organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-5,6,7,8-tetra­hydro­imidazo[2,1-b][1,3]benzo­thia­zole

aDepartment of Chemistry and Chemical Technology, Togliatti State University, 14 Belorusskaya St, Togliatti 445667, Russian Federation, bDepartment of Organic, Bioorganic and Medicinal Chemistry, Samara State University, 1 Akademician Pavlov St, Samara 443011, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: a.s.bunev@gmail.com

(Received 5 May 2014; accepted 12 May 2014; online 17 May 2014)

The title compound, C15H14N2S, crystallizes with two independent mol­ecules in the asymmetric unit. The central imidazo[2,1-b][1,3]benzo­thia­zole unit is planar (r.m.s. deviations of 0.010 and 0.008 Å for the two independent mol­ecules). The fused tetra­hydro­hexane ring adopts a half-chair conformation. The phenyl substituent is twisted by 16.96 (13) and 22.89 (12)° relative to the central imidazo[2,1-b][1,3]benzo­thia­zole unit in the two mol­ecules. In the crystal, there are no significant intermolecular interactions present.

Related literature

For applications of imidazo[2,1-b][1,3]benzo­thia­zoles, see: Ager et al. (1988[Ager, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098-1115.]); Sanfilippo et al. (1988[Sanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221-2227.]); Barchéchath et al. (2005[Barchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409-6422.]); Andreani et al. (2008[Andreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809-816.]); Chao et al. (2009[Chao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808-7816.]); Kumbhare et al. (2011[Kumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258-4266.]); Chandak et al. (2013[Chandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203-208.]). For the crystal structures of related compounds, see: Landreau et al. (2002[Landreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741-745.]); Adib et al. (2008[Adib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941-2944.]); Fun, Asik et al. (2011[Fun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.]); Fun, Hemamalini et al. (2011[Fun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265-o3266.]); Ghabbour et al. (2012[Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631-o1632.]); Bunev et al. (2013a[Bunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013a). Acta Cryst. E69, o1701.],b[Bunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013b). Acta Cryst. E69, o531.], 2014[Bunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o143-o144.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2S

  • Mr = 254.34

  • Monoclinic, P 21 /n

  • a = 12.523 (3) Å

  • b = 10.699 (3) Å

  • c = 18.930 (5) Å

  • β = 102.291 (6)°

  • V = 2478.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 120 K

  • 0.30 × 0.05 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.993

  • 33479 measured reflections

  • 7558 independent reflections

  • 3223 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.157

  • S = 0.93

  • 7558 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazo[2,1-b][1,3]benzothiazole are of great interest due to their biological properties. These compounds and their derivatives demonstrate the antitumor (Andreani et al., 2008), antiallergic (Ager et al., 1988), anesthetic (Sanfilippo et al., 1988) and anti-cancer (Kumbhare et al., 2011) activities as well as the inhibition activity of apoptosis in testiculargerm cells (Chandak et al., 2013), lymphocytes (Barchéchath et al., 2005), and FMS-like tyrosine kinase-3 (FLT3) (Chao et al., 2009).

In this work, a 5,6,7,8-tetrahydroimidazo[2,1-b][1,3]benzothiazole, C15H14N2S, (I) was prepared by the reaction of 5,6,7,8-tetrahydrobenzothiazole-2-amine with 2-bromo-1-phenylethanone (Fig. 1), and its structure was unambiguously established by the X-ray diffraction study (Fig. 2).

The bond lengths and angles within the molecule of I are in a good agreement with those found in the related compounds (Landreau et al., 2002; Adib et al., 2008; Fun, Asik et al., 2011; Fun, Hemamalini et al., 2011; Ghabbour et al., 2012; Bunev et al., 2013a,b; Bunev et al., 2014).

The title compound, C15H14N2S (I), crystallizes with two crystallographically independent molecules in the asymmetric unit (Fig. 2). The central imidazo[2,1-b][1,3]benzothiazole moiety is planar (r.m.s. deviation = 0.010 and 0.008 Å, respectively, for the two crystallographically independent molecules). The fused tetrahydrohexane ring adopts a half-chair conformation (the C6, C7 and C21, C22 carbon atoms are out of the planes passed through the other atoms of the rings by 0.411 (6), -0.314 (6) and 0.387 (6), -0.355 (6) Å, respectively, for the two crystallographically independent molecules). The phenyl substituent is twisted by 16.96 (13) and 22.89 (12) ° (for the two crystallographically independent molecules, respectively) relative to the central imidazo[2,1-b][1,3]benzothiazole moiety.

In the crystal, the molecules of I are arrangement at van der Waals distances.

Related literature top

For applications of imidazo[2,1-b][1,3]benzothiazoles, see: Ager et al. (1988); Sanfilippo et al. (1988); Barchéchath et al. (2005); Andreani et al. (2008); Chao et al. (2009); Kumbhare et al. (2011); Chandak et al. (2013). For the crystal structures of related compounds, see: Landreau et al. (2002); Adib et al. (2008); Fun, Asik et al. (2011); Fun, Hemamalini et al. (2011); Ghabbour et al. (2012); Bunev et al. (2013a,b, 2014).

Experimental top

A mixture of 5,6,7,8-tetrahydrobenzothiazole–2–amine (1.54 g, 10 mmol) and 2–bromo–1–phenylethanone (1.99 g, 10 mmol) was dissolved in acetone (35 mL). The reaction mixture was stirred for 24 h. The resulting precipitate was collected, suspended in EtOH (50 mL) containing 6N HCl (5 mL) and heated under reflux. After cooling up to room temperature, the solution basified with 20% NH4OH yielded the expected 5,6,7,8–tetrahydroimidazo[2,1–b][1,3]benzothiazole. The crude product was crystallized from EtOH. Yield is 82%. The single crystals of the product were obtained by slow crystallization from EtOH. M.p. = 440–442 K. IR (KBr), ν/cm-1: 3137, 2933, 1602, 1539, 1465, 1438, 774, 718, 555. 1H NMR (400 MHz, DMSO–d6, 304 K): δ = 1.74–1.70 (m, 4H), 2.36–2.33 (m, 2H), 2.57–2.54 (m, 2H), 5.76 (s, 1H), 7.64 (t, 2H, J = 7.6), 7.78–7.75 (m, 1H), 8.06 (d, 2H, J = 7.9). Anal. Calcd for C15H14N2S: C, 70.83; H, 5.55. Found: C, 70.91; H, 5.62.

Refinement top

All hydrogen atoms were placed in the calculated positions with C—H = 0.95 (aryl H) and 0.99 (methylene H) Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthesis of 2-phenyl-5,6,7,8-tetrahydroimidazo[2,1–b][1,3]benzothiazole.
[Figure 2] Fig. 2. Molecular structure of I (two crystallographically independent molecules are presented). Displacement ellipsoids are shown at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.
2-Phenyl-5,6,7,8-tetrahydroimidazo[2,1-b][1,3]benzothiazole top
Crystal data top
C15H14N2SF(000) = 1072
Mr = 254.34Dx = 1.363 Mg m3
Monoclinic, P21/nMelting point = 440–442 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.523 (3) ÅCell parameters from 769 reflections
b = 10.699 (3) Åθ = 2.2–19.4°
c = 18.930 (5) ŵ = 0.24 mm1
β = 102.291 (6)°T = 120 K
V = 2478.2 (11) Å3Needle, colourless
Z = 80.30 × 0.05 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
7558 independent reflections
Radiation source: fine-focus sealed tube3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1717
Tmin = 0.931, Tmax = 0.993k = 1515
33479 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
7558 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H14N2SV = 2478.2 (11) Å3
Mr = 254.34Z = 8
Monoclinic, P21/nMo Kα radiation
a = 12.523 (3) ŵ = 0.24 mm1
b = 10.699 (3) ÅT = 120 K
c = 18.930 (5) Å0.30 × 0.05 × 0.03 mm
β = 102.291 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
7558 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3223 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.993Rint = 0.068
33479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 0.93Δρmax = 0.36 e Å3
7558 reflectionsΔρmin = 0.45 e Å3
325 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F., and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3882 (2)0.6184 (2)0.11553 (14)0.0237 (6)
C20.3823 (3)0.5036 (3)0.14946 (16)0.0212 (7)
C30.4704 (3)0.4301 (3)0.14592 (16)0.0219 (7)
H30.48500.34810.16470.026*
N40.5337 (2)0.5003 (2)0.10923 (14)0.0205 (6)
C4A0.6340 (3)0.4902 (3)0.08809 (16)0.0209 (7)
C50.7062 (2)0.3795 (3)0.10652 (18)0.0248 (7)
H5A0.67960.31050.07250.030*
H5B0.70490.35080.15600.030*
C60.8230 (3)0.4141 (3)0.10196 (18)0.0277 (8)
H6A0.85670.46460.14470.033*
H6B0.86680.33700.10240.033*
C70.8246 (3)0.4884 (3)0.03323 (17)0.0254 (7)
H7A0.79200.43680.00930.030*
H7B0.90140.50580.03090.030*
C80.7619 (3)0.6131 (3)0.02925 (17)0.0255 (7)
H8A0.80720.67600.06050.031*
H8B0.74630.64480.02100.031*
C8A0.6568 (2)0.5938 (3)0.05377 (16)0.0212 (7)
S90.55424 (7)0.70942 (8)0.04714 (5)0.0253 (2)
C9A0.4804 (3)0.6118 (3)0.09283 (16)0.0213 (7)
C100.2878 (3)0.4714 (3)0.18064 (17)0.0229 (7)
C110.2908 (3)0.3708 (3)0.22804 (17)0.0250 (7)
H110.35630.32410.24260.030*
C120.1987 (3)0.3383 (3)0.25409 (17)0.0292 (8)
H120.20180.26950.28620.035*
C130.1024 (3)0.4053 (3)0.23360 (18)0.0297 (8)
H130.03930.38220.25090.036*
C140.0992 (3)0.5066 (3)0.18754 (18)0.0297 (8)
H140.03390.55390.17370.036*
C150.1911 (3)0.5393 (3)0.16149 (17)0.0267 (8)
H150.18790.60910.13010.032*
N160.1213 (2)0.9124 (2)0.11849 (14)0.0252 (6)
C170.1096 (3)1.0225 (3)0.15894 (17)0.0224 (7)
C180.0110 (3)1.0785 (3)0.15889 (16)0.0230 (7)
H180.01561.15480.18180.028*
N190.0414 (2)1.0016 (2)0.11889 (14)0.0218 (6)
C19A0.1393 (3)0.9974 (3)0.09439 (17)0.0230 (7)
C200.2241 (3)1.0980 (3)0.11148 (17)0.0260 (8)
H20A0.26401.09060.16240.031*
H20B0.18871.18110.10490.031*
C210.3034 (3)1.0841 (3)0.06097 (18)0.0278 (8)
H21A0.36901.13580.07930.033*
H21B0.26831.11560.01240.033*
C220.3384 (3)0.9486 (3)0.05454 (18)0.0282 (8)
H22A0.37310.91660.10310.034*
H22B0.39340.94500.02390.034*
C230.2406 (3)0.8651 (3)0.02141 (17)0.0252 (8)
H23A0.22060.87840.03150.030*
H23B0.26080.77610.03040.030*
C23A0.1451 (3)0.8957 (3)0.05424 (17)0.0252 (7)
S240.02778 (7)0.79992 (8)0.04362 (5)0.0269 (2)
C24A0.0288 (3)0.9037 (3)0.09640 (16)0.0218 (7)
C250.1985 (3)1.0704 (3)0.19086 (17)0.0247 (7)
C260.1767 (3)1.1565 (3)0.24797 (17)0.0266 (8)
H260.10361.18190.26690.032*
C270.2608 (3)1.2052 (3)0.27725 (17)0.0284 (8)
H270.24481.26380.31580.034*
C280.3676 (3)1.1686 (3)0.25042 (18)0.0309 (8)
H280.42501.20230.27040.037*
C290.3911 (3)1.0825 (3)0.19427 (19)0.0320 (8)
H290.46451.05710.17600.038*
C300.3071 (3)1.0334 (3)0.16478 (18)0.0288 (8)
H300.32360.97420.12660.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0236 (16)0.0247 (16)0.0223 (15)0.0008 (12)0.0038 (12)0.0008 (11)
C20.0226 (18)0.0226 (18)0.0176 (16)0.0013 (13)0.0027 (13)0.0033 (13)
C30.0264 (19)0.0189 (17)0.0217 (17)0.0003 (13)0.0082 (14)0.0012 (13)
N40.0203 (15)0.0194 (14)0.0222 (15)0.0007 (11)0.0056 (11)0.0013 (11)
C4A0.0207 (18)0.0205 (17)0.0207 (17)0.0004 (13)0.0025 (13)0.0032 (13)
C50.0242 (19)0.0234 (18)0.0280 (19)0.0038 (14)0.0087 (14)0.0019 (14)
C60.0255 (19)0.0277 (19)0.0293 (19)0.0043 (15)0.0041 (15)0.0022 (15)
C70.0232 (18)0.0280 (19)0.0267 (19)0.0010 (14)0.0093 (14)0.0037 (14)
C80.0258 (19)0.0275 (19)0.0237 (18)0.0024 (14)0.0065 (14)0.0008 (14)
C8A0.0233 (18)0.0203 (17)0.0194 (17)0.0003 (13)0.0031 (13)0.0019 (13)
S90.0254 (5)0.0210 (4)0.0300 (5)0.0024 (4)0.0073 (4)0.0033 (4)
C9A0.0233 (18)0.0189 (17)0.0208 (17)0.0013 (13)0.0025 (13)0.0038 (13)
C100.0221 (18)0.0250 (18)0.0218 (17)0.0025 (13)0.0053 (14)0.0044 (13)
C110.0261 (19)0.0234 (18)0.0262 (19)0.0019 (14)0.0071 (14)0.0031 (14)
C120.038 (2)0.0266 (19)0.0237 (19)0.0050 (15)0.0087 (16)0.0005 (14)
C130.027 (2)0.033 (2)0.031 (2)0.0085 (16)0.0101 (15)0.0087 (16)
C140.0192 (18)0.040 (2)0.029 (2)0.0017 (15)0.0030 (15)0.0046 (16)
C150.0261 (19)0.033 (2)0.0224 (18)0.0005 (15)0.0074 (14)0.0006 (14)
N160.0287 (17)0.0234 (15)0.0229 (15)0.0014 (12)0.0040 (12)0.0014 (12)
C170.0249 (19)0.0205 (17)0.0209 (17)0.0003 (13)0.0032 (14)0.0006 (13)
C180.0278 (19)0.0188 (17)0.0220 (18)0.0022 (14)0.0038 (14)0.0012 (13)
N190.0238 (15)0.0209 (14)0.0201 (15)0.0018 (11)0.0035 (11)0.0012 (11)
C19A0.0231 (18)0.0224 (18)0.0224 (18)0.0016 (14)0.0026 (14)0.0025 (13)
C200.0263 (19)0.0229 (18)0.0274 (19)0.0010 (14)0.0024 (14)0.0018 (14)
C210.027 (2)0.0255 (19)0.030 (2)0.0035 (15)0.0035 (15)0.0016 (15)
C220.030 (2)0.029 (2)0.0267 (19)0.0067 (15)0.0085 (15)0.0044 (14)
C230.031 (2)0.0228 (18)0.0215 (18)0.0062 (14)0.0054 (15)0.0026 (13)
C23A0.029 (2)0.0241 (19)0.0217 (18)0.0014 (14)0.0037 (14)0.0059 (14)
S240.0317 (5)0.0198 (4)0.0286 (5)0.0002 (4)0.0051 (4)0.0023 (4)
C24A0.0260 (19)0.0176 (17)0.0213 (17)0.0016 (13)0.0037 (14)0.0000 (13)
C250.028 (2)0.0225 (18)0.0238 (18)0.0006 (14)0.0050 (14)0.0070 (14)
C260.027 (2)0.030 (2)0.0217 (18)0.0011 (14)0.0031 (14)0.0086 (14)
C270.036 (2)0.0271 (19)0.0227 (18)0.0041 (16)0.0075 (15)0.0067 (15)
C280.033 (2)0.031 (2)0.032 (2)0.0081 (16)0.0136 (16)0.0109 (15)
C290.024 (2)0.032 (2)0.039 (2)0.0034 (15)0.0054 (16)0.0086 (17)
C300.029 (2)0.030 (2)0.0269 (19)0.0025 (15)0.0032 (15)0.0002 (14)
Geometric parameters (Å, º) top
N1—C9A1.317 (4)N16—C24A1.316 (4)
N1—C21.395 (4)N16—C171.395 (4)
C2—C31.368 (4)C17—C181.373 (4)
C2—C101.472 (4)C17—C251.468 (4)
C3—N41.382 (4)C18—N191.376 (4)
C3—H30.9500C18—H180.9500
N4—C9A1.370 (4)N19—C24A1.376 (4)
N4—C4A1.400 (4)N19—C19A1.400 (4)
C4A—C8A1.346 (4)C19A—C23A1.338 (4)
C4A—C51.486 (4)C19A—C201.498 (4)
C5—C61.529 (4)C20—C211.526 (4)
C5—H5A0.9900C20—H20A0.9900
C5—H5B0.9900C20—H20B0.9900
C6—C71.528 (4)C21—C221.527 (4)
C6—H6A0.9900C21—H21A0.9900
C6—H6B0.9900C21—H21B0.9900
C7—C81.542 (4)C22—C231.538 (4)
C7—H7A0.9900C22—H22A0.9900
C7—H7B0.9900C22—H22B0.9900
C8—C8A1.500 (4)C23—C23A1.497 (4)
C8—H8A0.9900C23—H23A0.9900
C8—H8B0.9900C23—H23B0.9900
C8A—S91.769 (3)C23A—S241.767 (3)
S9—C9A1.742 (3)S24—C24A1.742 (3)
C10—C151.392 (4)C25—C301.401 (4)
C10—C111.397 (4)C25—C261.402 (4)
C11—C121.392 (4)C26—C271.392 (4)
C11—H110.9500C26—H260.9500
C12—C131.385 (5)C27—C281.382 (5)
C12—H120.9500C27—H270.9500
C13—C141.386 (5)C28—C291.390 (5)
C13—H130.9500C28—H280.9500
C14—C151.390 (4)C29—C301.395 (5)
C14—H140.9500C29—H290.9500
C15—H150.9500C30—H300.9500
C9A—N1—C2103.8 (3)C24A—N16—C17103.7 (3)
C3—C2—N1111.2 (3)C18—C17—N16111.0 (3)
C3—C2—C10127.7 (3)C18—C17—C25127.6 (3)
N1—C2—C10121.1 (3)N16—C17—C25121.3 (3)
C2—C3—N4105.5 (3)C17—C18—N19105.9 (3)
C2—C3—H3127.2C17—C18—H18127.1
N4—C3—H3127.2N19—C18—H18127.1
C9A—N4—C3106.4 (3)C18—N19—C24A106.1 (3)
C9A—N4—C4A115.2 (3)C18—N19—C19A139.1 (3)
C3—N4—C4A138.3 (3)C24A—N19—C19A114.8 (3)
C8A—C4A—N4111.7 (3)C23A—C19A—N19111.8 (3)
C8A—C4A—C5126.0 (3)C23A—C19A—C20125.8 (3)
N4—C4A—C5122.2 (3)N19—C19A—C20122.4 (3)
C4A—C5—C6109.6 (3)C19A—C20—C21108.7 (3)
C4A—C5—H5A109.7C19A—C20—H20A109.9
C6—C5—H5A109.7C21—C20—H20A109.9
C4A—C5—H5B109.7C19A—C20—H20B109.9
C6—C5—H5B109.7C21—C20—H20B109.9
H5A—C5—H5B108.2H20A—C20—H20B108.3
C7—C6—C5111.1 (3)C20—C21—C22112.2 (3)
C7—C6—H6A109.4C20—C21—H21A109.2
C5—C6—H6A109.4C22—C21—H21A109.2
C7—C6—H6B109.4C20—C21—H21B109.2
C5—C6—H6B109.4C22—C21—H21B109.2
H6A—C6—H6B108.0H21A—C21—H21B107.9
C6—C7—C8113.1 (3)C21—C22—C23111.5 (3)
C6—C7—H7A109.0C21—C22—H22A109.3
C8—C7—H7A109.0C23—C22—H22A109.3
C6—C7—H7B109.0C21—C22—H22B109.3
C8—C7—H7B109.0C23—C22—H22B109.3
H7A—C7—H7B107.8H22A—C22—H22B108.0
C8A—C8—C7109.7 (3)C23A—C23—C22109.9 (3)
C8A—C8—H8A109.7C23A—C23—H23A109.7
C7—C8—H8A109.7C22—C23—H23A109.7
C8A—C8—H8B109.7C23A—C23—H23B109.7
C7—C8—H8B109.7C22—C23—H23B109.7
H8A—C8—H8B108.2H23A—C23—H23B108.2
C4A—C8A—C8123.6 (3)C19A—C23A—C23124.0 (3)
C4A—C8A—S9112.6 (2)C19A—C23A—S24113.1 (3)
C8—C8A—S9123.6 (2)C23—C23A—S24123.0 (2)
C9A—S9—C8A89.97 (15)C24A—S24—C23A89.70 (15)
N1—C9A—N4113.1 (3)N16—C24A—N19113.3 (3)
N1—C9A—S9136.4 (3)N16—C24A—S24136.1 (3)
N4—C9A—S9110.5 (2)N19—C24A—S24110.6 (2)
C15—C10—C11118.2 (3)C30—C25—C26118.2 (3)
C15—C10—C2120.2 (3)C30—C25—C17121.4 (3)
C11—C10—C2121.6 (3)C26—C25—C17120.4 (3)
C12—C11—C10120.6 (3)C27—C26—C25120.9 (3)
C12—C11—H11119.7C27—C26—H26119.6
C10—C11—H11119.7C25—C26—H26119.6
C13—C12—C11120.6 (3)C28—C27—C26120.2 (3)
C13—C12—H12119.7C28—C27—H27119.9
C11—C12—H12119.7C26—C27—H27119.9
C12—C13—C14119.2 (3)C27—C28—C29120.0 (3)
C12—C13—H13120.4C27—C28—H28120.0
C14—C13—H13120.4C29—C28—H28120.0
C13—C14—C15120.4 (3)C28—C29—C30120.1 (3)
C13—C14—H14119.8C28—C29—H29120.0
C15—C14—H14119.8C30—C29—H29120.0
C14—C15—C10121.1 (3)C29—C30—C25120.7 (3)
C14—C15—H15119.5C29—C30—H30119.6
C10—C15—H15119.5C25—C30—H30119.6
C9A—N1—C2—C30.5 (3)C24A—N16—C17—C181.2 (4)
C9A—N1—C2—C10177.9 (3)C24A—N16—C17—C25177.0 (3)
N1—C2—C3—N40.3 (4)N16—C17—C18—N191.1 (4)
C10—C2—C3—N4177.5 (3)C25—C17—C18—N19176.5 (3)
C2—C3—N4—C9A0.0 (3)C17—C18—N19—C24A0.5 (3)
C2—C3—N4—C4A177.0 (3)C17—C18—N19—C19A178.2 (3)
C9A—N4—C4A—C8A1.3 (4)C18—N19—C19A—C23A178.6 (3)
C3—N4—C4A—C8A178.1 (3)C24A—N19—C19A—C23A1.0 (4)
C9A—N4—C4A—C5175.3 (3)C18—N19—C19A—C200.5 (6)
C3—N4—C4A—C51.5 (6)C24A—N19—C19A—C20178.1 (3)
C8A—C4A—C5—C617.0 (4)C23A—C19A—C20—C2114.3 (4)
N4—C4A—C5—C6159.1 (3)N19—C19A—C20—C21164.7 (3)
C4A—C5—C6—C745.4 (4)C19A—C20—C21—C2245.1 (4)
C5—C6—C7—C861.3 (4)C20—C21—C22—C2362.7 (4)
C6—C7—C8—C8A42.5 (4)C21—C22—C23—C23A43.5 (4)
N4—C4A—C8A—C8175.9 (3)N19—C19A—C23A—C23179.2 (3)
C5—C4A—C8A—C80.6 (5)C20—C19A—C23A—C231.7 (5)
N4—C4A—C8A—S90.6 (3)N19—C19A—C23A—S240.8 (4)
C5—C4A—C8A—S9175.9 (3)C20—C19A—C23A—S24178.3 (2)
C7—C8—C8A—C4A12.9 (4)C22—C23—C23A—C19A13.0 (4)
C7—C8—C8A—S9172.2 (2)C22—C23—C23A—S24167.0 (2)
C4A—C8A—S9—C9A0.2 (3)C19A—C23A—S24—C24A0.3 (3)
C8—C8A—S9—C9A175.1 (3)C23—C23A—S24—C24A179.7 (3)
C2—N1—C9A—N40.6 (3)C17—N16—C24A—N190.9 (3)
C2—N1—C9A—S9178.9 (3)C17—N16—C24A—S24179.3 (3)
C3—N4—C9A—N10.4 (4)C18—N19—C24A—N160.3 (4)
C4A—N4—C9A—N1178.2 (3)C19A—N19—C24A—N16178.0 (3)
C3—N4—C9A—S9179.2 (2)C18—N19—C24A—S24179.1 (2)
C4A—N4—C9A—S91.5 (3)C19A—N19—C24A—S240.8 (3)
C8A—S9—C9A—N1178.6 (4)C23A—S24—C24A—N16178.2 (4)
C8A—S9—C9A—N40.9 (2)C23A—S24—C24A—N190.3 (2)
C3—C2—C10—C15160.7 (3)C18—C17—C25—C30154.6 (3)
N1—C2—C10—C1516.3 (5)N16—C17—C25—C3020.4 (5)
C3—C2—C10—C1117.3 (5)C18—C17—C25—C2624.4 (5)
N1—C2—C10—C11165.7 (3)N16—C17—C25—C26160.6 (3)
C15—C10—C11—C121.2 (5)C30—C25—C26—C270.9 (5)
C2—C10—C11—C12176.8 (3)C17—C25—C26—C27178.1 (3)
C10—C11—C12—C130.1 (5)C25—C26—C27—C280.3 (5)
C11—C12—C13—C140.9 (5)C26—C27—C28—C290.3 (5)
C12—C13—C14—C150.9 (5)C27—C28—C29—C300.3 (5)
C13—C14—C15—C100.2 (5)C28—C29—C30—C250.3 (5)
C11—C10—C15—C141.2 (5)C26—C25—C30—C290.9 (5)
C2—C10—C15—C14176.8 (3)C17—C25—C30—C29178.1 (3)

Experimental details

Crystal data
Chemical formulaC15H14N2S
Mr254.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)12.523 (3), 10.699 (3), 18.930 (5)
β (°) 102.291 (6)
V3)2478.2 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.05 × 0.03
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.931, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
33479, 7558, 3223
Rint0.068
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.157, 0.93
No. of reflections7558
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State contract No. 426).

References

First citationAdib, M., Sheibani, E., Zhu, L.-G. & Bijanzadeh, H. R. (2008). Synlett, pp. 2941–2944.  Web of Science CSD CrossRef Google Scholar
First citationAger, I. R., Barnes, A. C., Danswan, G. W., Hairsine, P. W., Kay, D. P., Kennewell, P. D., Matharu, S. S., Miller, P. & Robson, P. (1988). J. Med. Chem. 31, 1098–1115.  CrossRef CAS PubMed Web of Science Google Scholar
First citationAndreani, A., Burnelli, S., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Varoli, L., Calonghi, N., Cappadone, C., Farruggia, G., Zini, M., Stefanelli, C., Masotti, L., Radin, N. S. & Shoemaker, R. H. (2008). J. Med. Chem. 51, 809–816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarchéchath, S. D., Tawatao, R. I., Corr, V., Carson, D. I. & Cottam, H. B. (2005). J. Med. Chem. 48, 6409–6422.  Web of Science PubMed Google Scholar
First citationBruker (2001). SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013a). Acta Cryst. E69, o1701.  CSD CrossRef IUCr Journals Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2014). Acta Cryst. E70, o143–o144.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBunev, A. S., Sukhonosova, E. V., Syrazhetdinova, D. R., Statsyuk, V. E., Ostapenko, G. I. & Khrustalev, V. N. (2013b). Acta Cryst. E69, o531.  CSD CrossRef IUCr Journals Google Scholar
First citationChandak, N., Bhardwaj, J. K., Sharma, R. K. & Sharma, P. K. (2013). Eur. J. Med. Chem. 59, 203–208.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChao, Q., Sprankle, K. G., Grotzfeld, R. M., Lai, A. G., Carter, T. A., Velasco, A. M., Gunawardane, R. N., Cramer, M. D., Gardner, M. F., James, J., Zarrinkar, P. P., Patel, H. K. & Bhagwat, S. S. (2009). J. Med. Chem. 52, 7808–7816.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Asik, S. I. J., Himaja, M., Munirajasekhar, D. & Sarojini, B. K. (2011). Acta Cryst. E67, o2810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Umesha, K., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst. E67, o3265–o3266.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1631–o1632.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKumbhare, R. M., Kumar, K. V., Ramaiah, M. J., Dadmal, T., Pushpavalli, S. N., Mukhopadhyay, D., Divya, B., Devi, T. A., Kosurkar, U. & Pal-Bhadra, M. (2011). Eur. J. Med. Chem. 46, 4258–4266.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLandreau, C., Deniaud, D., Evain, M., Reliquet, A. & Meslin, J.-C. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 741–745.  Web of Science CSD CrossRef Google Scholar
First citationSanfilippo, P. J., Urbanski, M., Press, J. B., Dubinsky, B. & Moore, J. B. Jr (1988). J. Med. Chem. 31, 2221–2227.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds