V = 1756.20 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.35 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.02 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.92

  • 12815 measured reflections

  • 3409 independent reflections

  • 2960 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.06

  • 3409 reflections

  • 230 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17B⋯Br1i 0.99 3.03 3.828 (2) 138
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The anti-microbial activities of substituted thiazoles are well established because they possess the (S—C=N) toxophoric unit (Mahajan et al., 2008). Thiazoles were reported to possess anti-cancer (Abbs et al., 2008), anti-tubercular (Chowki et al., 2008), anti-inflammatory (Karabasanagouda et al., 2008), analgesic (Basavaraja et al., 2008) anthelmintic (Bhusari et al., 2000) and diuretic (Basawaraj et al., 2005) activities. Based on these facts and as part of our on-going study we herein report the synthesis and crystal structure of the title compound.

In the title compound (I, Fig. 1), the cyclopentane ring (C16–C20) adopts a half-chair conformation with puckering parameters of Q(2) = 0.375 (3) Å, ϕ (2) = 270.2 (4) ° (Cremer & Pople, 1975). The dihydrothiazole ring (S1/N1/C7–C9) is essentially planar [max. deviations = -0.002 (2) Å for C8 and C9] and it makes dihedral angles of 34.6 (1) and 68.52 (6)%, respectively, with the 4-bromophenyl (C1–C6) and (C10–C15) phenyl rings. All bond lengths and angles in (I) are normal and comparable with those reported for similar structures (Mohamed et al., 2013; Mague et al., 2014; Akkurt et al., 2014).

In the crystal, the molecules of (I) pack in sheets approximately parallel to (101) which are formed by weak C—H···Br interactions (Table 1, Fig. 2).

Related literature top

For variuos medicinal applications of thiazole scaffold compounds, see: Mahajan et al. (2008); Abbs et al. (2008); Chowki et al. (2008); Karabasanagouda et al. (2008); Basavaraja et al. (2008); Bhusari et al. (2000); Basawaraj et al. (2005). For similar structures, see: Akkurt et al. (2014); Mague et al. (2014); Mohamed et al. (2013). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A mixture of 1 mmol (233 mg) of cyclopentan-1-one N-phenylthiosemicarbazone and 1 mmol (278 mg) of 2-bromo-1-(4-bromophenyl)ethanone in 30 ml e thanol was stirred and refluxed at 350 K. The reaction was monitored by TLC until completion. On cooling, a solid yellow product precipitated which was filtered off and recrystallized from ethanol to furnish yellow crystals, suitable for X-ray diffraction.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached carbon atoms. At the conclusion of refinement with all atoms at unit occupancy, the largest difference peak appeared in the vicinity of Br1. Refinement of this as a second component of a disorder of Br1 led to improvement in the results and a more realistic value for U(iso) for Br1. The geometry associated with the minor component (Br1A) suggests that there is a small amount of "whole molecule" disorder but since the refined occupancy of Br1A is only 0.02, there is not enough information from the final difference map to reliably position the remainder of the minor component.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing viewed down the b axis with the C—H···Br interactions shown as dotted lines.
(2E)-4-(4-Bromophenyl)-2-{2-[(1E)-cyclopentylidene]hydrazin-1-ylidene}-3-phenyl-2,3-dihydro-1,3-thiazole top
Crystal data top
C20H18BrN3SF(000) = 840
Mr = 412.34Dx = 1.560 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 12.5079 (3) ÅCell parameters from 8908 reflections
b = 5.5728 (1) Åθ = 3.5–72.3°
c = 25.3761 (6) ŵ = 4.35 mm1
β = 96.8480 (11)°T = 100 K
V = 1756.20 (7) Å3Plate, yellow
Z = 40.10 × 0.08 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3409 independent reflections
Radiation source: INCOATEC IµS micro–focus source2960 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 3.5°
ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 66
Tmin = 0.80, Tmax = 0.92l = 3129
12815 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.942P]
where P = (Fo2 + 2Fc2)/3
3409 reflections(Δ/σ)max = 0.004
230 parametersΔρmax = 0.89 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C20H18BrN3SV = 1756.20 (7) Å3
Mr = 412.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.5079 (3) ŵ = 4.35 mm1
b = 5.5728 (1) ÅT = 100 K
c = 25.3761 (6) Å0.10 × 0.08 × 0.02 mm
β = 96.8480 (11)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3409 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2960 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.92Rint = 0.033
12815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.072H-atom parameters constrained
S = 1.06Δρmax = 0.89 e Å3
3409 reflectionsΔρmin = 0.26 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms were placed in

calculated positions (C—H = 0.95 - 0.99 Å) and included as riding

contributions with isotropic displacement parameters 1.2 times those

of the attached carbon atoms. At the conclusion of refinement with all

atoms at unit occupancy, the largest difference peak appeared in the

vicinity of Br1. Refinement of this as a second component of a disorder

of Br1 led to improvement in the results and a more realistic value for

U(iso) for Br1. The geometry associated with the minor component (Br1A)

suggests that there is a small amount of "whole molecule" disorder but

since the refined occupancy of Br1A is only 0.02, there is not enough

information from the final difference map to reliably position the

remainder of the minor component.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.85490 (2)0.31880 (7)0.43991 (2)0.02218 (11)0.982 (1)
Br1A0.8563 (12)0.201 (4)0.4313 (4)0.02218 (11)0.0182 (11)
S10.94129 (4)0.58669 (10)0.71625 (2)0.01954 (13)
N10.77696 (15)0.4902 (3)0.64754 (7)0.0186 (4)
N20.74281 (16)0.7923 (4)0.70865 (8)0.0219 (4)
N30.80239 (15)0.9247 (4)0.75009 (7)0.0219 (4)
C10.85169 (18)0.1224 (4)0.50103 (9)0.0188 (4)
C20.91130 (18)0.1876 (4)0.54836 (9)0.0206 (5)
H20.95280.33080.55070.025*
C30.90938 (18)0.0397 (4)0.59242 (9)0.0192 (4)
H30.94930.08420.62520.023*
C40.84970 (17)0.1732 (4)0.58934 (8)0.0173 (4)
C50.79033 (19)0.2330 (4)0.54094 (9)0.0197 (5)
H50.74920.37670.53820.024*
C60.79050 (19)0.0856 (4)0.49681 (9)0.0209 (5)
H60.74920.12670.46420.025*
C70.86033 (18)0.3344 (4)0.63585 (9)0.0180 (4)
C80.95119 (19)0.3650 (4)0.66889 (9)0.0194 (5)
H81.01480.27440.66660.023*
C90.80684 (18)0.6404 (4)0.69039 (8)0.0183 (4)
C100.66773 (18)0.4827 (4)0.62245 (8)0.0187 (4)
C110.6062 (2)0.2806 (4)0.62887 (9)0.0225 (5)
H110.63440.15170.65080.027*
C120.5018 (2)0.2708 (4)0.60235 (10)0.0265 (5)
H120.45800.13430.60650.032*
C130.46162 (19)0.4581 (5)0.57017 (10)0.0278 (5)
H130.39080.44900.55200.033*
C140.5245 (2)0.6597 (4)0.56423 (9)0.0254 (5)
H140.49680.78790.54200.030*
C150.62813 (19)0.6735 (4)0.59085 (9)0.0219 (5)
H150.67120.81170.58740.026*
C160.74531 (18)1.0603 (4)0.77618 (9)0.0202 (5)
C170.79575 (19)1.2288 (4)0.81892 (9)0.0211 (5)
H17A0.83081.36620.80320.025*
H17B0.84991.14410.84390.025*
C180.70068 (19)1.3126 (5)0.84697 (10)0.0270 (5)
H18A0.71321.47630.86160.032*
H18B0.68821.20200.87620.032*
C190.6054 (2)1.3094 (5)0.80314 (10)0.0282 (5)
H19A0.60501.45490.78070.034*
H19B0.53631.29940.81840.034*
C200.62414 (19)1.0838 (5)0.77104 (9)0.0248 (5)
H20A0.59110.94140.78590.030*
H20B0.59381.10320.73340.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02681 (14)0.0192 (2)0.02079 (13)0.00088 (11)0.00395 (9)0.00472 (11)
Br1A0.02681 (14)0.0192 (2)0.02079 (13)0.00088 (11)0.00395 (9)0.00472 (11)
S10.0204 (3)0.0212 (3)0.0163 (3)0.0003 (2)0.0011 (2)0.00170 (19)
N10.0182 (9)0.0184 (9)0.0186 (9)0.0008 (7)0.0001 (7)0.0038 (7)
N20.0215 (10)0.0251 (10)0.0185 (9)0.0000 (8)0.0002 (8)0.0061 (8)
N30.0217 (10)0.0249 (10)0.0182 (9)0.0002 (8)0.0008 (8)0.0037 (8)
C10.0206 (11)0.0158 (10)0.0205 (11)0.0037 (9)0.0044 (9)0.0035 (8)
C20.0203 (11)0.0176 (10)0.0240 (11)0.0003 (9)0.0029 (9)0.0018 (9)
C30.0193 (11)0.0187 (10)0.0195 (11)0.0000 (9)0.0015 (9)0.0034 (8)
C40.0168 (10)0.0182 (10)0.0167 (10)0.0021 (9)0.0017 (8)0.0008 (8)
C50.0225 (11)0.0167 (10)0.0198 (11)0.0035 (9)0.0017 (9)0.0004 (8)
C60.0237 (12)0.0210 (11)0.0172 (11)0.0020 (9)0.0005 (9)0.0007 (8)
C70.0207 (11)0.0160 (10)0.0173 (10)0.0006 (9)0.0027 (8)0.0021 (8)
C80.0221 (11)0.0181 (10)0.0179 (11)0.0011 (9)0.0020 (9)0.0007 (8)
C90.0201 (11)0.0183 (10)0.0157 (10)0.0020 (9)0.0012 (9)0.0006 (8)
C100.0197 (11)0.0194 (11)0.0171 (10)0.0006 (9)0.0028 (9)0.0041 (8)
C110.0264 (12)0.0206 (11)0.0212 (11)0.0027 (10)0.0059 (9)0.0005 (9)
C120.0235 (12)0.0260 (12)0.0313 (13)0.0069 (10)0.0089 (10)0.0064 (10)
C130.0181 (11)0.0361 (14)0.0286 (13)0.0007 (11)0.0001 (10)0.0095 (10)
C140.0250 (12)0.0270 (12)0.0228 (11)0.0070 (10)0.0022 (10)0.0020 (9)
C150.0226 (12)0.0196 (11)0.0236 (11)0.0012 (9)0.0028 (9)0.0022 (9)
C160.0217 (11)0.0207 (11)0.0176 (11)0.0015 (9)0.0002 (9)0.0004 (8)
C170.0220 (11)0.0236 (11)0.0174 (11)0.0024 (9)0.0015 (9)0.0029 (8)
C180.0245 (12)0.0329 (13)0.0233 (12)0.0004 (11)0.0024 (10)0.0082 (10)
C190.0240 (12)0.0339 (13)0.0264 (12)0.0056 (11)0.0017 (10)0.0062 (10)
C200.0221 (12)0.0299 (13)0.0222 (11)0.0009 (10)0.0014 (9)0.0056 (9)
Geometric parameters (Å, º) top
Br1—C11.903 (2)C10—C151.387 (3)
Br1A—C11.830 (8)C11—C121.397 (4)
S1—C81.738 (2)C11—H110.9500
S1—C91.756 (2)C12—C131.382 (4)
N1—C91.388 (3)C12—H120.9500
N1—C71.415 (3)C13—C141.390 (4)
N1—C101.437 (3)C13—H130.9500
N2—C91.289 (3)C14—C151.390 (3)
N2—N31.421 (3)C14—H140.9500
N3—C161.277 (3)C15—H150.9500
C1—C21.385 (3)C16—C201.511 (3)
C1—C61.386 (3)C16—C171.514 (3)
C2—C31.391 (3)C17—C181.530 (3)
C2—H20.9500C17—H17A0.9900
C3—C41.399 (3)C17—H17B0.9900
C3—H30.9500C18—C191.530 (3)
C4—C51.398 (3)C18—H18A0.9900
C4—C71.476 (3)C18—H18B0.9900
C5—C61.389 (3)C19—C201.531 (3)
C5—H50.9500C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—C81.340 (3)C20—H20A0.9900
C8—H80.9500C20—H20B0.9900
C10—C111.384 (3)
C8—S1—C990.38 (11)C12—C11—H11120.8
C9—N1—C7113.44 (18)C13—C12—C11120.5 (2)
C9—N1—C10121.16 (18)C13—C12—H12119.7
C7—N1—C10125.08 (18)C11—C12—H12119.7
C9—N2—N3108.28 (19)C12—C13—C14120.2 (2)
C16—N3—N2114.49 (19)C12—C13—H13119.9
C2—C1—C6121.5 (2)C14—C13—H13119.9
C2—C1—Br1A134.4 (6)C15—C14—C13119.9 (2)
C6—C1—Br1A102.0 (7)C15—C14—H14120.0
C2—C1—Br1119.64 (17)C13—C14—H14120.0
C6—C1—Br1118.90 (17)C10—C15—C14119.1 (2)
C1—C2—C3118.9 (2)C10—C15—H15120.4
C1—C2—H2120.6C14—C15—H15120.4
C3—C2—H2120.6N3—C16—C20128.6 (2)
C2—C3—C4121.2 (2)N3—C16—C17121.8 (2)
C2—C3—H3119.4C20—C16—C17109.62 (19)
C4—C3—H3119.4C16—C17—C18104.01 (19)
C5—C4—C3118.4 (2)C16—C17—H17A111.0
C5—C4—C7123.0 (2)C18—C17—H17A111.0
C3—C4—C7118.35 (19)C16—C17—H17B111.0
C6—C5—C4121.0 (2)C18—C17—H17B111.0
C6—C5—H5119.5H17A—C17—H17B109.0
C4—C5—H5119.5C17—C18—C19103.86 (19)
C1—C6—C5119.1 (2)C17—C18—H18A111.0
C1—C6—H6120.5C19—C18—H18A111.0
C5—C6—H6120.5C17—C18—H18B111.0
C8—C7—N1112.5 (2)C19—C18—H18B111.0
C8—C7—C4124.5 (2)H18A—C18—H18B109.0
N1—C7—C4122.84 (19)C18—C19—C20103.9 (2)
C7—C8—S1113.45 (17)C18—C19—H19A111.0
C7—C8—H8123.3C20—C19—H19A111.0
S1—C8—H8123.3C18—C19—H19B111.0
N2—C9—N1123.8 (2)C20—C19—H19B111.0
N2—C9—S1125.86 (17)H19A—C19—H19B109.0
N1—C9—S1110.27 (16)C16—C20—C19103.95 (19)
C11—C10—C15121.8 (2)C16—C20—H20A111.0
C11—C10—N1118.9 (2)C19—C20—H20A111.0
C15—C10—N1119.3 (2)C16—C20—H20B111.0
C10—C11—C12118.4 (2)C19—C20—H20B111.0
C10—C11—H11120.8H20A—C20—H20B109.0
C9—N2—N3—C16171.4 (2)C10—N1—C9—N24.5 (3)
C6—C1—C2—C30.1 (3)C7—N1—C9—S10.2 (2)
Br1A—C1—C2—C3159.7 (10)C10—N1—C9—S1174.06 (16)
Br1—C1—C2—C3178.96 (16)C8—S1—C9—N2178.2 (2)
C1—C2—C3—C40.8 (3)C8—S1—C9—N10.31 (17)
C2—C3—C4—C51.0 (3)C9—N1—C10—C11109.5 (2)
C2—C3—C4—C7173.6 (2)C7—N1—C10—C1163.6 (3)
C3—C4—C5—C60.2 (3)C9—N1—C10—C1573.0 (3)
C7—C4—C5—C6174.1 (2)C7—N1—C10—C15113.9 (2)
C2—C1—C6—C50.9 (3)C15—C10—C11—C120.3 (3)
Br1A—C1—C6—C5164.5 (6)N1—C10—C11—C12177.2 (2)
Br1—C1—C6—C5178.20 (17)C10—C11—C12—C130.6 (3)
C4—C5—C6—C10.7 (3)C11—C12—C13—C140.6 (4)
C9—N1—C7—C80.0 (3)C12—C13—C14—C150.2 (4)
C10—N1—C7—C8173.5 (2)C11—C10—C15—C141.1 (3)
C9—N1—C7—C4174.9 (2)N1—C10—C15—C14176.4 (2)
C10—N1—C7—C411.6 (3)C13—C14—C15—C101.0 (3)
C5—C4—C7—C8140.5 (2)N2—N3—C16—C204.6 (3)
C3—C4—C7—C833.8 (3)N2—N3—C16—C17175.20 (19)
C5—C4—C7—N133.8 (3)N3—C16—C17—C18168.4 (2)
C3—C4—C7—N1151.9 (2)C20—C16—C17—C1811.8 (3)
N1—C7—C8—S10.3 (2)C16—C17—C18—C1931.0 (2)
C4—C7—C8—S1174.50 (17)C17—C18—C19—C2038.9 (3)
C9—S1—C8—C70.35 (18)N3—C16—C20—C19167.8 (2)
N3—N2—C9—N1176.3 (2)C17—C16—C20—C1912.1 (3)
N3—N2—C9—S15.4 (3)C18—C19—C20—C1631.2 (2)
C7—N1—C9—N2178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···Br1i0.993.033.828 (2)138
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17B···Br1i0.993.033.828 (2)138
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationAbbs, T. F., Reji, F., Devi, S. K. C., Thomas, K. K., Sreejalekshmi, K. G., Manju, S. L., Francis, M., Philip, S. K., Bharathan, A. & Rajasekharan, K. N. (2008). Indian J. Chem. Sect. B, 47, 1145–1150.  Google Scholar
First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478–o479.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBasavaraja, K. M., Somasekhar, B. & Appalaraju, S. (2008). Indian J. Heterocycl. Chem. 18, 69–72.  CAS Google Scholar
First citationBasawaraj, R., Suresh, M. & Sangapure, S. S. (2005). Indian J. Heterocycl. Chem. 15, 153–156.  CAS Google Scholar
First citationBhusari, K. P., Khedekar, P. B., Umathe, S. N., Bahekar, R. H. & Raghu, R. R. A. (2000). Indian J. Heterocycl. Chem. 9, 275–278.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT, SADABS, Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowki, A. A., Magdum, C. S., Ladda, P. L. & Mohite, S. K. (2008). International Journal of Chemical Science, 6, 1600-1605.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKarabasanagouda, T., Adhikari, A. V., Ramgopal, D. & Parameshwarappa, G. (2008). Indian J. Chem. Sect. B, 47, 144–152.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Abd El-Alaziz, A. T. & Albayati, M. R. (2014). Acta Cryst. E70, o328–o329.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahajan, N. S., Pattan, S. R., Jadhav, R. L., Pimpodkar, N. V. & Manikrao, A. M. (2008). Int. J. Chem. Sci. 6, 800–806.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1563–o1564.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds