metal-organic compounds
Bis[tris(propane-1,3-diamine-κ2N,N′)nickel(II)] diaquabis(propane-1,3-diamine-κ2N,N′)nickel(II) hexabromide dihydrate
aLaboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3018 Sfax, Tunisia, and bLaboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3018 Sfax, Tunisia
*Correspondence e-mail: w_rekik@alinto.com
In the title compound, [Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O, one Ni2+ cation, located on an inversion centre, is coordinated by four N atoms from two ligands and by two water O atoms. The other Ni2+ cation, located in a general position, is coordinated by six N atoms from three ligands. In both cases, the Ni2+ cation has an octahedral coordination environment. The overall structural cohesion is ensured by three types of hydrogen bonds, N—H⋯Br, O—H⋯Br and O—H⋯O, which connect the two types of complex cations, the bromide counter-anions and the lattice water molecules into a three-dimensional network.
CCDC reference: 1002808
Related literature
For the multiple coordination modes of amine derivatives as ligands to metal ions, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007). For control of the aggregation of molecules or ions in the solid state in crystal engineering, see: Burrows (2004). For hydrogen bonding in bifunctional ligands, see: Simard et al. (1991); Zerkowski & Whitesides (1994).
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997) and HKL SCALEPACK; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1002808
10.1107/S1600536814011052/rk2424sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814011052/rk2424Isup2.hkl
The title compound is resulting from a chemical reaction between three reagents: 1,3–diaminopropane (C3H10N2), hydrobromic acid (HBr) and nickel bromide (NiBr2). The 1 mmol of NiBr2 and 1 mmol of the diamine with excess of HBr were mixed in the DMF solvent. The obtained solution is kept at room temperature. After 4 days, purple platelets were formed. The purity of the product was improved by a second recrystallization.
The water H atoms were located in difference map and refined with O—H distance restraints of 0.85 (2)Å and H···H distance restraints of 1.35 (2)Å. The H atoms bonded to C and N atoms were positioned geometrically (with distances C—H = 0.97Å and N—H = 0.90Å) allowed to ride on their parent atoms, with Uiso = 1.2Ueq(C, N).
Data collection: COLLECT (Nonius, 1998); cell
HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and HKL SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Asymmetric unit of the structure of I extended by symmetry to give complete octahedron environment nickel atom. Displacement ellipsoids are presented at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x, -y, -z. | |
Fig. 2. Projection of the structure of I along the a axis. |
[Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O | Z = 1 |
Mr = 1320.57 | F(000) = 670 |
Triclinic, P1 | Dx = 1.631 Mg m−3 |
a = 8.760 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 13.327 (5) Å | Cell parameters from 17594 reflections |
c = 13.387 (5) Å | θ = 1.7–31.2° |
α = 107.774 (5)° | µ = 5.54 mm−1 |
β = 109.045 (5)° | T = 296 K |
γ = 99.504 (5)° | Pellets, purple |
V = 1344.6 (11) Å3 | 0.36 × 0.30 × 0.16 mm |
Nonius KappaCCD diffractometer | 8674 independent reflections |
Radiation source: fine–focus sealed tube | 5022 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.028 |
Detector resolution: 9 pixels mm-1 | θmax = 31.2°, θmin = 1.7° |
rotation images, thick slices scans | h = −12→12 |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | k = −19→18 |
Tmin = 0.215, Tmax = 0.330 | l = −19→18 |
17594 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0337P)2 + 0.1194P] where P = (Fo2 + 2Fc2)/3 |
8674 reflections | (Δ/σ)max = 0.001 |
257 parameters | Δρmax = 0.90 e Å−3 |
6 restraints | Δρmin = −0.74 e Å−3 |
[Ni(C3H10N2)3]2[Ni(C3H10N2)2(H2O)2]Br6·2H2O | γ = 99.504 (5)° |
Mr = 1320.57 | V = 1344.6 (11) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.760 (5) Å | Mo Kα radiation |
b = 13.327 (5) Å | µ = 5.54 mm−1 |
c = 13.387 (5) Å | T = 296 K |
α = 107.774 (5)° | 0.36 × 0.30 × 0.16 mm |
β = 109.045 (5)° |
Nonius KappaCCD diffractometer | 8674 independent reflections |
Absorption correction: analytical (de Meulenaer & Tompa, 1965) | 5022 reflections with I > 2σ(I) |
Tmin = 0.215, Tmax = 0.330 | Rint = 0.028 |
17594 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 6 restraints |
wR(F2) = 0.084 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.90 e Å−3 |
8674 reflections | Δρmin = −0.74 e Å−3 |
257 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.69831 (4) | 0.50049 (3) | 0.37689 (3) | 0.05784 (10) | |
Br3 | 0.38496 (5) | 1.04327 (3) | 0.31879 (3) | 0.07285 (12) | |
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.03393 (11) | |
Ni2 | 0.24711 (4) | 0.65812 (2) | 0.34338 (3) | 0.03374 (9) | |
N3 | 0.1826 (3) | 0.80148 (18) | 0.3275 (2) | 0.0479 (6) | |
H3A | 0.2872 | 0.8609 | 0.3623 | 0.057* | |
H3B | 0.1356 | 0.7875 | 0.2464 | 0.057* | |
N4 | 0.2454 (3) | 0.71517 (19) | 0.51262 (19) | 0.0465 (6) | |
H4A | 0.2339 | 0.6523 | 0.5346 | 0.056* | |
H4B | 0.3555 | 0.7668 | 0.5650 | 0.056* | |
N5 | −0.0146 (3) | 0.56993 (17) | 0.26203 (19) | 0.0424 (5) | |
H5A | −0.0588 | 0.5801 | 0.3209 | 0.051* | |
H5B | −0.0703 | 0.6044 | 0.2122 | 0.051* | |
N6 | 0.3057 (3) | 0.51614 (18) | 0.3677 (2) | 0.0491 (6) | |
H6A | 0.4190 | 0.5213 | 0.3709 | 0.059* | |
H6B | 0.3108 | 0.5223 | 0.4429 | 0.059* | |
N7 | 0.2549 (3) | 0.6107 (2) | 0.1765 (2) | 0.0487 (6) | |
H7A | 0.2807 | 0.5409 | 0.1602 | 0.058* | |
H7B | 0.1415 | 0.5965 | 0.1215 | 0.058* | |
N8 | 0.5159 (3) | 0.7397 (2) | 0.4153 (2) | 0.0527 (6) | |
H8A | 0.5440 | 0.7955 | 0.4901 | 0.063* | |
H8B | 0.5733 | 0.6855 | 0.4278 | 0.063* | |
C9 | 0.1995 (5) | 0.4044 (2) | 0.2877 (3) | 0.0694 (10) | |
H9A | 0.2356 | 0.3520 | 0.3198 | 0.083* | |
H9B | 0.2153 | 0.3886 | 0.2167 | 0.083* | |
O2 | 0.4632 (4) | 0.2799 (2) | 0.1212 (3) | 0.0724 (7) | |
C7 | −0.0660 (4) | 0.4506 (3) | 0.1937 (3) | 0.0608 (9) | |
H7C | −0.0349 | 0.4388 | 0.1287 | 0.073* | |
H7D | −0.1878 | 0.4215 | 0.1644 | 0.073* | |
C8 | 0.0148 (5) | 0.3893 (3) | 0.2623 (3) | 0.0762 (11) | |
H8C | −0.0453 | 0.3114 | 0.2213 | 0.091* | |
H8D | 0.0017 | 0.4128 | 0.3343 | 0.091* | |
C12 | 0.3715 (4) | 0.6846 (3) | 0.1526 (3) | 0.0668 (10) | |
H12A | 0.3364 | 0.7505 | 0.1559 | 0.080* | |
H12B | 0.3629 | 0.6478 | 0.0754 | 0.080* | |
C10 | 0.5908 (4) | 0.7931 (3) | 0.3539 (3) | 0.0670 (10) | |
H10A | 0.7124 | 0.8206 | 0.3962 | 0.080* | |
H10B | 0.5493 | 0.8558 | 0.3514 | 0.080* | |
C11 | 0.5517 (4) | 0.7177 (3) | 0.2342 (3) | 0.0700 (10) | |
H11A | 0.6220 | 0.7537 | 0.2047 | 0.084* | |
H11B | 0.5825 | 0.6515 | 0.2365 | 0.084* | |
C6 | 0.1161 (4) | 0.7689 (3) | 0.5323 (3) | 0.0581 (8) | |
H6C | 0.1345 | 0.7911 | 0.6124 | 0.070* | |
H6D | 0.0048 | 0.7160 | 0.4872 | 0.070* | |
C5 | 0.1219 (4) | 0.8689 (2) | 0.5008 (3) | 0.0602 (9) | |
H5C | 0.0513 | 0.9085 | 0.5289 | 0.072* | |
H5D | 0.2369 | 0.9174 | 0.5397 | 0.072* | |
C4 | 0.0649 (4) | 0.8433 (3) | 0.3750 (3) | 0.0561 (8) | |
H4C | −0.0453 | 0.7888 | 0.3348 | 0.067* | |
H4D | 0.0530 | 0.9097 | 0.3614 | 0.067* | |
O1 | 0.2016 (3) | 0.13735 (17) | 0.13311 (19) | 0.0517 (5) | |
N1 | −0.0659 (3) | −0.03912 (19) | 0.1248 (2) | 0.0458 (6) | |
H1A | −0.0704 | −0.1156 | 0.1105 | 0.055* | |
H1B | 0.0263 | 0.0048 | 0.1986 | 0.055* | |
C2 | −0.2457 (4) | 0.0852 (2) | 0.1389 (3) | 0.0557 (8) | |
H2A | −0.1409 | 0.1416 | 0.1933 | 0.067* | |
H2B | −0.3326 | 0.0984 | 0.1668 | 0.067* | |
C1 | −0.2248 (4) | −0.0249 (2) | 0.1366 (3) | 0.0566 (8) | |
H1C | −0.2239 | −0.0320 | 0.2068 | 0.068* | |
H1D | −0.3203 | −0.0828 | 0.0731 | 0.068* | |
C3 | −0.2917 (4) | 0.0979 (3) | 0.0259 (3) | 0.0570 (8) | |
H3C | −0.3864 | 0.0353 | −0.0318 | 0.068* | |
H3D | −0.3278 | 0.1637 | 0.0321 | 0.068* | |
N2 | −0.1514 (3) | 0.10575 (18) | −0.0122 (2) | 0.0446 (6) | |
H2C | −0.0768 | 0.1806 | 0.0304 | 0.053* | |
H2D | −0.1994 | 0.0965 | −0.0919 | 0.053* | |
Br2 | 0.12791 (4) | 0.32662 (3) | −0.04291 (3) | 0.05752 (10) | |
H2 | 0.261 (4) | 0.119 (3) | 0.184 (2) | 0.070 (12)* | |
H1 | 0.270 (4) | 0.185 (3) | 0.128 (3) | 0.108 (17)* | |
H3 | 0.521 (4) | 0.330 (2) | 0.1855 (18) | 0.084 (14)* | |
H4 | 0.405 (5) | 0.307 (3) | 0.079 (3) | 0.111 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0568 (2) | 0.0720 (2) | 0.0668 (2) | 0.02667 (17) | 0.03530 (17) | 0.04018 (18) |
Br3 | 0.0733 (2) | 0.04978 (19) | 0.0567 (2) | −0.00541 (16) | −0.01077 (18) | 0.02214 (16) |
Ni1 | 0.0335 (2) | 0.0323 (2) | 0.0336 (3) | 0.00772 (19) | 0.0118 (2) | 0.01223 (19) |
Ni2 | 0.03470 (18) | 0.03048 (17) | 0.03582 (19) | 0.00762 (13) | 0.01576 (15) | 0.01176 (14) |
N3 | 0.0499 (14) | 0.0408 (13) | 0.0612 (16) | 0.0171 (11) | 0.0269 (13) | 0.0235 (12) |
N4 | 0.0570 (15) | 0.0414 (13) | 0.0385 (13) | 0.0122 (11) | 0.0188 (12) | 0.0137 (10) |
N5 | 0.0420 (13) | 0.0409 (12) | 0.0389 (13) | 0.0028 (10) | 0.0187 (11) | 0.0106 (10) |
N6 | 0.0630 (16) | 0.0460 (14) | 0.0553 (16) | 0.0250 (12) | 0.0345 (14) | 0.0252 (12) |
N7 | 0.0516 (15) | 0.0519 (14) | 0.0452 (14) | 0.0109 (12) | 0.0265 (12) | 0.0169 (12) |
N8 | 0.0403 (14) | 0.0534 (15) | 0.0570 (16) | 0.0084 (12) | 0.0165 (12) | 0.0178 (12) |
C9 | 0.108 (3) | 0.0420 (18) | 0.074 (2) | 0.0338 (19) | 0.049 (2) | 0.0228 (17) |
O2 | 0.0647 (17) | 0.0603 (16) | 0.081 (2) | 0.0147 (14) | 0.0234 (15) | 0.0215 (16) |
C7 | 0.059 (2) | 0.0519 (18) | 0.051 (2) | −0.0073 (16) | 0.0266 (17) | 0.0003 (15) |
C8 | 0.099 (3) | 0.0324 (16) | 0.087 (3) | −0.0027 (18) | 0.047 (2) | 0.0101 (17) |
C12 | 0.063 (2) | 0.089 (3) | 0.071 (2) | 0.022 (2) | 0.039 (2) | 0.048 (2) |
C10 | 0.0399 (17) | 0.068 (2) | 0.095 (3) | 0.0065 (16) | 0.0271 (19) | 0.039 (2) |
C11 | 0.059 (2) | 0.093 (3) | 0.091 (3) | 0.028 (2) | 0.049 (2) | 0.055 (2) |
C6 | 0.064 (2) | 0.064 (2) | 0.0399 (17) | 0.0155 (17) | 0.0264 (16) | 0.0068 (15) |
C5 | 0.060 (2) | 0.0494 (18) | 0.057 (2) | 0.0242 (16) | 0.0199 (17) | 0.0008 (15) |
C4 | 0.0552 (19) | 0.0573 (19) | 0.066 (2) | 0.0295 (16) | 0.0289 (17) | 0.0248 (16) |
O1 | 0.0493 (13) | 0.0416 (12) | 0.0456 (13) | 0.0006 (10) | 0.0058 (11) | 0.0136 (10) |
N1 | 0.0493 (14) | 0.0446 (13) | 0.0431 (14) | 0.0090 (11) | 0.0194 (12) | 0.0181 (11) |
C2 | 0.0550 (19) | 0.0469 (17) | 0.063 (2) | 0.0095 (15) | 0.0342 (17) | 0.0097 (15) |
C1 | 0.059 (2) | 0.0500 (18) | 0.061 (2) | 0.0045 (15) | 0.0353 (17) | 0.0156 (15) |
C3 | 0.0442 (17) | 0.0560 (19) | 0.068 (2) | 0.0177 (15) | 0.0221 (16) | 0.0183 (16) |
N2 | 0.0412 (13) | 0.0419 (13) | 0.0522 (15) | 0.0136 (11) | 0.0179 (12) | 0.0204 (11) |
Br2 | 0.0688 (2) | 0.05470 (19) | 0.04544 (18) | 0.01940 (16) | 0.01714 (16) | 0.02018 (14) |
Ni1—N2i | 2.095 (2) | C7—H7C | 0.9700 |
Ni1—N2 | 2.095 (2) | C7—H7D | 0.9700 |
Ni1—N1i | 2.112 (2) | C8—H8C | 0.9700 |
Ni1—N1 | 2.112 (2) | C8—H8D | 0.9700 |
Ni1—O1i | 2.129 (2) | C12—C11 | 1.493 (5) |
Ni1—O1 | 2.129 (2) | C12—H12A | 0.9700 |
Ni2—N5 | 2.127 (2) | C12—H12B | 0.9700 |
Ni2—N6 | 2.130 (2) | C10—C11 | 1.497 (5) |
Ni2—N3 | 2.131 (2) | C10—H10A | 0.9700 |
Ni2—N7 | 2.155 (2) | C10—H10B | 0.9700 |
Ni2—N4 | 2.165 (2) | C11—H11A | 0.9700 |
Ni2—N8 | 2.166 (3) | C11—H11B | 0.9700 |
N3—C4 | 1.476 (4) | C6—C5 | 1.513 (4) |
N3—H3A | 0.9700 | C6—H6C | 0.9700 |
N3—H3B | 0.9700 | C6—H6D | 0.9700 |
N4—C6 | 1.487 (4) | C5—C4 | 1.499 (4) |
N4—H4A | 0.9700 | C5—H5C | 0.9700 |
N4—H4B | 0.9700 | C5—H5D | 0.9700 |
N5—C7 | 1.475 (4) | C4—H4C | 0.9700 |
N5—H5A | 0.9700 | C4—H4D | 0.9700 |
N5—H5B | 0.9700 | O1—H2 | 0.843 (17) |
N6—C9 | 1.465 (4) | O1—H1 | 0.839 (18) |
N6—H6A | 0.9700 | N1—C1 | 1.486 (4) |
N6—H6B | 0.9700 | N1—H1A | 0.9700 |
N7—C12 | 1.481 (4) | N1—H1B | 0.9700 |
N7—H7A | 0.9700 | C2—C1 | 1.501 (4) |
N7—H7B | 0.9700 | C2—C3 | 1.504 (5) |
N8—C10 | 1.472 (4) | C2—H2A | 0.9700 |
N8—H8A | 0.9700 | C2—H2B | 0.9700 |
N8—H8B | 0.9700 | C1—H1C | 0.9700 |
C9—C8 | 1.505 (5) | C1—H1D | 0.9700 |
C9—H9A | 0.9700 | C3—N2 | 1.476 (4) |
C9—H9B | 0.9700 | C3—H3C | 0.9700 |
O2—H3 | 0.834 (17) | C3—H3D | 0.9700 |
O2—H4 | 0.841 (17) | N2—H2C | 0.9700 |
C7—C8 | 1.495 (5) | N2—H2D | 0.9700 |
N2i—Ni1—N2 | 180.0 | C8—C7—H7D | 109.2 |
N2i—Ni1—N1i | 93.54 (9) | H7C—C7—H7D | 107.9 |
N2—Ni1—N1i | 86.46 (9) | C7—C8—C9 | 115.0 (3) |
N2i—Ni1—N1 | 86.46 (9) | C7—C8—H8C | 108.5 |
N2—Ni1—N1 | 93.54 (9) | C9—C8—H8C | 108.5 |
N1i—Ni1—N1 | 180.0 | C7—C8—H8D | 108.5 |
N2i—Ni1—O1i | 88.38 (10) | C9—C8—H8D | 108.5 |
N2—Ni1—O1i | 91.62 (10) | H8C—C8—H8D | 107.5 |
N1i—Ni1—O1i | 89.33 (10) | N7—C12—C11 | 113.5 (3) |
N1—Ni1—O1i | 90.67 (10) | N7—C12—H12A | 108.9 |
N2i—Ni1—O1 | 91.62 (10) | C11—C12—H12A | 108.9 |
N2—Ni1—O1 | 88.38 (10) | N7—C12—H12B | 108.9 |
N1i—Ni1—O1 | 90.67 (10) | C11—C12—H12B | 108.9 |
N1—Ni1—O1 | 89.33 (10) | H12A—C12—H12B | 107.7 |
O1i—Ni1—O1 | 180.0 | N8—C10—C11 | 113.4 (3) |
N5—Ni2—N6 | 90.12 (10) | N8—C10—H10A | 108.9 |
N5—Ni2—N3 | 88.80 (10) | C11—C10—H10A | 108.9 |
N6—Ni2—N3 | 176.31 (9) | N8—C10—H10B | 108.9 |
N5—Ni2—N7 | 88.31 (9) | C11—C10—H10B | 108.9 |
N6—Ni2—N7 | 93.53 (9) | H10A—C10—H10B | 107.7 |
N3—Ni2—N7 | 89.98 (10) | C12—C11—C10 | 115.1 (3) |
N5—Ni2—N4 | 93.56 (9) | C12—C11—H11A | 108.5 |
N6—Ni2—N4 | 89.02 (9) | C10—C11—H11A | 108.5 |
N3—Ni2—N4 | 87.51 (9) | C12—C11—H11B | 108.5 |
N7—Ni2—N4 | 176.84 (9) | C10—C11—H11B | 108.5 |
N5—Ni2—N8 | 175.67 (9) | H11A—C11—H11B | 107.5 |
N6—Ni2—N8 | 88.21 (10) | N4—C6—C5 | 112.3 (3) |
N3—Ni2—N8 | 93.10 (10) | N4—C6—H6C | 109.1 |
N7—Ni2—N8 | 87.80 (10) | C5—C6—H6C | 109.1 |
N4—Ni2—N8 | 90.41 (10) | N4—C6—H6D | 109.1 |
C4—N3—Ni2 | 120.60 (19) | C5—C6—H6D | 109.1 |
C4—N3—H3A | 107.2 | H6C—C6—H6D | 107.9 |
Ni2—N3—H3A | 107.2 | C4—C5—C6 | 114.6 (2) |
C4—N3—H3B | 107.2 | C4—C5—H5C | 108.6 |
Ni2—N3—H3B | 107.2 | C6—C5—H5C | 108.6 |
H3A—N3—H3B | 106.8 | C4—C5—H5D | 108.6 |
C6—N4—Ni2 | 119.51 (19) | C6—C5—H5D | 108.6 |
C6—N4—H4A | 107.4 | H5C—C5—H5D | 107.6 |
Ni2—N4—H4A | 107.4 | N3—C4—C5 | 113.1 (3) |
C6—N4—H4B | 107.4 | N3—C4—H4C | 109.0 |
Ni2—N4—H4B | 107.4 | C5—C4—H4C | 109.0 |
H4A—N4—H4B | 107.0 | N3—C4—H4D | 109.0 |
C7—N5—Ni2 | 118.69 (19) | C5—C4—H4D | 109.0 |
C7—N5—H5A | 107.6 | H4C—C4—H4D | 107.8 |
Ni2—N5—H5A | 107.6 | Ni1—O1—H2 | 112 (2) |
C7—N5—H5B | 107.6 | Ni1—O1—H1 | 129 (3) |
Ni2—N5—H5B | 107.6 | H2—O1—H1 | 105 (2) |
H5A—N5—H5B | 107.1 | C1—N1—Ni1 | 120.33 (19) |
C9—N6—Ni2 | 121.6 (2) | C1—N1—H1A | 107.2 |
C9—N6—H6A | 106.9 | Ni1—N1—H1A | 107.2 |
Ni2—N6—H6A | 106.9 | C1—N1—H1B | 107.2 |
C9—N6—H6B | 106.9 | Ni1—N1—H1B | 107.2 |
Ni2—N6—H6B | 106.9 | H1A—N1—H1B | 106.9 |
H6A—N6—H6B | 106.7 | C1—C2—C3 | 115.4 (3) |
C12—N7—Ni2 | 120.5 (2) | C1—C2—H2A | 108.4 |
C12—N7—H7A | 107.2 | C3—C2—H2A | 108.4 |
Ni2—N7—H7A | 107.2 | C1—C2—H2B | 108.4 |
C12—N7—H7B | 107.2 | C3—C2—H2B | 108.4 |
Ni2—N7—H7B | 107.2 | H2A—C2—H2B | 107.5 |
H7A—N7—H7B | 106.8 | N1—C1—C2 | 111.9 (2) |
C10—N8—Ni2 | 120.6 (2) | N1—C1—H1C | 109.2 |
C10—N8—H8A | 107.2 | C2—C1—H1C | 109.2 |
Ni2—N8—H8A | 107.2 | N1—C1—H1D | 109.2 |
C10—N8—H8B | 107.2 | C2—C1—H1D | 109.2 |
Ni2—N8—H8B | 107.2 | H1C—C1—H1D | 107.9 |
H8A—N8—H8B | 106.8 | N2—C3—C2 | 113.4 (3) |
N6—C9—C8 | 112.7 (3) | N2—C3—H3C | 108.9 |
N6—C9—H9A | 109.1 | C2—C3—H3C | 108.9 |
C8—C9—H9A | 109.1 | N2—C3—H3D | 108.9 |
N6—C9—H9B | 109.1 | C2—C3—H3D | 108.9 |
C8—C9—H9B | 109.1 | H3C—C3—H3D | 107.7 |
H9A—C9—H9B | 107.8 | C3—N2—Ni1 | 120.99 (18) |
H3—O2—H4 | 109 (3) | C3—N2—H2C | 107.1 |
N5—C7—C8 | 112.1 (3) | Ni1—N2—H2C | 107.1 |
N5—C7—H7C | 109.2 | C3—N2—H2D | 107.1 |
C8—C7—H7C | 109.2 | Ni1—N2—H2D | 107.1 |
N5—C7—H7D | 109.2 | H2C—N2—H2D | 106.8 |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.84 (2) | 1.98 (2) | 2.805 (4) | 169 (4) |
O1—H2···Br3ii | 0.84 (2) | 2.37 (2) | 3.208 (3) | 170 (3) |
O2—H4···Br2 | 0.84 (2) | 2.55 (2) | 3.327 (3) | 154 (4) |
O2—H3···Br1 | 0.83 (2) | 2.61 (2) | 3.443 (3) | 174 (3) |
N1—H1A···Br2i | 0.97 | 2.58 | 3.541 (3) | 170 |
N1—H1B···Br3ii | 0.97 | 2.90 | 3.699 (3) | 141 |
N2—H2D···Br3iii | 0.97 | 2.77 | 3.630 (3) | 149 |
N2—H2C···Br2 | 0.97 | 3.02 | 3.720 (3) | 130 |
N3—H3A···Br3 | 0.97 | 2.73 | 3.467 (3) | 133 |
N3—H3B···Br2iii | 0.97 | 2.70 | 3.544 (3) | 146 |
N4—H4A···Br1iv | 0.97 | 2.70 | 3.644 (3) | 163 |
N4—H4B···Br3v | 0.97 | 2.72 | 3.646 (3) | 161 |
N5—H5A···Br1vi | 0.97 | 2.64 | 3.488 (2) | 146 |
N5—H5B···Br2iii | 0.97 | 2.63 | 3.537 (3) | 156 |
N6—H6A···Br1 | 0.97 | 2.49 | 3.445 (3) | 170 |
N6—H6B···Br1iv | 0.97 | 2.55 | 3.504 (3) | 169 |
N7—H7B···Br2iii | 0.97 | 2.75 | 3.615 (3) | 149 |
N7—H7A···Br2 | 0.97 | 2.99 | 3.726 (3) | 133 |
N8—H8A···Br3v | 0.97 | 2.59 | 3.558 (3) | 175 |
N8—H8B···Br1 | 0.97 | 2.85 | 3.768 (3) | 159 |
Symmetry codes: (i) −x, −y, −z; (ii) x, y−1, z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2 | 0.839 (18) | 1.98 (2) | 2.805 (4) | 169 (4) |
O1—H2···Br3i | 0.843 (17) | 2.374 (17) | 3.208 (3) | 170 (3) |
O2—H4···Br2 | 0.841 (17) | 2.55 (2) | 3.327 (3) | 154 (4) |
O2—H3···Br1 | 0.834 (17) | 2.613 (19) | 3.443 (3) | 174 (3) |
N1—H1A···Br2ii | 0.97 | 2.58 | 3.541 (3) | 170.4 |
N1—H1B···Br3i | 0.97 | 2.90 | 3.699 (3) | 140.8 |
N2—H2D···Br3iii | 0.97 | 2.77 | 3.630 (3) | 148.5 |
N2—H2C···Br2 | 0.97 | 3.02 | 3.720 (3) | 130.0 |
N3—H3A···Br3 | 0.97 | 2.73 | 3.467 (3) | 132.7 |
N3—H3B···Br2iii | 0.97 | 2.70 | 3.544 (3) | 146.2 |
N4—H4A···Br1iv | 0.97 | 2.70 | 3.644 (3) | 163.2 |
N4—H4B···Br3v | 0.97 | 2.72 | 3.646 (3) | 160.6 |
N5—H5A···Br1vi | 0.97 | 2.64 | 3.488 (2) | 145.6 |
N5—H5B···Br2iii | 0.97 | 2.63 | 3.537 (3) | 155.7 |
N6—H6A···Br1 | 0.97 | 2.49 | 3.445 (3) | 169.9 |
N6—H6B···Br1iv | 0.97 | 2.55 | 3.504 (3) | 169.3 |
N7—H7B···Br2iii | 0.97 | 2.75 | 3.615 (3) | 148.9 |
N7—H7A···Br2 | 0.97 | 2.99 | 3.726 (3) | 133.2 |
N8—H8A···Br3v | 0.97 | 2.59 | 3.558 (3) | 174.9 |
N8—H8B···Br1 | 0.97 | 2.85 | 3.768 (3) | 159.2 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y, −z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+2, −z+1; (vi) x−1, y, z. |
Acknowledgements
Grateful thanks are expressed to Tarak Gargouri (Université de Sfax, Faculté des Sciences de Sfax) for his assistance with the single-crystal X-ray diffraction data collection.
References
Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290. Web of Science CSD CrossRef PubMed CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burrows, A. D. (2004). Struct. Bond. 108, 55–96. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907. Web of Science CSD CrossRef PubMed Google Scholar
Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510. Web of Science CSD CrossRef Google Scholar
Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018. CrossRef IUCr Journals Web of Science Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simard, M., Su, D. & Wuest, J. D. (1991). J. Am. Chem. Soc. 113, 4696–4698. CSD CrossRef CAS Web of Science Google Scholar
Zerkowski, J. A. & Whitesides, G. M. (1994). J. Am. Chem. Soc. 116, 4298–4304. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Compounds having specific functional groups have received considerable attention due to their particular properties and applications. For example, derivatives of the amino acids have a biological activity and amine derivatives have potential ability to form metal–organic frameworks because of their multiple coordination modes as ligands to metal ions (Austria et al., 2007; Ismayilov et al., 2007; Manzur et al., 2007). The use of hydrogen bonds to control the aggregation of molecules or ions in the solid state is a key tool in crystal engineering (Burrows, 2004). Although such concepts were originally developed for organic systems, many studies have extended these ideas into the inorganic domain by using bifunctional ligands that are capable of simultaneously coordinating to a metal centre and presenting one or more hydrogen bonding (Simard et al., 1991; Zerkowski et al., 1994). In this context, we report here the chemical preparation and the crystal structure of a novel hybrid material using nickel as transition metal presenting the following formula [Ni(C3N2H10)2(H2O)2][Ni(C3N2H10)3]2Br6·2H2O, (I). The asymmetric unit of I, represented in Fig. 1, contains two crystallographically independent nickel atoms. The first one occupies a general position and it is coordinated by three 1,3–diaminopropane molecules amine, which are bidentate ligands. The second type of nickel atom lies in a special position on inversion centre and it is coordinated by one molecule amine and one water molecule and their symmetric by the the inversion centre. Consequently, the nickel atoms, in this compound, adopt two different octahedral coordination. The asymmetric unit of I conatins also two free water molecules and three bromine ions. As it can be seen in Fig. 2, the cohesion of the crystal structure is ensured by three types of hydrogen bonds, N—H···Br, O—H···Br and O—H···O, established between the different entities ginving rise to a three dimensional H–bonds network.