inorganic compounds
La3Si6N11
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp
Colorless transparent single crystals of trilanthanum hexasilicon undecanitrogen, La3Si6N11, were prepared at 0.85 MPa of N2 and 2273 K. The title compound is isotypic with Sm3Si6N11. Silicon-centered nitrogen tetrahedra form a three-dimensional network structure by sharing their corners. Layers of one type of SiN4 tetrahedra and slabs composed of the two different La3+ cations and the other type of SiN4 tetrahedra are alternately stacked along the c axis of the tetragonal The site symmetries of the two La3+ cations are are ..m and 4.., respectively.
CCDC reference: 999175
Related literature
For the lattice parameters of La3Si6N11, see: Woike & Jeitschko (1995). For isotypic Ce3Si6N11, Pr3Si6N11, Nd3Si6N11, Sm3Si6N11 and La3Si5AlON10, see: Gaudé et al. (1983); Woike & Jeitschko (1995); Schlieper & Schnick (1995, 1996); Lauterbach & Schnick (2000). Recently, La3Si6N11 has received attention as a host crystal of phosphors by Ce3+ doping; for La3Si6N11:Ce, (La,Ca)3Si6N11:Ce, see: Seto et al. (2009); Suehiro et al. (2011); George et al. (2013). For the ionic radii of La3+ and Sm3+ cations in nitrides, see: Baur (1987). For the Madelung energies of La3Si6N11, LaN and Si3N4, see: Hoppe (1966, 1970), Klemm & Winkelmann (1956) and Boulay et al. (2004), respectively.
Experimental
Crystal data
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
CCDC reference: 999175
10.1107/S1600536814009234/ru2057sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814009234/ru2057Isup2.hkl
Woike and Jeitschko (1995) measured the tetragonal
parameters of La3Si6N11 by X-ray powder diffraction and showed that Ln3Si6N11, Ln = Sr, as well as Ce, Pr, Nd, is isostructural with Sm3Si6N11 firstly reported by Gaudé et al. (1983). The of Sm3Si6N11 was analyzed by single crystal X-ray diffraction with the noncentrosymmetric P4bm (Woike & Jeitschko, 1995). The crystal structures of isotypic compounds, Ce3Si6N11, Pr3Si6N11 and La3Si5AlON10 (Schlieper & Schnick, 1995, 1996; Lauterbach & Schinick, 2000), have also been studied, while there is no report on the structure parameters of La3Si6N11. Recently, La3Si6N11 has received attention as host crystals of phosphors by Ce3+ doping (Seto et al., 2009; Suehiro et al., 2011; George et al., 2013).The cell parameters and volume determined by single crystal X-ray diffraction are close to those (a = 10.189 (1) Å, c = 4.837 (2) Å, V = 502.2 (2) Å3) reported in the previous study (Woike & Jeitschko, 1995). Fig. 1 shows the coordination environments of the Si1, Si2, La1 and La2 atoms. Si1 atoms are at general positions 8d and Si2 at special position 4c. Si1—N and Si2—N bond lengths are in the ranges of 1.724 (3)–1.776 (3) Å, and 1.6868 (14)–1.764 (5) Å, respectively. These ranges are comparable with those (1.709–1.775 Å and 1.675–1.753 Å) reported for Sm3Si6N11 (Woike & Jeitschko, 1995).
La1 atoms at 4c site with
(..m) and La2 atom at 2a site with (4..) are surrounded by 8 N atoms. La1—N distances of 2.551 (3)–2.864 (5) Å and La2—N distances of 2.644 (3) Å and 2.649 (3) Å are longer than the distances of Sm1—N (2.417–2.866 Å ) and Sm2—N (2.557 Å and 2.571 Å) in Sm3Si6N11, which is in accordance with the difference between the effective ionic radii of La (1.25 Å) and Sm (1.15 Å) atoms in nitrides (Baur, 1987).The site potentials calculated with the structure parameters using VESTA program (Momma & Izumi 2008) are -27.3 V (La13+), 28.5 V (La23+), -51.9 V (Si14+), -51.6 V (Si24+) and 36.6–39.4 V (N3- sites). The value of the Madelung energy for La3Si6N11 (MAPLE, MAdelung Part of Lattice Energy, Hoppe 1966, 1970) is -132,000 kJ/mol, which are almost identical to the value of -131,300 kJ/mol (difference Δ = 0.5%) of the Madelung energies: LaN (-8,240 kJ/mol, Klemm & Winkelman, 1956) and Si3N4 (-53,300 kJ/mol, Boulay et al., 2004) with the formula 3LaN + 2Si3N4 → La3Si6N11.
Starting powders of LaN (0.6205 g, Koujundo Chemical Laboratory Co., Ltd.) and Si3N4 (0.3795 g, SN—E10, Ube Industries, Ltd.) were weighed and mixed in an aluminum mortar with a pestle in an Ar gas-filled
(O2 and H2O < 1 ppm). A sintered BN crucible (UHS-FL, inside diameter 18 mm; depth 18 mm, Showa Denko K. K., 99.5%) was loaded with the powder mixture and heated at 0.9 MPa of N2 (99.9995%) and 1800°C for 2 h with a gas pressure carbon furnace (VESTA, Shimadzu Mectem, Inc.). The obtained product was powdered with the mortar and pestle and heated at 0.85 MPa of N2 and 2000°C for 4 h. Colorless transparent single crystals (size less than 0.15 mm) were obtained in the product.Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell
PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: PROCESS-AUTO (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The atomic arrangement around La and Si atoms in the structure of La3Si6N11. The displacement ellipsoids of La1, La2, Si1 and Si2 are drawn at the 95%. Symmetry codes are listed in Geometric parameters. | |
Fig. 2. The crystal structure of La3Si6N11 in a representation using cation-centered nitrogen polyhedra. |
La3Si6N11 | Dx = 4.876 Mg m−3 |
Mr = 739.38 | Mo Kα radiation, λ = 0.71075 Å |
Tetragonal, P4bm | Cell parameters from 4239 reflections |
Hall symbol: P 4 -2ab | θ = 4.0–27.5° |
a = 10.1988 (4) Å | µ = 13.22 mm−1 |
c = 4.84153 (19) Å | T = 293 K |
V = 503.60 (3) Å3 | Chunk, colorless |
Z = 2 | 0.15 × 0.14 × 0.03 mm |
F(000) = 664 |
Rigaku R-AXIS RAPID II diffractometer | 624 independent reflections |
Radiation source: fine-focus sealed tube | 599 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.5°, θmin = 4.0° |
ω scans | h = −13→13 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −13→12 |
Tmin = 0.219, Tmax = 0.726 | l = −6→6 |
4700 measured reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0093P)2 + 0.0181P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max = 0.002 |
R[F2 > 2σ(F2)] = 0.017 | Δρmax = 0.83 e Å−3 |
wR(F2) = 0.030 | Δρmin = −0.90 e Å−3 |
S = 1.20 | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
624 reflections | Extinction coefficient: 0.0007 (2) |
39 parameters | Absolute structure: Flack (1983), 275 Friedel pairs |
1 restraint | Absolute structure parameter: 0.05 (3) |
La3Si6N11 | Z = 2 |
Mr = 739.38 | Mo Kα radiation |
Tetragonal, P4bm | µ = 13.22 mm−1 |
a = 10.1988 (4) Å | T = 293 K |
c = 4.84153 (19) Å | 0.15 × 0.14 × 0.03 mm |
V = 503.60 (3) Å3 |
Rigaku R-AXIS RAPID II diffractometer | 624 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 599 reflections with I > 2σ(I) |
Tmin = 0.219, Tmax = 0.726 | Rint = 0.039 |
4700 measured reflections |
R[F2 > 2σ(F2)] = 0.017 | 1 restraint |
wR(F2) = 0.030 | Δρmax = 0.83 e Å−3 |
S = 1.20 | Δρmin = −0.90 e Å−3 |
624 reflections | Absolute structure: Flack (1983), 275 Friedel pairs |
39 parameters | Absolute structure parameter: 0.05 (3) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.680962 (17) | 0.180962 (17) | 0.01861 (13) | 0.00578 (9) | |
La2 | 0.0000 | 0.0000 | 0.00000 (11) | 0.00427 (11) | |
Si1 | 0.20985 (9) | 0.07807 (8) | 0.5344 (4) | 0.0038 (2) | |
Si2 | 0.11658 (9) | 0.61658 (9) | 0.0439 (5) | 0.0039 (3) | |
N1 | 0.0803 (3) | 0.1779 (3) | 0.6388 (7) | 0.0056 (7)* | |
N2 | 0.2332 (3) | 0.0739 (3) | 0.1807 (8) | 0.0060 (8)* | |
N3 | 0.1527 (3) | 0.6527 (3) | 0.6958 (10) | 0.0044 (10)* | |
N4 | 0.5000 | 0.0000 | 0.0717 (14) | 0.0055 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00443 (11) | 0.00443 (11) | 0.00849 (17) | −0.00036 (9) | 0.0001 (2) | 0.0001 (2) |
La2 | 0.00378 (13) | 0.00378 (13) | 0.0053 (2) | 0.000 | 0.000 | 0.000 |
Si1 | 0.0037 (4) | 0.0036 (4) | 0.0040 (6) | −0.0006 (3) | 0.0005 (7) | −0.0008 (7) |
Si2 | 0.0038 (4) | 0.0038 (4) | 0.0042 (10) | 0.0000 (5) | 0.0005 (6) | 0.0005 (6) |
La1—N1i | 2.551 (3) | Si1—N1 | 1.743 (3) |
La1—N1ii | 2.551 (3) | Si1—N3ix | 1.776 (3) |
La1—N4 | 2.6227 (7) | Si1—La2xvii | 3.2089 (16) |
La1—N2iii | 2.674 (3) | Si1—La1xviii | 3.4093 (16) |
La1—N2iv | 2.674 (3) | Si1—La1xix | 3.5159 (17) |
La1—N2v | 2.853 (3) | Si2—N4xx | 1.6868 (14) |
La1—N2vi | 2.853 (3) | Si2—N2xxi | 1.725 (4) |
La1—N3vii | 2.864 (5) | Si2—N2xx | 1.725 (4) |
La1—Si2viii | 2.9227 (13) | Si2—N3xvi | 1.764 (5) |
La1—Si2ix | 3.1072 (7) | Si2—La1viii | 2.9228 (13) |
La1—Si2iv | 3.1072 (7) | Si2—La1xx | 3.1072 (7) |
La1—Si1ii | 3.4093 (16) | Si2—La1xix | 3.1072 (7) |
La2—N2 | 2.644 (3) | N1—Si1x | 1.724 (3) |
La2—N2x | 2.644 (3) | N1—La1xviii | 2.551 (3) |
La2—N2xi | 2.644 (3) | N1—La2xvii | 2.649 (3) |
La2—N2xii | 2.644 (3) | N2—Si2ix | 1.725 (4) |
La2—N1xiii | 2.649 (3) | N2—La1xix | 2.674 (3) |
La2—N1xiv | 2.649 (3) | N2—La1vi | 2.853 (3) |
La2—N1xv | 2.649 (3) | N3—Si2xvii | 1.764 (5) |
La2—N1xvi | 2.649 (3) | N3—Si1xxi | 1.776 (3) |
La2—Si1xiii | 3.2089 (16) | N3—Si1xx | 1.776 (3) |
La2—Si1xv | 3.2089 (16) | N3—La1xxii | 2.864 (5) |
La2—Si1xiv | 3.2089 (16) | N4—Si2iv | 1.6868 (14) |
La2—Si1xvi | 3.2089 (16) | N4—Si2ix | 1.6868 (14) |
Si1—N1xii | 1.724 (3) | N4—La1vi | 2.6227 (7) |
Si1—N2 | 1.729 (4) | ||
N1i—La1—N1ii | 86.25 (15) | N2xii—La2—Si1xv | 64.01 (8) |
N1i—La1—N4 | 100.64 (13) | N1xiii—La2—Si1xv | 32.47 (7) |
N1ii—La1—N4 | 100.64 (13) | N1xiv—La2—Si1xv | 84.97 (8) |
N1i—La1—N2iii | 76.36 (10) | N1xv—La2—Si1xv | 32.88 (7) |
N1ii—La1—N2iii | 118.37 (10) | N1xvi—La2—Si1xv | 85.19 (8) |
N4—La1—N2iii | 140.30 (11) | Si1xiii—La2—Si1xv | 60.42 (3) |
N1i—La1—N2iv | 118.37 (10) | N2—La2—Si1xiv | 105.41 (8) |
N1ii—La1—N2iv | 76.36 (10) | N2x—La2—Si1xiv | 64.01 (8) |
N4—La1—N2iv | 140.30 (11) | N2xi—La2—Si1xiv | 101.50 (8) |
N2iii—La1—N2iv | 62.68 (14) | N2xii—La2—Si1xiv | 154.58 (9) |
N1i—La1—N2v | 146.72 (10) | N1xiii—La2—Si1xiv | 85.19 (8) |
N1ii—La1—N2v | 70.04 (11) | N1xiv—La2—Si1xiv | 32.88 (7) |
N4—La1—N2v | 63.11 (8) | N1xv—La2—Si1xiv | 84.97 (8) |
N2iii—La1—N2v | 135.23 (11) | N1xvi—La2—Si1xiv | 32.47 (7) |
N2iv—La1—N2v | 79.28 (14) | Si1xiii—La2—Si1xiv | 60.42 (3) |
N1i—La1—N2vi | 70.04 (11) | Si1xv—La2—Si1xiv | 90.73 (6) |
N1ii—La1—N2vi | 146.72 (10) | N2—La2—Si1xvi | 64.01 (8) |
N4—La1—N2vi | 63.11 (8) | N2x—La2—Si1xvi | 101.50 (8) |
N2iii—La1—N2vi | 79.28 (14) | N2xi—La2—Si1xvi | 154.58 (9) |
N2iv—La1—N2vi | 135.23 (11) | N2xii—La2—Si1xvi | 105.41 (8) |
N2v—La1—N2vi | 118.90 (14) | N1xiii—La2—Si1xvi | 84.97 (8) |
N1i—La1—N3vii | 60.70 (9) | N1xiv—La2—Si1xvi | 85.19 (8) |
N1ii—La1—N3vii | 60.70 (9) | N1xv—La2—Si1xvi | 32.47 (7) |
N4—La1—N3vii | 152.55 (18) | N1xvi—La2—Si1xvi | 32.88 (7) |
N2iii—La1—N3vii | 59.21 (11) | Si1xiii—La2—Si1xvi | 90.73 (6) |
N2iv—La1—N3vii | 59.21 (11) | Si1xv—La2—Si1xvi | 60.42 (3) |
N2v—La1—N3vii | 120.55 (7) | Si1xiv—La2—Si1xvi | 60.42 (3) |
N2vi—La1—N3vii | 120.55 (7) | N1xii—Si1—N2 | 107.06 (17) |
N1i—La1—Si2viii | 85.17 (8) | N1xii—Si1—N1 | 108.6 (2) |
N1ii—La1—Si2viii | 85.17 (8) | N2—Si1—N1 | 113.98 (17) |
N4—La1—Si2viii | 171.97 (16) | N1xii—Si1—N3ix | 114.9 (2) |
N2iii—La1—Si2viii | 35.54 (8) | N2—Si1—N3ix | 109.72 (19) |
N2iv—La1—Si2viii | 35.54 (8) | N1—Si1—N3ix | 102.7 (2) |
N2v—La1—Si2viii | 114.55 (7) | N1xii—Si1—La2xvii | 55.61 (11) |
N2vi—La1—Si2viii | 114.55 (7) | N2—Si1—La2xvii | 141.40 (12) |
N3vii—La1—Si2viii | 35.48 (11) | N1—Si1—La2xvii | 55.63 (11) |
N1i—La1—Si2ix | 119.64 (8) | N3ix—Si1—La2xvii | 108.88 (17) |
N1ii—La1—Si2ix | 75.81 (8) | N1xii—Si1—La1xviii | 117.22 (14) |
N4—La1—Si2ix | 32.88 (2) | N2—Si1—La1xviii | 135.29 (12) |
N2iii—La1—Si2ix | 160.67 (9) | N1—Si1—La1xviii | 46.68 (11) |
N2iv—La1—Si2ix | 112.38 (8) | N3ix—Si1—La1xviii | 57.10 (16) |
N2v—La1—Si2ix | 33.29 (7) | La2xvii—Si1—La1xviii | 68.78 (4) |
N2vi—La1—Si2ix | 95.52 (7) | N1xii—Si1—La2 | 83.47 (12) |
N3vii—La1—Si2ix | 136.50 (7) | N2—Si1—La2 | 48.51 (12) |
Si2viii—La1—Si2ix | 146.89 (2) | N1—Si1—La2 | 83.23 (12) |
N1i—La1—Si2iv | 75.81 (8) | N3ix—Si1—La2 | 156.67 (16) |
N1ii—La1—Si2iv | 119.64 (8) | La2xvii—Si1—La2 | 93.20 (2) |
N4—La1—Si2iv | 32.88 (2) | La1xviii—Si1—La2 | 128.93 (3) |
N2iii—La1—Si2iv | 112.38 (8) | N1xii—Si1—La1xix | 147.94 (14) |
N2iv—La1—Si2iv | 160.67 (9) | N2—Si1—La1xix | 47.60 (11) |
N2v—La1—Si2iv | 95.52 (7) | N1—Si1—La1xix | 74.59 (11) |
N2vi—La1—Si2iv | 33.29 (7) | N3ix—Si1—La1xix | 94.54 (14) |
N3vii—La1—Si2iv | 136.50 (7) | La2xvii—Si1—La1xix | 128.06 (3) |
Si2viii—La1—Si2iv | 146.89 (2) | La1xviii—Si1—La1xix | 88.70 (2) |
Si2ix—La1—Si2iv | 65.52 (4) | La2—Si1—La1xix | 64.97 (3) |
N1i—La1—Si1ii | 75.26 (8) | N4xx—Si2—N2xxi | 114.67 (16) |
N1ii—La1—Si1ii | 29.80 (7) | N4xx—Si2—N2xx | 114.67 (16) |
N4—La1—Si1ii | 129.45 (13) | N2xxi—Si2—N2xx | 107.5 (2) |
N2iii—La1—Si1ii | 88.70 (8) | N4xx—Si2—N3xvi | 111.7 (3) |
N2iv—La1—Si1ii | 60.70 (8) | N2xxi—Si2—N3xvi | 103.55 (17) |
N2v—La1—Si1ii | 92.68 (7) | N2xx—Si2—N3xvi | 103.55 (17) |
N2vi—La1—Si1ii | 145.04 (8) | N4xx—Si2—La1viii | 177.8 (3) |
N3vii—La1—Si1ii | 31.39 (5) | N2xxi—Si2—La1viii | 64.35 (12) |
Si2viii—La1—Si1ii | 57.22 (5) | N2xx—Si2—La1viii | 64.35 (12) |
Si2ix—La1—Si1ii | 105.30 (4) | N3xvi—Si2—La1viii | 70.43 (16) |
Si2iv—La1—Si1ii | 138.54 (6) | N4xx—Si2—La1xx | 57.57 (3) |
N2—La2—N2x | 83.71 (5) | N2xxi—Si2—La1xx | 65.22 (11) |
N2—La2—N2xi | 141.35 (16) | N2xx—Si2—La1xx | 159.37 (17) |
N2x—La2—N2xi | 83.71 (5) | N3xvi—Si2—La1xx | 97.01 (10) |
N2—La2—N2xii | 83.71 (5) | La1viii—Si2—La1xx | 122.62 (2) |
N2x—La2—N2xii | 141.35 (16) | N4xx—Si2—La1xix | 57.57 (3) |
N2xi—La2—N2xii | 83.71 (5) | N2xxi—Si2—La1xix | 159.37 (17) |
N2—La2—N1xiii | 133.76 (10) | N2xx—Si2—La1xix | 65.22 (11) |
N2x—La2—N1xiii | 138.27 (10) | N3xvi—Si2—La1xix | 97.01 (10) |
N2xi—La2—N1xiii | 75.24 (10) | La1viii—Si2—La1xix | 122.62 (2) |
N2xii—La2—N1xiii | 71.98 (11) | La1xx—Si2—La1xix | 114.28 (4) |
N2—La2—N1xiv | 138.27 (10) | Si1x—N1—Si1 | 137.4 (2) |
N2x—La2—N1xiv | 75.24 (10) | Si1x—N1—La1xviii | 118.80 (16) |
N2xi—La2—N1xiv | 71.98 (11) | Si1—N1—La1xviii | 103.52 (15) |
N2xii—La2—N1xiv | 133.76 (10) | Si1x—N1—La2xvii | 91.91 (13) |
N1xiii—La2—N1xiv | 64.17 (8) | Si1—N1—La2xvii | 91.49 (13) |
N2—La2—N1xv | 71.98 (11) | La1xviii—N1—La2xvii | 92.01 (11) |
N2x—La2—N1xv | 133.76 (10) | Si2ix—N2—Si1 | 119.8 (2) |
N2xi—La2—N1xv | 138.27 (10) | Si2ix—N2—La2 | 138.1 (2) |
N2xii—La2—N1xv | 75.24 (10) | Si1—N2—La2 | 102.16 (15) |
N1xiii—La2—N1xv | 64.17 (8) | Si2ix—N2—La1xix | 80.11 (13) |
N1xiv—La2—N1xv | 97.40 (14) | Si1—N2—La1xix | 103.89 (15) |
N2—La2—N1xvi | 75.24 (10) | La2—N2—La1xix | 89.42 (10) |
N2x—La2—N1xvi | 71.98 (11) | Si2ix—N2—La1vi | 81.48 (12) |
N2xi—La2—N1xvi | 133.76 (10) | Si1—N2—La1vi | 109.71 (15) |
N2xii—La2—N1xvi | 138.27 (10) | La2—N2—La1vi | 85.71 (9) |
N1xiii—La2—N1xvi | 97.40 (14) | La1xix—N2—La1vi | 146.33 (15) |
N1xiv—La2—N1xvi | 64.17 (8) | Si2xvii—N3—Si1xxi | 119.72 (15) |
N1xv—La2—N1xvi | 64.17 (8) | Si2xvii—N3—Si1xx | 119.72 (15) |
N2—La2—Si1xiii | 154.58 (9) | Si1xxi—N3—Si1xx | 118.9 (3) |
N2x—La2—Si1xiii | 105.41 (8) | Si2xvii—N3—La1xxii | 74.09 (17) |
N2xi—La2—Si1xiii | 64.01 (8) | Si1xxi—N3—La1xxii | 91.51 (17) |
N2xii—La2—Si1xiii | 101.50 (8) | Si1xx—N3—La1xxii | 91.51 (17) |
N1xiii—La2—Si1xiii | 32.88 (7) | Si2iv—N4—Si2ix | 170.9 (5) |
N1xiv—La2—Si1xiii | 32.47 (7) | Si2iv—N4—La1vi | 89.55 (4) |
N1xv—La2—Si1xiii | 85.19 (8) | Si2ix—N4—La1vi | 89.55 (4) |
N1xvi—La2—Si1xiii | 84.97 (8) | Si2iv—N4—La1 | 89.55 (4) |
N2—La2—Si1xv | 101.50 (8) | Si2ix—N4—La1 | 89.55 (4) |
N2x—La2—Si1xv | 154.58 (9) | La1vi—N4—La1 | 168.8 (3) |
N2xi—La2—Si1xv | 105.41 (8) |
Symmetry codes: (i) −y+1, x, z−1; (ii) x+1/2, −y+1/2, z−1; (iii) −y+1, x, z; (iv) x+1/2, −y+1/2, z; (v) −y+1/2, −x+1/2, z; (vi) −x+1, −y, z; (vii) −x+1, −y+1, z−1; (viii) −x+1, −y+1, z; (ix) −x+1/2, y−1/2, z; (x) −y, x, z; (xi) −x, −y, z; (xii) y, −x, z; (xiii) −x, −y, z−1; (xiv) −y, x, z−1; (xv) y, −x, z−1; (xvi) x, y, z−1; (xvii) x, y, z+1; (xviii) x−1/2, −y+1/2, z+1; (xix) x−1/2, −y+1/2, z; (xx) −x+1/2, y+1/2, z; (xxi) y, −x+1, z; (xxii) −x+1, −y+1, z+1. |
La1—N1i | 2.551 (3) | La2—N1xi | 2.649 (3) |
La1—N1ii | 2.551 (3) | La2—N1xii | 2.649 (3) |
La1—N4 | 2.6227 (7) | La2—N1xiii | 2.649 (3) |
La1—N2iii | 2.674 (3) | La2—N1xiv | 2.649 (3) |
La1—N2iv | 2.674 (3) | Si1—N1x | 1.724 (3) |
La1—N2v | 2.853 (3) | Si1—N2 | 1.729 (4) |
La1—N2vi | 2.853 (3) | Si1—N1 | 1.743 (3) |
La1—N3vii | 2.864 (5) | Si1—N3xv | 1.776 (3) |
La2—N2 | 2.644 (3) | Si2—N4xvi | 1.6868 (14) |
La2—N2viii | 2.644 (3) | Si2—N2xvii | 1.725 (4) |
La2—N2ix | 2.644 (3) | Si2—N2xvi | 1.725 (4) |
La2—N2x | 2.644 (3) | Si2—N3xiv | 1.764 (5) |
Symmetry codes: (i) −y+1, x, z−1; (ii) x+1/2, −y+1/2, z−1; (iii) −y+1, x, z; (iv) x+1/2, −y+1/2, z; (v) −y+1/2, −x+1/2, z; (vi) −x+1, −y, z; (vii) −x+1, −y+1, z−1; (viii) −y, x, z; (ix) −x, −y, z; (x) y, −x, z; (xi) −x, −y, z−1; (xii) −y, x, z−1; (xiii) y, −x, z−1; (xiv) x, y, z−1; (xv) −x+1/2, y−1/2, z; (xvi) −x+1/2, y+1/2, z; (xvii) y, −x+1, z. |
Acknowledgements
We are grateful to Dr Kyota Ueda and Mr Satoshi Shimooka (Mitsubishi Chemical Group, Science and Technology Research Center, Inc.) for their help with the sample preparation. This work was supported in part by a Grant-in-Aid for Scientific Resarch (C) (No. 25420701, 2013) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan.
References
Baur, H. (1987). Crystallogr. Rev. 1, 59–83. CrossRef Google Scholar
Boulay, D. du, Ishizawa, N., Atake, T., Streltsov, V., Furuya, K. & Munakata, F. (2004). Acta Cryst. B60, 388–405. Web of Science CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gaudé, J., Lange, J. & Louër, D. (1983). Rev. Chim. Miner. 20, 523–527. Google Scholar
George, N. C., Birkel, A., Brgoch, J., Hong, B.-C., Mikhailovsky, A. A., Page, K., Llobet, A. & Seshadri, R. (2013). Inorg. Chem. 52, 13730–13741. Web of Science CrossRef CAS PubMed Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hoppe, R. (1966). Angew. Chem. Int. Ed. 5, 95–106. CrossRef CAS Web of Science Google Scholar
Hoppe, R. (1970). Angew. Chem. Int. Ed. 9, 25–34. CrossRef CAS Google Scholar
Klemm, W. & Winkelmann, G. (1956). Z. Anorg. Allg. Chem. 288, 87–90. CrossRef CAS Web of Science Google Scholar
Lauterbach, R. & Schnick, W. (2000). Z. Anorg. Allg. Chem. 626, 56–61. CrossRef CAS Google Scholar
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku/MSC (2005). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schlieper, T. & Schnick, W. (1995). Z. Anorg. Allg. Chem. 621, 1535–1538. CrossRef CAS Web of Science Google Scholar
Schlieper, T. & Schnick, W. (1996). Z. Kristallogr. 211, 254–254. CrossRef CAS Web of Science Google Scholar
Seto, T., Kijima, N. & Hirosaki, N. (2009). ECS Trans. 25, 247–252. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suehiro, T., Hirosaki, N. & Xie, R.-J. (2011). ACS Appl. Mater. Inter. 3, 811–816. Web of Science CrossRef CAS Google Scholar
Woike, M. & Jeitschko, W. (1995). Inorg. Chem. 34, 5105–5108. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.