inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages i23-i24

La3Si6N11

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp

(Received 7 April 2014; accepted 24 April 2014; online 3 May 2014)

Colorless transparent single crystals of trilanthanum hexa­silicon undeca­nitro­gen, La3Si6N11, were prepared at 0.85 MPa of N2 and 2273 K. The title compound is isotypic with Sm3Si6N11. Silicon-centered nitro­gen tetra­hedra form a three-dimensional network structure by sharing their corners. Layers of one type of SiN4 tetra­hedra and slabs composed of the two different La3+ cations and the other type of SiN4 tetra­hedra are alternately stacked along the c axis of the tetra­gonal unit cell. The site symmetries of the two La3+ cations are are ..m and 4.., respectively.

Related literature

For the lattice parameters of La3Si6N11, see: Woike & Jeitschko (1995[Woike, M. & Jeitschko, W. (1995). Inorg. Chem. 34, 5105-5108.]). For isotypic Ce3Si6N11, Pr3Si6N11, Nd3Si6N11, Sm3Si6N11 and La3Si5AlON10, see: Gaudé et al. (1983[Gaudé, J., Lange, J. & Louër, D. (1983). Rev. Chim. Miner. 20, 523-527.]); Woike & Jeitschko (1995[Woike, M. & Jeitschko, W. (1995). Inorg. Chem. 34, 5105-5108.]); Schlieper & Schnick (1995[Schlieper, T. & Schnick, W. (1995). Z. Anorg. Allg. Chem. 621, 1535-1538.], 1996[Schlieper, T. & Schnick, W. (1996). Z. Kristallogr. 211, 254-254.]); Lauterbach & Schnick (2000[Lauterbach, R. & Schnick, W. (2000). Z. Anorg. Allg. Chem. 626, 56-61.]). Recently, La3Si6N11 has received attention as a host crystal of phosphors by Ce3+ doping; for La3Si6N11:Ce, (La,Ca)3Si6N11:Ce, see: Seto et al. (2009[Seto, T., Kijima, N. & Hirosaki, N. (2009). ECS Trans. 25, 247-252.]); Suehiro et al. (2011[Suehiro, T., Hirosaki, N. & Xie, R.-J. (2011). ACS Appl. Mater. Inter. 3, 811-816.]); George et al. (2013[George, N. C., Birkel, A., Brgoch, J., Hong, B.-C., Mikhailovsky, A. A., Page, K., Llobet, A. & Seshadri, R. (2013). Inorg. Chem. 52, 13730-13741.]). For the ionic radii of La3+ and Sm3+ cations in nitrides, see: Baur (1987[Baur, H. (1987). Crystallogr. Rev. 1, 59-83.]). For the Madelung energies of La3Si6N11, LaN and Si3N4, see: Hoppe (1966[Hoppe, R. (1966). Angew. Chem. Int. Ed. 5, 95-106.], 1970[Hoppe, R. (1970). Angew. Chem. Int. Ed. 9, 25-34.]), Klemm & Winkelmann (1956[Klemm, W. & Winkelmann, G. (1956). Z. Anorg. Allg. Chem. 288, 87-90.]) and Boulay et al. (2004[Boulay, D. du, Ishizawa, N., Atake, T., Streltsov, V., Furuya, K. & Munakata, F. (2004). Acta Cryst. B60, 388-405.]), respectively.

Experimental

Crystal data
  • La3Si6N11

  • Mr = 739.38

  • Tetragonal, P 4b m

  • a = 10.1988 (4) Å

  • c = 4.84153 (19) Å

  • V = 503.60 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.22 mm−1

  • T = 293 K

  • 0.15 × 0.14 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.219, Tmax = 0.726

  • 4700 measured reflections

  • 624 independent reflections

  • 599 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.030

  • S = 1.20

  • 624 reflections

  • 39 parameters

  • 1 restraint

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.90 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 275 Friedel pairs

  • Absolute structure parameter: 0.05 (3)

Table 1
Selected bond lengths (Å)

La1—N1i 2.551 (3)
La1—N1ii 2.551 (3)
La1—N4 2.6227 (7)
La1—N2iii 2.674 (3)
La1—N2iv 2.674 (3)
La1—N2v 2.853 (3)
La1—N2vi 2.853 (3)
La1—N3vii 2.864 (5)
La2—N2 2.644 (3)
La2—N2viii 2.644 (3)
La2—N2ix 2.644 (3)
La2—N2x 2.644 (3)
La2—N1xi 2.649 (3)
La2—N1xii 2.649 (3)
La2—N1xiii 2.649 (3)
La2—N1xiv 2.649 (3)
Si1—N1x 1.724 (3)
Si1—N2 1.729 (4)
Si1—N1 1.743 (3)
Si1—N3xv 1.776 (3)
Si2—N4xvi 1.6868 (14)
Si2—N2xvii 1.725 (4)
Si2—N2xvi 1.725 (4)
Si2—N3xiv 1.764 (5)
Symmetry codes: (i) -y+1, x, z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]; (iii) -y+1, x, z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (v) [-y+{\script{1\over 2}}, -x+{\script{1\over 2}}, z]; (vi) -x+1, -y, z; (vii) -x+1, -y+1, z-1; (viii) -y, x, z; (ix) -x, -y, z; (x) y, -x, z; (xi) -x, -y, z-1; (xii) -y, x, z-1; (xiii) y, -x, z-1; (xiv) x, y, z-1; (xv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (xvi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (xvii) y, -x+1, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005[Rigaku/MSC (2005). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Woike and Jeitschko (1995) measured the tetra­gonal unit cell parameters of La3Si6N11 by X-ray powder diffraction and showed that Ln3Si6N11, Ln = Sr, as well as Ce, Pr, Nd, is isostructural with Sm3Si6N11 firstly reported by Gaudé et al. (1983). The crystal structure of Sm3Si6N11 was analyzed by single crystal X-ray diffraction with the noncentrosymmetric space group P4bm (Woike & Jeitschko, 1995). The crystal structures of isotypic compounds, Ce3Si6N11, Pr3Si6N11 and La3Si5AlON10 (Schlieper & Schnick, 1995, 1996; Lauterbach & Schinick, 2000), have also been studied, while there is no report on the structure parameters of La3Si6N11. Recently, La3Si6N11 has received attention as host crystals of phosphors by Ce3+ doping (Seto et al., 2009; Suehiro et al., 2011; George et al., 2013).

The cell parameters and volume determined by single crystal X-ray diffraction are close to those (a = 10.189 (1) Å, c = 4.837 (2) Å, V = 502.2 (2) Å3) reported in the previous study (Woike & Jeitschko, 1995). Fig. 1 shows the coordination environments of the Si1, Si2, La1 and La2 atoms. Si1 atoms are at general positions 8d and Si2 at special position 4c. Si1—N and Si2—N bond lengths are in the ranges of 1.724 (3)–1.776 (3) Å, and 1.6868 (14)–1.764 (5) Å, respectively. These ranges are comparable with those (1.709–1.775 Å and 1.675–1.753 Å) reported for Sm3Si6N11 (Woike & Jeitschko, 1995).

La1 atoms at 4c site with site symmetry (..m) and La2 atom at 2a site with (4..) are surrounded by 8 N atoms. La1—N distances of 2.551 (3)–2.864 (5) Å and La2—N distances of 2.644 (3) Å and 2.649 (3) Å are longer than the distances of Sm1—N (2.417–2.866 Å ) and Sm2—N (2.557 Å and 2.571 Å) in Sm3Si6N11, which is in accordance with the difference between the effective ionic radii of La (1.25 Å) and Sm (1.15 Å) atoms in nitrides (Baur, 1987).

The site potentials calculated with the structure parameters using VESTA program (Momma & Izumi 2008) are -27.3 V (La13+), 28.5 V (La23+), -51.9 V (Si14+), -51.6 V (Si24+) and 36.6–39.4 V (N3- sites). The value of the Madelung energy for La3Si6N11 (MAPLE, MAdelung Part of Lattice Energy, Hoppe 1966, 1970) is -132,000 kJ/mol, which are almost identical to the value of -131,300 kJ/mol (difference Δ = 0.5%) of the Madelung energies: LaN (-8,240 kJ/mol, Klemm & Winkelman, 1956) and Si3N4 (-53,300 kJ/mol, Boulay et al., 2004) with the formula 3LaN + 2Si3N4 La3Si6N11.

Experimental top

Starting powders of LaN (0.6205 g, Koujundo Chemical Laboratory Co., Ltd.) and Si3N4 (0.3795 g, SN—E10, Ube Industries, Ltd.) were weighed and mixed in an aluminum mortar with a pestle in an Ar gas-filled glove box (O2 and H2O < 1 ppm). A sintered BN crucible (UHS-FL, inside diameter 18 mm; depth 18 mm, Showa Denko K. K., 99.5%) was loaded with the powder mixture and heated at 0.9 MPa of N2 (99.9995%) and 1800°C for 2 h with a gas pressure carbon furnace (VESTA, Shimadzu Mectem, Inc.). The obtained product was powdered with the mortar and pestle and heated at 0.85 MPa of N2 and 2000°C for 4 h. Colorless transparent single crystals (size less than 0.15 mm) were obtained in the product.

Refinement top

Because the principal mean square atomic displacement for the N2 site was not positive definite, isotropic displacement parameters were refined for all nitro­gen sites. The highest peak in the difference electron density map was 1.11 Å from La2 while the deepest hole was 0.79 Å from the same atom.

Related literature top

For the lattice parameters of La3Si6N11, see: Woike & Jeitschko (1995). For isotypic Ce3Si6N11, Pr3Si6N11, Nd3Si6N11, Sm3Si6N11 and La3Si5AlON10, see: Gaudé et al. (1983); Woike & Jeitschko (1995); Schlieper & Schnick (1995, 1996); Lauterbach & Schinick (2000). Recently, La3Si6N11 has received attention as a host crystal of phosphors by Ce3+ doping; for La3Si6N11:Ce, (La,Ca)3Si6N11:Ce, see: Seto et al. (2009); Suehiro et al. (2011); George et al. (2013). For the ionic radii of La and Sm atoms in nitrides, see: Baur (1987). For the Madelung energies of La3Si6N11, LaN and Si3N4, see: Hoppe (1966, 1970), Klemm & Winkelman (1956) and Boulay et al. (2004), respectively.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: PROCESS-AUTO (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atomic arrangement around La and Si atoms in the structure of La3Si6N11. The displacement ellipsoids of La1, La2, Si1 and Si2 are drawn at the 95%. Symmetry codes are listed in Geometric parameters.
[Figure 2] Fig. 2. The crystal structure of La3Si6N11 in a representation using cation-centered nitrogen polyhedra.
Trilanthanum hexasilicon undecanitrogen top
Crystal data top
La3Si6N11Dx = 4.876 Mg m3
Mr = 739.38Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P4bmCell parameters from 4239 reflections
Hall symbol: P 4 -2abθ = 4.0–27.5°
a = 10.1988 (4) ŵ = 13.22 mm1
c = 4.84153 (19) ÅT = 293 K
V = 503.60 (3) Å3Chunk, colorless
Z = 20.15 × 0.14 × 0.03 mm
F(000) = 664
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
624 independent reflections
Radiation source: fine-focus sealed tube599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 4.0°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1312
Tmin = 0.219, Tmax = 0.726l = 66
4700 measured reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0093P)2 + 0.0181P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.002
R[F2 > 2σ(F2)] = 0.017Δρmax = 0.83 e Å3
wR(F2) = 0.030Δρmin = 0.90 e Å3
S = 1.20Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
624 reflectionsExtinction coefficient: 0.0007 (2)
39 parametersAbsolute structure: Flack (1983), 275 Friedel pairs
1 restraintAbsolute structure parameter: 0.05 (3)
Crystal data top
La3Si6N11Z = 2
Mr = 739.38Mo Kα radiation
Tetragonal, P4bmµ = 13.22 mm1
a = 10.1988 (4) ÅT = 293 K
c = 4.84153 (19) Å0.15 × 0.14 × 0.03 mm
V = 503.60 (3) Å3
Data collection top
Rigaku R-AXIS RAPID II
diffractometer
624 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
599 reflections with I > 2σ(I)
Tmin = 0.219, Tmax = 0.726Rint = 0.039
4700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0171 restraint
wR(F2) = 0.030Δρmax = 0.83 e Å3
S = 1.20Δρmin = 0.90 e Å3
624 reflectionsAbsolute structure: Flack (1983), 275 Friedel pairs
39 parametersAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.680962 (17)0.180962 (17)0.01861 (13)0.00578 (9)
La20.00000.00000.00000 (11)0.00427 (11)
Si10.20985 (9)0.07807 (8)0.5344 (4)0.0038 (2)
Si20.11658 (9)0.61658 (9)0.0439 (5)0.0039 (3)
N10.0803 (3)0.1779 (3)0.6388 (7)0.0056 (7)*
N20.2332 (3)0.0739 (3)0.1807 (8)0.0060 (8)*
N30.1527 (3)0.6527 (3)0.6958 (10)0.0044 (10)*
N40.50000.00000.0717 (14)0.0055 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00443 (11)0.00443 (11)0.00849 (17)0.00036 (9)0.0001 (2)0.0001 (2)
La20.00378 (13)0.00378 (13)0.0053 (2)0.0000.0000.000
Si10.0037 (4)0.0036 (4)0.0040 (6)0.0006 (3)0.0005 (7)0.0008 (7)
Si20.0038 (4)0.0038 (4)0.0042 (10)0.0000 (5)0.0005 (6)0.0005 (6)
Geometric parameters (Å, º) top
La1—N1i2.551 (3)Si1—N11.743 (3)
La1—N1ii2.551 (3)Si1—N3ix1.776 (3)
La1—N42.6227 (7)Si1—La2xvii3.2089 (16)
La1—N2iii2.674 (3)Si1—La1xviii3.4093 (16)
La1—N2iv2.674 (3)Si1—La1xix3.5159 (17)
La1—N2v2.853 (3)Si2—N4xx1.6868 (14)
La1—N2vi2.853 (3)Si2—N2xxi1.725 (4)
La1—N3vii2.864 (5)Si2—N2xx1.725 (4)
La1—Si2viii2.9227 (13)Si2—N3xvi1.764 (5)
La1—Si2ix3.1072 (7)Si2—La1viii2.9228 (13)
La1—Si2iv3.1072 (7)Si2—La1xx3.1072 (7)
La1—Si1ii3.4093 (16)Si2—La1xix3.1072 (7)
La2—N22.644 (3)N1—Si1x1.724 (3)
La2—N2x2.644 (3)N1—La1xviii2.551 (3)
La2—N2xi2.644 (3)N1—La2xvii2.649 (3)
La2—N2xii2.644 (3)N2—Si2ix1.725 (4)
La2—N1xiii2.649 (3)N2—La1xix2.674 (3)
La2—N1xiv2.649 (3)N2—La1vi2.853 (3)
La2—N1xv2.649 (3)N3—Si2xvii1.764 (5)
La2—N1xvi2.649 (3)N3—Si1xxi1.776 (3)
La2—Si1xiii3.2089 (16)N3—Si1xx1.776 (3)
La2—Si1xv3.2089 (16)N3—La1xxii2.864 (5)
La2—Si1xiv3.2089 (16)N4—Si2iv1.6868 (14)
La2—Si1xvi3.2089 (16)N4—Si2ix1.6868 (14)
Si1—N1xii1.724 (3)N4—La1vi2.6227 (7)
Si1—N21.729 (4)
N1i—La1—N1ii86.25 (15)N2xii—La2—Si1xv64.01 (8)
N1i—La1—N4100.64 (13)N1xiii—La2—Si1xv32.47 (7)
N1ii—La1—N4100.64 (13)N1xiv—La2—Si1xv84.97 (8)
N1i—La1—N2iii76.36 (10)N1xv—La2—Si1xv32.88 (7)
N1ii—La1—N2iii118.37 (10)N1xvi—La2—Si1xv85.19 (8)
N4—La1—N2iii140.30 (11)Si1xiii—La2—Si1xv60.42 (3)
N1i—La1—N2iv118.37 (10)N2—La2—Si1xiv105.41 (8)
N1ii—La1—N2iv76.36 (10)N2x—La2—Si1xiv64.01 (8)
N4—La1—N2iv140.30 (11)N2xi—La2—Si1xiv101.50 (8)
N2iii—La1—N2iv62.68 (14)N2xii—La2—Si1xiv154.58 (9)
N1i—La1—N2v146.72 (10)N1xiii—La2—Si1xiv85.19 (8)
N1ii—La1—N2v70.04 (11)N1xiv—La2—Si1xiv32.88 (7)
N4—La1—N2v63.11 (8)N1xv—La2—Si1xiv84.97 (8)
N2iii—La1—N2v135.23 (11)N1xvi—La2—Si1xiv32.47 (7)
N2iv—La1—N2v79.28 (14)Si1xiii—La2—Si1xiv60.42 (3)
N1i—La1—N2vi70.04 (11)Si1xv—La2—Si1xiv90.73 (6)
N1ii—La1—N2vi146.72 (10)N2—La2—Si1xvi64.01 (8)
N4—La1—N2vi63.11 (8)N2x—La2—Si1xvi101.50 (8)
N2iii—La1—N2vi79.28 (14)N2xi—La2—Si1xvi154.58 (9)
N2iv—La1—N2vi135.23 (11)N2xii—La2—Si1xvi105.41 (8)
N2v—La1—N2vi118.90 (14)N1xiii—La2—Si1xvi84.97 (8)
N1i—La1—N3vii60.70 (9)N1xiv—La2—Si1xvi85.19 (8)
N1ii—La1—N3vii60.70 (9)N1xv—La2—Si1xvi32.47 (7)
N4—La1—N3vii152.55 (18)N1xvi—La2—Si1xvi32.88 (7)
N2iii—La1—N3vii59.21 (11)Si1xiii—La2—Si1xvi90.73 (6)
N2iv—La1—N3vii59.21 (11)Si1xv—La2—Si1xvi60.42 (3)
N2v—La1—N3vii120.55 (7)Si1xiv—La2—Si1xvi60.42 (3)
N2vi—La1—N3vii120.55 (7)N1xii—Si1—N2107.06 (17)
N1i—La1—Si2viii85.17 (8)N1xii—Si1—N1108.6 (2)
N1ii—La1—Si2viii85.17 (8)N2—Si1—N1113.98 (17)
N4—La1—Si2viii171.97 (16)N1xii—Si1—N3ix114.9 (2)
N2iii—La1—Si2viii35.54 (8)N2—Si1—N3ix109.72 (19)
N2iv—La1—Si2viii35.54 (8)N1—Si1—N3ix102.7 (2)
N2v—La1—Si2viii114.55 (7)N1xii—Si1—La2xvii55.61 (11)
N2vi—La1—Si2viii114.55 (7)N2—Si1—La2xvii141.40 (12)
N3vii—La1—Si2viii35.48 (11)N1—Si1—La2xvii55.63 (11)
N1i—La1—Si2ix119.64 (8)N3ix—Si1—La2xvii108.88 (17)
N1ii—La1—Si2ix75.81 (8)N1xii—Si1—La1xviii117.22 (14)
N4—La1—Si2ix32.88 (2)N2—Si1—La1xviii135.29 (12)
N2iii—La1—Si2ix160.67 (9)N1—Si1—La1xviii46.68 (11)
N2iv—La1—Si2ix112.38 (8)N3ix—Si1—La1xviii57.10 (16)
N2v—La1—Si2ix33.29 (7)La2xvii—Si1—La1xviii68.78 (4)
N2vi—La1—Si2ix95.52 (7)N1xii—Si1—La283.47 (12)
N3vii—La1—Si2ix136.50 (7)N2—Si1—La248.51 (12)
Si2viii—La1—Si2ix146.89 (2)N1—Si1—La283.23 (12)
N1i—La1—Si2iv75.81 (8)N3ix—Si1—La2156.67 (16)
N1ii—La1—Si2iv119.64 (8)La2xvii—Si1—La293.20 (2)
N4—La1—Si2iv32.88 (2)La1xviii—Si1—La2128.93 (3)
N2iii—La1—Si2iv112.38 (8)N1xii—Si1—La1xix147.94 (14)
N2iv—La1—Si2iv160.67 (9)N2—Si1—La1xix47.60 (11)
N2v—La1—Si2iv95.52 (7)N1—Si1—La1xix74.59 (11)
N2vi—La1—Si2iv33.29 (7)N3ix—Si1—La1xix94.54 (14)
N3vii—La1—Si2iv136.50 (7)La2xvii—Si1—La1xix128.06 (3)
Si2viii—La1—Si2iv146.89 (2)La1xviii—Si1—La1xix88.70 (2)
Si2ix—La1—Si2iv65.52 (4)La2—Si1—La1xix64.97 (3)
N1i—La1—Si1ii75.26 (8)N4xx—Si2—N2xxi114.67 (16)
N1ii—La1—Si1ii29.80 (7)N4xx—Si2—N2xx114.67 (16)
N4—La1—Si1ii129.45 (13)N2xxi—Si2—N2xx107.5 (2)
N2iii—La1—Si1ii88.70 (8)N4xx—Si2—N3xvi111.7 (3)
N2iv—La1—Si1ii60.70 (8)N2xxi—Si2—N3xvi103.55 (17)
N2v—La1—Si1ii92.68 (7)N2xx—Si2—N3xvi103.55 (17)
N2vi—La1—Si1ii145.04 (8)N4xx—Si2—La1viii177.8 (3)
N3vii—La1—Si1ii31.39 (5)N2xxi—Si2—La1viii64.35 (12)
Si2viii—La1—Si1ii57.22 (5)N2xx—Si2—La1viii64.35 (12)
Si2ix—La1—Si1ii105.30 (4)N3xvi—Si2—La1viii70.43 (16)
Si2iv—La1—Si1ii138.54 (6)N4xx—Si2—La1xx57.57 (3)
N2—La2—N2x83.71 (5)N2xxi—Si2—La1xx65.22 (11)
N2—La2—N2xi141.35 (16)N2xx—Si2—La1xx159.37 (17)
N2x—La2—N2xi83.71 (5)N3xvi—Si2—La1xx97.01 (10)
N2—La2—N2xii83.71 (5)La1viii—Si2—La1xx122.62 (2)
N2x—La2—N2xii141.35 (16)N4xx—Si2—La1xix57.57 (3)
N2xi—La2—N2xii83.71 (5)N2xxi—Si2—La1xix159.37 (17)
N2—La2—N1xiii133.76 (10)N2xx—Si2—La1xix65.22 (11)
N2x—La2—N1xiii138.27 (10)N3xvi—Si2—La1xix97.01 (10)
N2xi—La2—N1xiii75.24 (10)La1viii—Si2—La1xix122.62 (2)
N2xii—La2—N1xiii71.98 (11)La1xx—Si2—La1xix114.28 (4)
N2—La2—N1xiv138.27 (10)Si1x—N1—Si1137.4 (2)
N2x—La2—N1xiv75.24 (10)Si1x—N1—La1xviii118.80 (16)
N2xi—La2—N1xiv71.98 (11)Si1—N1—La1xviii103.52 (15)
N2xii—La2—N1xiv133.76 (10)Si1x—N1—La2xvii91.91 (13)
N1xiii—La2—N1xiv64.17 (8)Si1—N1—La2xvii91.49 (13)
N2—La2—N1xv71.98 (11)La1xviii—N1—La2xvii92.01 (11)
N2x—La2—N1xv133.76 (10)Si2ix—N2—Si1119.8 (2)
N2xi—La2—N1xv138.27 (10)Si2ix—N2—La2138.1 (2)
N2xii—La2—N1xv75.24 (10)Si1—N2—La2102.16 (15)
N1xiii—La2—N1xv64.17 (8)Si2ix—N2—La1xix80.11 (13)
N1xiv—La2—N1xv97.40 (14)Si1—N2—La1xix103.89 (15)
N2—La2—N1xvi75.24 (10)La2—N2—La1xix89.42 (10)
N2x—La2—N1xvi71.98 (11)Si2ix—N2—La1vi81.48 (12)
N2xi—La2—N1xvi133.76 (10)Si1—N2—La1vi109.71 (15)
N2xii—La2—N1xvi138.27 (10)La2—N2—La1vi85.71 (9)
N1xiii—La2—N1xvi97.40 (14)La1xix—N2—La1vi146.33 (15)
N1xiv—La2—N1xvi64.17 (8)Si2xvii—N3—Si1xxi119.72 (15)
N1xv—La2—N1xvi64.17 (8)Si2xvii—N3—Si1xx119.72 (15)
N2—La2—Si1xiii154.58 (9)Si1xxi—N3—Si1xx118.9 (3)
N2x—La2—Si1xiii105.41 (8)Si2xvii—N3—La1xxii74.09 (17)
N2xi—La2—Si1xiii64.01 (8)Si1xxi—N3—La1xxii91.51 (17)
N2xii—La2—Si1xiii101.50 (8)Si1xx—N3—La1xxii91.51 (17)
N1xiii—La2—Si1xiii32.88 (7)Si2iv—N4—Si2ix170.9 (5)
N1xiv—La2—Si1xiii32.47 (7)Si2iv—N4—La1vi89.55 (4)
N1xv—La2—Si1xiii85.19 (8)Si2ix—N4—La1vi89.55 (4)
N1xvi—La2—Si1xiii84.97 (8)Si2iv—N4—La189.55 (4)
N2—La2—Si1xv101.50 (8)Si2ix—N4—La189.55 (4)
N2x—La2—Si1xv154.58 (9)La1vi—N4—La1168.8 (3)
N2xi—La2—Si1xv105.41 (8)
Symmetry codes: (i) y+1, x, z1; (ii) x+1/2, y+1/2, z1; (iii) y+1, x, z; (iv) x+1/2, y+1/2, z; (v) y+1/2, x+1/2, z; (vi) x+1, y, z; (vii) x+1, y+1, z1; (viii) x+1, y+1, z; (ix) x+1/2, y1/2, z; (x) y, x, z; (xi) x, y, z; (xii) y, x, z; (xiii) x, y, z1; (xiv) y, x, z1; (xv) y, x, z1; (xvi) x, y, z1; (xvii) x, y, z+1; (xviii) x1/2, y+1/2, z+1; (xix) x1/2, y+1/2, z; (xx) x+1/2, y+1/2, z; (xxi) y, x+1, z; (xxii) x+1, y+1, z+1.
Selected bond lengths (Å) top
La1—N1i2.551 (3)La2—N1xi2.649 (3)
La1—N1ii2.551 (3)La2—N1xii2.649 (3)
La1—N42.6227 (7)La2—N1xiii2.649 (3)
La1—N2iii2.674 (3)La2—N1xiv2.649 (3)
La1—N2iv2.674 (3)Si1—N1x1.724 (3)
La1—N2v2.853 (3)Si1—N21.729 (4)
La1—N2vi2.853 (3)Si1—N11.743 (3)
La1—N3vii2.864 (5)Si1—N3xv1.776 (3)
La2—N22.644 (3)Si2—N4xvi1.6868 (14)
La2—N2viii2.644 (3)Si2—N2xvii1.725 (4)
La2—N2ix2.644 (3)Si2—N2xvi1.725 (4)
La2—N2x2.644 (3)Si2—N3xiv1.764 (5)
Symmetry codes: (i) y+1, x, z1; (ii) x+1/2, y+1/2, z1; (iii) y+1, x, z; (iv) x+1/2, y+1/2, z; (v) y+1/2, x+1/2, z; (vi) x+1, y, z; (vii) x+1, y+1, z1; (viii) y, x, z; (ix) x, y, z; (x) y, x, z; (xi) x, y, z1; (xii) y, x, z1; (xiii) y, x, z1; (xiv) x, y, z1; (xv) x+1/2, y1/2, z; (xvi) x+1/2, y+1/2, z; (xvii) y, x+1, z.
 

Acknowledgements

We are grateful to Dr Kyota Ueda and Mr Satoshi Shimooka (Mitsubishi Chemical Group, Science and Technology Research Center, Inc.) for their help with the sample preparation. This work was supported in part by a Grant-in-Aid for Scientific Resarch (C) (No. 25420701, 2013) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.

References

First citationBaur, H. (1987). Crystallogr. Rev. 1, 59–83.  CrossRef Google Scholar
First citationBoulay, D. du, Ishizawa, N., Atake, T., Streltsov, V., Furuya, K. & Munakata, F. (2004). Acta Cryst. B60, 388–405.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaudé, J., Lange, J. & Louër, D. (1983). Rev. Chim. Miner. 20, 523–527.  Google Scholar
First citationGeorge, N. C., Birkel, A., Brgoch, J., Hong, B.-C., Mikhailovsky, A. A., Page, K., Llobet, A. & Seshadri, R. (2013). Inorg. Chem. 52, 13730–13741.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHoppe, R. (1966). Angew. Chem. Int. Ed. 5, 95–106.  CrossRef CAS Web of Science Google Scholar
First citationHoppe, R. (1970). Angew. Chem. Int. Ed. 9, 25–34.  CrossRef CAS Google Scholar
First citationKlemm, W. & Winkelmann, G. (1956). Z. Anorg. Allg. Chem. 288, 87–90.  CrossRef CAS Web of Science Google Scholar
First citationLauterbach, R. & Schnick, W. (2000). Z. Anorg. Allg. Chem. 626, 56–61.  CrossRef CAS Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2005). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchlieper, T. & Schnick, W. (1995). Z. Anorg. Allg. Chem. 621, 1535–1538.  CrossRef CAS Web of Science Google Scholar
First citationSchlieper, T. & Schnick, W. (1996). Z. Kristallogr. 211, 254–254.  CrossRef CAS Web of Science Google Scholar
First citationSeto, T., Kijima, N. & Hirosaki, N. (2009). ECS Trans. 25, 247–252.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuehiro, T., Hirosaki, N. & Xie, R.-J. (2011). ACS Appl. Mater. Inter. 3, 811–816.  Web of Science CrossRef CAS Google Scholar
First citationWoike, M. & Jeitschko, W. (1995). Inorg. Chem. 34, 5105–5108.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages i23-i24
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds