metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m227-m228

Bis[tris­(propane-1,3-di­amine-κ2N,N′)­nickel(II)] di­aqua­bis­(propane-1,3-di­amine-κ2N,N′)nickel(II) hexa­bromide dihydrate

aLaboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3018 Sfax, Tunisia, and bLaboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3018 Sfax, Tunisia
*Correspondence e-mail: w_rekik@alinto.com

(Received 19 March 2014; accepted 13 May 2014; online 21 May 2014)

In the title compound, [Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O, one Ni2+ cation, located on an inversion centre, is coordinated by four N atoms from two ligands and by two water O atoms. The other Ni2+ cation, located in a general position, is coordinated by six N atoms from three ligands. In both cases, the Ni2+ cation has an octa­hedral coordination environment. The overall structural cohesion is ensured by three types of hydrogen bonds, N—H⋯Br, O—H⋯Br and O—H⋯O, which connect the two types of complex cations, the bromide counter-anions and the lattice water molecules into a three-dimensional network.

Related literature

For the multiple coordination modes of amine derivatives as ligands to metal ions, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]). For control of the aggregation of mol­ecules or ions in the solid state in crystal engineering, see: Burrows (2004[Burrows, A. D. (2004). Struct. Bond. 108, 55-96.]). For hydrogen bonding in bifunctional ligands, see: Simard et al. (1991[Simard, M., Su, D. & Wuest, J. D. (1991). J. Am. Chem. Soc. 113, 4696-4698.]); Zerkowski & Whitesides (1994[Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298-4304.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O

  • Mr = 1320.57

  • Triclinic, [P \overline 1]

  • a = 8.760 (5) Å

  • b = 13.327 (5) Å

  • c = 13.387 (5) Å

  • α = 107.774 (5)°

  • β = 109.045 (5)°

  • γ = 99.504 (5)°

  • V = 1344.6 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.54 mm−1

  • T = 296 K

  • 0.36 × 0.30 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.215, Tmax = 0.330

  • 17594 measured reflections

  • 8674 independent reflections

  • 5022 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.084

  • S = 1.00

  • 8674 reflections

  • 257 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 (2) 1.98 (2) 2.805 (4) 169 (4)
O1—H2⋯Br3i 0.84 (2) 2.37 (2) 3.208 (3) 170 (3)
O2—H4⋯Br2 0.84 (2) 2.55 (2) 3.327 (3) 154 (4)
O2—H3⋯Br1 0.83 (2) 2.61 (2) 3.443 (3) 174 (3)
N1—H1A⋯Br2ii 0.97 2.58 3.541 (3) 170
N1—H1B⋯Br3i 0.97 2.90 3.699 (3) 141
N2—H2D⋯Br3iii 0.97 2.77 3.630 (3) 149
N2—H2C⋯Br2 0.97 3.02 3.720 (3) 130
N3—H3A⋯Br3 0.97 2.73 3.467 (3) 133
N3—H3B⋯Br2iii 0.97 2.70 3.544 (3) 146
N4—H4A⋯Br1iv 0.97 2.70 3.644 (3) 163
N4—H4B⋯Br3v 0.97 2.72 3.646 (3) 161
N5—H5A⋯Br1vi 0.97 2.64 3.488 (2) 146
N5—H5B⋯Br2iii 0.97 2.63 3.537 (3) 156
N6—H6A⋯Br1 0.97 2.49 3.445 (3) 170
N6—H6B⋯Br1iv 0.97 2.55 3.504 (3) 169
N7—H7B⋯Br2iii 0.97 2.75 3.615 (3) 149
N7—H7A⋯Br2 0.97 2.99 3.726 (3) 133
N8—H8A⋯Br3v 0.97 2.59 3.558 (3) 175
N8—H8B⋯Br1 0.97 2.85 3.768 (3) 159
Symmetry codes: (i) x, y-1, z; (ii) -x, -y, -z; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+2, -z+1; (vi) x-1, y, z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]) and HKL SCALEPACK; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Compounds having specific functional groups have received considerable attention due to their particular properties and applications. For example, derivatives of the amino acids have a biological activity and amine derivatives have potential ability to form metal–organic frameworks because of their multiple coordination modes as ligands to metal ions (Austria et al., 2007; Ismayilov et al., 2007; Manzur et al., 2007). The use of hydrogen bonds to control the aggregation of molecules or ions in the solid state is a key tool in crystal engineering (Burrows, 2004). Although such concepts were originally developed for organic systems, many studies have extended these ideas into the inorganic domain by using bifunctional ligands that are capable of simultaneously coordinating to a metal centre and presenting one or more hydrogen bonding (Simard et al., 1991; Zerkowski et al., 1994). In this context, we report here the chemical preparation and the crystal structure of a novel hybrid material using nickel as transition metal presenting the following formula [Ni(C3N2H10)2(H2O)2][Ni(C3N2H10)3]2Br6·2H2O, (I). The asymmetric unit of I, represented in Fig. 1, contains two crystallographically independent nickel atoms. The first one occupies a general position and it is coordinated by three 1,3–diaminopropane molecules amine, which are bidentate ligands. The second type of nickel atom lies in a special position on inversion centre and it is coordinated by one molecule amine and one water molecule and their symmetric by the the inversion centre. Consequently, the nickel atoms, in this compound, adopt two different octahedral coordination. The asymmetric unit of I conatins also two free water molecules and three bromine ions. As it can be seen in Fig. 2, the cohesion of the crystal structure is ensured by three types of hydrogen bonds, N—H···Br, O—H···Br and O—H···O, established between the different entities ginving rise to a three dimensional H–bonds network.

Related literature top

For the multiple coordination modes of amine derivatives as ligands to metal ions, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For control of the aggregation of molecules or ions in the solid state in crystal engineering, see: Burrows (2004). For hydrogen bonding in bifunctional ligands, see: Simard et al. (1991); Zerkowski & Whitesides (1994).

Experimental top

The title compound is resulting from a chemical reaction between three reagents: 1,3–diaminopropane (C3H10N2), hydrobromic acid (HBr) and nickel bromide (NiBr2). The 1 mmol of NiBr2 and 1 mmol of the diamine with excess of HBr were mixed in the DMF solvent. The obtained solution is kept at room temperature. After 4 days, purple platelets were formed. The purity of the product was improved by a second recrystallization.

Refinement top

The water H atoms were located in difference map and refined with O—H distance restraints of 0.85 (2)Å and H···H distance restraints of 1.35 (2)Å. The H atoms bonded to C and N atoms were positioned geometrically (with distances C—H = 0.97Å and N—H = 0.90Å) allowed to ride on their parent atoms, with Uiso = 1.2Ueq(C, N).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and HKL SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the structure of I extended by symmetry to give complete octahedron environment nickel atom. Displacement ellipsoids are presented at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y, -z.
[Figure 2] Fig. 2. Projection of the structure of I along the a axis.
Bis[tris(propane-1,3-diamine-κ2N,N')nickel(II)] diaquabis(propane-1,3-diamine-κ2N,N')nickel(II) hexabromide dihydrate top
Crystal data top
[Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2OZ = 1
Mr = 1320.57F(000) = 670
Triclinic, P1Dx = 1.631 Mg m3
a = 8.760 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.327 (5) ÅCell parameters from 17594 reflections
c = 13.387 (5) Åθ = 1.7–31.2°
α = 107.774 (5)°µ = 5.54 mm1
β = 109.045 (5)°T = 296 K
γ = 99.504 (5)°Pellets, purple
V = 1344.6 (11) Å30.36 × 0.30 × 0.16 mm
Data collection top
Nonius KappaCCD
diffractometer
8674 independent reflections
Radiation source: fine–focus sealed tube5022 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.028
Detector resolution: 9 pixels mm-1θmax = 31.2°, θmin = 1.7°
rotation images, thick slices scansh = 1212
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
k = 1918
Tmin = 0.215, Tmax = 0.330l = 1918
17594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0337P)2 + 0.1194P]
where P = (Fo2 + 2Fc2)/3
8674 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.90 e Å3
6 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2Oγ = 99.504 (5)°
Mr = 1320.57V = 1344.6 (11) Å3
Triclinic, P1Z = 1
a = 8.760 (5) ÅMo Kα radiation
b = 13.327 (5) ŵ = 5.54 mm1
c = 13.387 (5) ÅT = 296 K
α = 107.774 (5)°0.36 × 0.30 × 0.16 mm
β = 109.045 (5)°
Data collection top
Nonius KappaCCD
diffractometer
8674 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
5022 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.330Rint = 0.028
17594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0386 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.90 e Å3
8674 reflectionsΔρmin = 0.74 e Å3
257 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69831 (4)0.50049 (3)0.37689 (3)0.05784 (10)
Br30.38496 (5)1.04327 (3)0.31879 (3)0.07285 (12)
Ni10.00000.00000.00000.03393 (11)
Ni20.24711 (4)0.65812 (2)0.34338 (3)0.03374 (9)
N30.1826 (3)0.80148 (18)0.3275 (2)0.0479 (6)
H3A0.28720.86090.36230.057*
H3B0.13560.78750.24640.057*
N40.2454 (3)0.71517 (19)0.51262 (19)0.0465 (6)
H4A0.23390.65230.53460.056*
H4B0.35550.76680.56500.056*
N50.0146 (3)0.56993 (17)0.26203 (19)0.0424 (5)
H5A0.05880.58010.32090.051*
H5B0.07030.60440.21220.051*
N60.3057 (3)0.51614 (18)0.3677 (2)0.0491 (6)
H6A0.41900.52130.37090.059*
H6B0.31080.52230.44290.059*
N70.2549 (3)0.6107 (2)0.1765 (2)0.0487 (6)
H7A0.28070.54090.16020.058*
H7B0.14150.59650.12150.058*
N80.5159 (3)0.7397 (2)0.4153 (2)0.0527 (6)
H8A0.54400.79550.49010.063*
H8B0.57330.68550.42780.063*
C90.1995 (5)0.4044 (2)0.2877 (3)0.0694 (10)
H9A0.23560.35200.31980.083*
H9B0.21530.38860.21670.083*
O20.4632 (4)0.2799 (2)0.1212 (3)0.0724 (7)
C70.0660 (4)0.4506 (3)0.1937 (3)0.0608 (9)
H7C0.03490.43880.12870.073*
H7D0.18780.42150.16440.073*
C80.0148 (5)0.3893 (3)0.2623 (3)0.0762 (11)
H8C0.04530.31140.22130.091*
H8D0.00170.41280.33430.091*
C120.3715 (4)0.6846 (3)0.1526 (3)0.0668 (10)
H12A0.33640.75050.15590.080*
H12B0.36290.64780.07540.080*
C100.5908 (4)0.7931 (3)0.3539 (3)0.0670 (10)
H10A0.71240.82060.39620.080*
H10B0.54930.85580.35140.080*
C110.5517 (4)0.7177 (3)0.2342 (3)0.0700 (10)
H11A0.62200.75370.20470.084*
H11B0.58250.65150.23650.084*
C60.1161 (4)0.7689 (3)0.5323 (3)0.0581 (8)
H6C0.13450.79110.61240.070*
H6D0.00480.71600.48720.070*
C50.1219 (4)0.8689 (2)0.5008 (3)0.0602 (9)
H5C0.05130.90850.52890.072*
H5D0.23690.91740.53970.072*
C40.0649 (4)0.8433 (3)0.3750 (3)0.0561 (8)
H4C0.04530.78880.33480.067*
H4D0.05300.90970.36140.067*
O10.2016 (3)0.13735 (17)0.13311 (19)0.0517 (5)
N10.0659 (3)0.03912 (19)0.1248 (2)0.0458 (6)
H1A0.07040.11560.11050.055*
H1B0.02630.00480.19860.055*
C20.2457 (4)0.0852 (2)0.1389 (3)0.0557 (8)
H2A0.14090.14160.19330.067*
H2B0.33260.09840.16680.067*
C10.2248 (4)0.0249 (2)0.1366 (3)0.0566 (8)
H1C0.22390.03200.20680.068*
H1D0.32030.08280.07310.068*
C30.2917 (4)0.0979 (3)0.0259 (3)0.0570 (8)
H3C0.38640.03530.03180.068*
H3D0.32780.16370.03210.068*
N20.1514 (3)0.10575 (18)0.0122 (2)0.0446 (6)
H2C0.07680.18060.03040.053*
H2D0.19940.09650.09190.053*
Br20.12791 (4)0.32662 (3)0.04291 (3)0.05752 (10)
H20.261 (4)0.119 (3)0.184 (2)0.070 (12)*
H10.270 (4)0.185 (3)0.128 (3)0.108 (17)*
H30.521 (4)0.330 (2)0.1855 (18)0.084 (14)*
H40.405 (5)0.307 (3)0.079 (3)0.111 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0568 (2)0.0720 (2)0.0668 (2)0.02667 (17)0.03530 (17)0.04018 (18)
Br30.0733 (2)0.04978 (19)0.0567 (2)0.00541 (16)0.01077 (18)0.02214 (16)
Ni10.0335 (2)0.0323 (2)0.0336 (3)0.00772 (19)0.0118 (2)0.01223 (19)
Ni20.03470 (18)0.03048 (17)0.03582 (19)0.00762 (13)0.01576 (15)0.01176 (14)
N30.0499 (14)0.0408 (13)0.0612 (16)0.0171 (11)0.0269 (13)0.0235 (12)
N40.0570 (15)0.0414 (13)0.0385 (13)0.0122 (11)0.0188 (12)0.0137 (10)
N50.0420 (13)0.0409 (12)0.0389 (13)0.0028 (10)0.0187 (11)0.0106 (10)
N60.0630 (16)0.0460 (14)0.0553 (16)0.0250 (12)0.0345 (14)0.0252 (12)
N70.0516 (15)0.0519 (14)0.0452 (14)0.0109 (12)0.0265 (12)0.0169 (12)
N80.0403 (14)0.0534 (15)0.0570 (16)0.0084 (12)0.0165 (12)0.0178 (12)
C90.108 (3)0.0420 (18)0.074 (2)0.0338 (19)0.049 (2)0.0228 (17)
O20.0647 (17)0.0603 (16)0.081 (2)0.0147 (14)0.0234 (15)0.0215 (16)
C70.059 (2)0.0519 (18)0.051 (2)0.0073 (16)0.0266 (17)0.0003 (15)
C80.099 (3)0.0324 (16)0.087 (3)0.0027 (18)0.047 (2)0.0101 (17)
C120.063 (2)0.089 (3)0.071 (2)0.022 (2)0.039 (2)0.048 (2)
C100.0399 (17)0.068 (2)0.095 (3)0.0065 (16)0.0271 (19)0.039 (2)
C110.059 (2)0.093 (3)0.091 (3)0.028 (2)0.049 (2)0.055 (2)
C60.064 (2)0.064 (2)0.0399 (17)0.0155 (17)0.0264 (16)0.0068 (15)
C50.060 (2)0.0494 (18)0.057 (2)0.0242 (16)0.0199 (17)0.0008 (15)
C40.0552 (19)0.0573 (19)0.066 (2)0.0295 (16)0.0289 (17)0.0248 (16)
O10.0493 (13)0.0416 (12)0.0456 (13)0.0006 (10)0.0058 (11)0.0136 (10)
N10.0493 (14)0.0446 (13)0.0431 (14)0.0090 (11)0.0194 (12)0.0181 (11)
C20.0550 (19)0.0469 (17)0.063 (2)0.0095 (15)0.0342 (17)0.0097 (15)
C10.059 (2)0.0500 (18)0.061 (2)0.0045 (15)0.0353 (17)0.0156 (15)
C30.0442 (17)0.0560 (19)0.068 (2)0.0177 (15)0.0221 (16)0.0183 (16)
N20.0412 (13)0.0419 (13)0.0522 (15)0.0136 (11)0.0179 (12)0.0204 (11)
Br20.0688 (2)0.05470 (19)0.04544 (18)0.01940 (16)0.01714 (16)0.02018 (14)
Geometric parameters (Å, º) top
Ni1—N2i2.095 (2)C7—H7C0.9700
Ni1—N22.095 (2)C7—H7D0.9700
Ni1—N1i2.112 (2)C8—H8C0.9700
Ni1—N12.112 (2)C8—H8D0.9700
Ni1—O1i2.129 (2)C12—C111.493 (5)
Ni1—O12.129 (2)C12—H12A0.9700
Ni2—N52.127 (2)C12—H12B0.9700
Ni2—N62.130 (2)C10—C111.497 (5)
Ni2—N32.131 (2)C10—H10A0.9700
Ni2—N72.155 (2)C10—H10B0.9700
Ni2—N42.165 (2)C11—H11A0.9700
Ni2—N82.166 (3)C11—H11B0.9700
N3—C41.476 (4)C6—C51.513 (4)
N3—H3A0.9700C6—H6C0.9700
N3—H3B0.9700C6—H6D0.9700
N4—C61.487 (4)C5—C41.499 (4)
N4—H4A0.9700C5—H5C0.9700
N4—H4B0.9700C5—H5D0.9700
N5—C71.475 (4)C4—H4C0.9700
N5—H5A0.9700C4—H4D0.9700
N5—H5B0.9700O1—H20.843 (17)
N6—C91.465 (4)O1—H10.839 (18)
N6—H6A0.9700N1—C11.486 (4)
N6—H6B0.9700N1—H1A0.9700
N7—C121.481 (4)N1—H1B0.9700
N7—H7A0.9700C2—C11.501 (4)
N7—H7B0.9700C2—C31.504 (5)
N8—C101.472 (4)C2—H2A0.9700
N8—H8A0.9700C2—H2B0.9700
N8—H8B0.9700C1—H1C0.9700
C9—C81.505 (5)C1—H1D0.9700
C9—H9A0.9700C3—N21.476 (4)
C9—H9B0.9700C3—H3C0.9700
O2—H30.834 (17)C3—H3D0.9700
O2—H40.841 (17)N2—H2C0.9700
C7—C81.495 (5)N2—H2D0.9700
N2i—Ni1—N2180.0C8—C7—H7D109.2
N2i—Ni1—N1i93.54 (9)H7C—C7—H7D107.9
N2—Ni1—N1i86.46 (9)C7—C8—C9115.0 (3)
N2i—Ni1—N186.46 (9)C7—C8—H8C108.5
N2—Ni1—N193.54 (9)C9—C8—H8C108.5
N1i—Ni1—N1180.0C7—C8—H8D108.5
N2i—Ni1—O1i88.38 (10)C9—C8—H8D108.5
N2—Ni1—O1i91.62 (10)H8C—C8—H8D107.5
N1i—Ni1—O1i89.33 (10)N7—C12—C11113.5 (3)
N1—Ni1—O1i90.67 (10)N7—C12—H12A108.9
N2i—Ni1—O191.62 (10)C11—C12—H12A108.9
N2—Ni1—O188.38 (10)N7—C12—H12B108.9
N1i—Ni1—O190.67 (10)C11—C12—H12B108.9
N1—Ni1—O189.33 (10)H12A—C12—H12B107.7
O1i—Ni1—O1180.0N8—C10—C11113.4 (3)
N5—Ni2—N690.12 (10)N8—C10—H10A108.9
N5—Ni2—N388.80 (10)C11—C10—H10A108.9
N6—Ni2—N3176.31 (9)N8—C10—H10B108.9
N5—Ni2—N788.31 (9)C11—C10—H10B108.9
N6—Ni2—N793.53 (9)H10A—C10—H10B107.7
N3—Ni2—N789.98 (10)C12—C11—C10115.1 (3)
N5—Ni2—N493.56 (9)C12—C11—H11A108.5
N6—Ni2—N489.02 (9)C10—C11—H11A108.5
N3—Ni2—N487.51 (9)C12—C11—H11B108.5
N7—Ni2—N4176.84 (9)C10—C11—H11B108.5
N5—Ni2—N8175.67 (9)H11A—C11—H11B107.5
N6—Ni2—N888.21 (10)N4—C6—C5112.3 (3)
N3—Ni2—N893.10 (10)N4—C6—H6C109.1
N7—Ni2—N887.80 (10)C5—C6—H6C109.1
N4—Ni2—N890.41 (10)N4—C6—H6D109.1
C4—N3—Ni2120.60 (19)C5—C6—H6D109.1
C4—N3—H3A107.2H6C—C6—H6D107.9
Ni2—N3—H3A107.2C4—C5—C6114.6 (2)
C4—N3—H3B107.2C4—C5—H5C108.6
Ni2—N3—H3B107.2C6—C5—H5C108.6
H3A—N3—H3B106.8C4—C5—H5D108.6
C6—N4—Ni2119.51 (19)C6—C5—H5D108.6
C6—N4—H4A107.4H5C—C5—H5D107.6
Ni2—N4—H4A107.4N3—C4—C5113.1 (3)
C6—N4—H4B107.4N3—C4—H4C109.0
Ni2—N4—H4B107.4C5—C4—H4C109.0
H4A—N4—H4B107.0N3—C4—H4D109.0
C7—N5—Ni2118.69 (19)C5—C4—H4D109.0
C7—N5—H5A107.6H4C—C4—H4D107.8
Ni2—N5—H5A107.6Ni1—O1—H2112 (2)
C7—N5—H5B107.6Ni1—O1—H1129 (3)
Ni2—N5—H5B107.6H2—O1—H1105 (2)
H5A—N5—H5B107.1C1—N1—Ni1120.33 (19)
C9—N6—Ni2121.6 (2)C1—N1—H1A107.2
C9—N6—H6A106.9Ni1—N1—H1A107.2
Ni2—N6—H6A106.9C1—N1—H1B107.2
C9—N6—H6B106.9Ni1—N1—H1B107.2
Ni2—N6—H6B106.9H1A—N1—H1B106.9
H6A—N6—H6B106.7C1—C2—C3115.4 (3)
C12—N7—Ni2120.5 (2)C1—C2—H2A108.4
C12—N7—H7A107.2C3—C2—H2A108.4
Ni2—N7—H7A107.2C1—C2—H2B108.4
C12—N7—H7B107.2C3—C2—H2B108.4
Ni2—N7—H7B107.2H2A—C2—H2B107.5
H7A—N7—H7B106.8N1—C1—C2111.9 (2)
C10—N8—Ni2120.6 (2)N1—C1—H1C109.2
C10—N8—H8A107.2C2—C1—H1C109.2
Ni2—N8—H8A107.2N1—C1—H1D109.2
C10—N8—H8B107.2C2—C1—H1D109.2
Ni2—N8—H8B107.2H1C—C1—H1D107.9
H8A—N8—H8B106.8N2—C3—C2113.4 (3)
N6—C9—C8112.7 (3)N2—C3—H3C108.9
N6—C9—H9A109.1C2—C3—H3C108.9
C8—C9—H9A109.1N2—C3—H3D108.9
N6—C9—H9B109.1C2—C3—H3D108.9
C8—C9—H9B109.1H3C—C3—H3D107.7
H9A—C9—H9B107.8C3—N2—Ni1120.99 (18)
H3—O2—H4109 (3)C3—N2—H2C107.1
N5—C7—C8112.1 (3)Ni1—N2—H2C107.1
N5—C7—H7C109.2C3—N2—H2D107.1
C8—C7—H7C109.2Ni1—N2—H2D107.1
N5—C7—H7D109.2H2C—N2—H2D106.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (2)1.98 (2)2.805 (4)169 (4)
O1—H2···Br3ii0.84 (2)2.37 (2)3.208 (3)170 (3)
O2—H4···Br20.84 (2)2.55 (2)3.327 (3)154 (4)
O2—H3···Br10.83 (2)2.61 (2)3.443 (3)174 (3)
N1—H1A···Br2i0.972.583.541 (3)170
N1—H1B···Br3ii0.972.903.699 (3)141
N2—H2D···Br3iii0.972.773.630 (3)149
N2—H2C···Br20.973.023.720 (3)130
N3—H3A···Br30.972.733.467 (3)133
N3—H3B···Br2iii0.972.703.544 (3)146
N4—H4A···Br1iv0.972.703.644 (3)163
N4—H4B···Br3v0.972.723.646 (3)161
N5—H5A···Br1vi0.972.643.488 (2)146
N5—H5B···Br2iii0.972.633.537 (3)156
N6—H6A···Br10.972.493.445 (3)170
N6—H6B···Br1iv0.972.553.504 (3)169
N7—H7B···Br2iii0.972.753.615 (3)149
N7—H7A···Br20.972.993.726 (3)133
N8—H8A···Br3v0.972.593.558 (3)175
N8—H8B···Br10.972.853.768 (3)159
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.839 (18)1.98 (2)2.805 (4)169 (4)
O1—H2···Br3i0.843 (17)2.374 (17)3.208 (3)170 (3)
O2—H4···Br20.841 (17)2.55 (2)3.327 (3)154 (4)
O2—H3···Br10.834 (17)2.613 (19)3.443 (3)174 (3)
N1—H1A···Br2ii0.972.583.541 (3)170.4
N1—H1B···Br3i0.972.903.699 (3)140.8
N2—H2D···Br3iii0.972.773.630 (3)148.5
N2—H2C···Br20.973.023.720 (3)130.0
N3—H3A···Br30.972.733.467 (3)132.7
N3—H3B···Br2iii0.972.703.544 (3)146.2
N4—H4A···Br1iv0.972.703.644 (3)163.2
N4—H4B···Br3v0.972.723.646 (3)160.6
N5—H5A···Br1vi0.972.643.488 (2)145.6
N5—H5B···Br2iii0.972.633.537 (3)155.7
N6—H6A···Br10.972.493.445 (3)169.9
N6—H6B···Br1iv0.972.553.504 (3)169.3
N7—H7B···Br2iii0.972.753.615 (3)148.9
N7—H7A···Br20.972.993.726 (3)133.2
N8—H8A···Br3v0.972.593.558 (3)174.9
N8—H8B···Br10.972.853.768 (3)159.2
Symmetry codes: (i) x, y1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+2, z+1; (vi) x1, y, z.
 

Acknowledgements

Grateful thanks are expressed to Tarak Gargouri (Université de Sfax, Faculté des Sciences de Sfax) for his assistance with the single-crystal X-ray diffraction data collection.

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurrows, A. D. (2004). Struct. Bond. 108, 55–96.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed Google Scholar
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimard, M., Su, D. & Wuest, J. D. (1991). J. Am. Chem. Soc. 113, 4696–4698.  CSD CrossRef CAS Web of Science Google Scholar
First citationZerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages m227-m228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds