inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs5Sn9(OH)·4NH3

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

(Received 25 April 2014; accepted 21 May 2014; online 31 May 2014)

The title compound, penta­caesium nona­stannide hydroxide tetra­ammonia, crystallized from a solution of CsSnBi in liquid ammonia. The Sn94− unit forms a monocapped quadratic anti­prism. The hydroxide ion is surrounded by five caesium cations, which form a distorted quadratic pyramidal polyhedron. A three-dimensional network is formed by Cs—Sn [3.8881 (7) Å to 4.5284 (7) Å] and Cs—NH3 [3.276 (7)–3.636 (7) Å] contacts.

Related literature

For the co-crystallization of Zintl anions and oxide or hydroxide ions see, for example: Boss et al. (2005[Boss, M., Petri, D., Pickhard, F., Zönnchen, P. & Röhr, C. (2005). Z. Anorg. Allg. Chem. 631, 1181-1190.]), Röhr (1995[Röhr, C. (1995). Z. Naturforsch. Teil B, 50, 802-808.]) For the diagonal ratio value of the Sn94− anion, see: Fässler & Hoffmann (1999[Fässler, T. F. & Hoffmann, R. (1999). Dalton Trans. 19, 3339-3340.]).

Experimental

Crystal data
  • Cs5Sn9(OH)·4NH3

  • Mr = 1817.90

  • Orthorhombic, P 21 21 21

  • a = 10.0935 (1) Å

  • b = 14.8256 (2) Å

  • c = 20.0419 (3) Å

  • V = 2999.11 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.34 mm−1

  • T = 123 K

  • 0.32 × 0.15 × 0.06 mm

Data collection
  • Agilent SuperNova (single source at offset, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.263, Tmax = 1.000

  • 34752 measured reflections

  • 5910 independent reflections

  • 5754 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.037

  • S = 1.05

  • 5910 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack x determined using 2458 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])

  • Absolute structure parameter: 0.037 (17)

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.SOLVE (Bourhis et al., 2014[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2011[Brandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

The crystal structure of Cs5Sn9(OH) × 4 NH3 was determined in the course of solvation experiments on ternary alkali metal–Sn–Bi-phases.

The Sn94- anion has a diagonal ratio value (Fässler et al., 1999) which is very close to 1, consequently it can be described as a monocapped quadratic antiprism (Fig. 1). Sn—Sn bond lengths range from 2.9310 (8) Å to 3.2457 (8) Å. The nonastannid cluster is surrounded by 15 caesium cations with distances ranging from 3.8881 (7) Å to 4.5284 (7) Å. The chemical origin of the hydroxide anion could not be determined, but it is likely that water was introduced to the system, which was deprotonated by the ammonia solvent. The caesium cations form a distorted quadratic pyramide around the hydroxide ion (Fig. 1). The distances dCs—O have values between 2.818 (5) Å and 3.080 (6) Å. Angles between neighbouring equatorial cations Cseq–O(1)–Cseq range from 86.43 (13)° to 95.28 (17)°, angles between the axial and the equatorial Cs cations Csax–O(1)–Cseq have values between 85.15 (15)° and 101.89 (16)°. The ammonia molecules coordinate with distances from 3.276 (7) Å to 3.636 (7) Å to the caesium cations, forming a three dimensional network (Fig. 2).

Related literature top

For the co-crystallization of Zintl anions and oxide or hydroxide ions see, for example: Boss et al. (2005), Röhr (1995) For the diagonal ratio value of the Sn94- anion, see: Fässler & Hoffmann (1999).

Experimental top

The educt material CsSnBi was synthesized in glas ampoules at 723 K from stochiometric amounts of the corresponding elements. 0.35 g (0.38 mmol) CsSnBi were weighed in a baked out reaction vessel, afterwards 10 ml of ammonia were condensed, leading to a brownish red solution. The solution was stored for four months at 236 K. The title compound formed as red plate-shaped crystals.

Refinement top

The H atoms of the ammonia molecules and the hydrogen atom of the hydroxide ion were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.2 Ueq(O) and Uiso(H) = 1.5 Ueq(N) using a riding model. For a chemically reasonable alignment of the hydrogen atoms of three ammonia molecules dummy atoms were used. The hydrogen atom of the hydroxide anion was placed in elongation of the Cs(5)–O(1) axes with the HFIX 163 command.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: OLEX2.SOLVE (Bourhis et al., 2014); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2011); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. : Asymmetric unit of the title compound; displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Projection of the unit cell along the crystallographic a-axis; displacement ellipsoids drawn at the 50% probability level.
Pentacaesium nonastannide hydroxide tetraammonia top
Crystal data top
Cs5Sn9(OH)·4NH3Dx = 4.026 Mg m3
Mr = 1817.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 21366 reflections
a = 10.0935 (1) Åθ = 2.9–28.8°
b = 14.8256 (2) ŵ = 13.34 mm1
c = 20.0419 (3) ÅT = 123 K
V = 2999.11 (7) Å3Plate, red
Z = 40.32 × 0.15 × 0.06 mm
F(000) = 3096
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
5910 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5754 reflections with I > 2σ(I)
Detector resolution: 7.9851 pixels mm-1Rint = 0.045
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 1212
Tmin = 0.263, Tmax = 1.000k = 1818
34752 measured reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0119P)2 + 0.8162P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.69 e Å3
5910 reflectionsΔρmin = 0.61 e Å3
191 parametersAbsolute structure: Flack x determined using 2458 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
0 restraintsAbsolute structure parameter: 0.037 (17)
Crystal data top
Cs5Sn9(OH)·4NH3V = 2999.11 (7) Å3
Mr = 1817.90Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.0935 (1) ŵ = 13.34 mm1
b = 14.8256 (2) ÅT = 123 K
c = 20.0419 (3) Å0.32 × 0.15 × 0.06 mm
Data collection top
Agilent SuperNova (single source at offset, Eos)
diffractometer
5910 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5754 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 1.000Rint = 0.045
34752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.037Δρmax = 0.69 e Å3
S = 1.05Δρmin = 0.61 e Å3
5910 reflectionsAbsolute structure: Flack x determined using 2458 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
191 parametersAbsolute structure parameter: 0.037 (17)
0 restraints
Special details top

Experimental. crystal mounting in perfluorether

Absorption correction: CrysAlisPro (Agilent Technologies, 2012), Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R- factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.69651 (4)0.62993 (3)0.52616 (3)0.01745 (12)
Cs50.96022 (5)0.55715 (3)0.36506 (3)0.01733 (12)
Cs20.77685 (5)0.33699 (3)0.47723 (3)0.01964 (13)
Cs30.53343 (5)0.64420 (3)0.32331 (3)0.01897 (12)
Cs40.70495 (5)0.39111 (4)0.27494 (3)0.02169 (13)
Sn80.32179 (5)0.57700 (4)0.48243 (3)0.01753 (13)
Sn90.33484 (5)0.68860 (4)0.60507 (3)0.01726 (14)
Sn60.44704 (5)0.53549 (4)0.67889 (3)0.01920 (14)
Sn40.15595 (5)0.42149 (4)0.51683 (3)0.01634 (13)
Sn50.24692 (5)0.38957 (4)0.66732 (3)0.01944 (14)
Sn30.07763 (5)0.62769 (4)0.55430 (3)0.01715 (14)
Sn20.17196 (6)0.59083 (4)0.70575 (3)0.02052 (14)
Sn70.43672 (5)0.42314 (4)0.55797 (3)0.01669 (13)
Sn10.00956 (5)0.47064 (4)0.63144 (3)0.01970 (14)
O10.7008 (5)0.5080 (3)0.4020 (3)0.0160 (13)
H10.61330.49140.41450.019*
N40.8001 (7)0.6444 (5)0.2302 (4)0.0272 (19)
H4A0.86590.60840.21430.041*
H4B0.82750.70290.22960.041*
H4C0.72690.63840.20410.041*
N30.9939 (7)0.3306 (4)0.3478 (4)0.0249 (19)
H3A1.03520.34960.31000.037*
H3B0.96290.27350.34160.037*
H3C1.05240.33100.38230.037*
N20.7994 (6)0.2374 (4)0.1655 (4)0.0237 (18)
H2A0.76230.20440.13210.036*
H2B0.76580.21890.20540.036*
H2C0.88880.22930.16530.036*
N10.4815 (7)0.3126 (5)0.3796 (4)0.031 (2)
H1A0.49090.25180.38340.046*
H1B0.39900.32560.36400.046*
H1C0.49290.33880.42020.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0134 (2)0.0200 (3)0.0189 (3)0.0008 (2)0.0009 (2)0.0020 (2)
Cs50.0155 (2)0.0163 (3)0.0202 (3)0.0019 (2)0.0001 (2)0.0021 (2)
Cs20.0186 (3)0.0152 (2)0.0251 (4)0.0012 (2)0.0014 (2)0.0016 (2)
Cs30.0175 (2)0.0210 (3)0.0185 (3)0.0007 (2)0.0004 (2)0.0003 (2)
Cs40.0192 (3)0.0264 (3)0.0194 (3)0.0021 (2)0.0026 (2)0.0053 (2)
Sn80.0175 (3)0.0204 (3)0.0146 (4)0.0020 (2)0.0026 (3)0.0044 (3)
Sn90.0146 (3)0.0119 (3)0.0253 (4)0.0024 (2)0.0030 (3)0.0010 (3)
Sn60.0169 (3)0.0215 (3)0.0192 (4)0.0014 (2)0.0077 (3)0.0012 (3)
Sn40.0154 (3)0.0157 (3)0.0179 (4)0.0031 (2)0.0020 (3)0.0035 (3)
Sn50.0221 (3)0.0161 (3)0.0201 (4)0.0003 (2)0.0027 (3)0.0078 (3)
Sn30.0114 (3)0.0154 (3)0.0247 (4)0.0013 (2)0.0036 (3)0.0026 (3)
Sn20.0195 (3)0.0238 (3)0.0183 (4)0.0012 (2)0.0058 (3)0.0072 (3)
Sn70.0129 (3)0.0178 (3)0.0194 (4)0.0031 (2)0.0017 (2)0.0013 (3)
Sn10.0141 (3)0.0207 (3)0.0243 (4)0.0038 (2)0.0054 (3)0.0000 (3)
O10.015 (3)0.014 (3)0.019 (4)0.004 (2)0.001 (2)0.000 (3)
N40.023 (4)0.033 (4)0.026 (5)0.000 (3)0.006 (4)0.004 (4)
N30.026 (4)0.021 (4)0.027 (5)0.001 (3)0.000 (4)0.001 (4)
N20.020 (4)0.026 (4)0.025 (5)0.002 (3)0.000 (3)0.001 (4)
N10.029 (4)0.030 (4)0.034 (6)0.007 (4)0.007 (4)0.001 (4)
Geometric parameters (Å, º) top
Cs1—N2i3.417 (8)Sn9—Sn62.9367 (8)
Cs1—Sn3ii3.8881 (7)Sn9—Sn22.9793 (9)
Cs1—Sn83.9609 (7)Sn9—Cs1xii4.0131 (8)
Cs1—Sn9iii4.0132 (8)Sn9—Cs5xii4.0210 (7)
Cs1—Sn94.0723 (7)Sn9—Cs3xii4.1787 (8)
Cs1—Sn74.0843 (8)Sn6—Sn72.9425 (9)
Cs1—Sn3iii4.1175 (8)Sn6—Sn22.9449 (8)
Cs1—Sn64.2037 (9)Sn6—Sn52.9688 (8)
Cs1—Cs54.3213 (8)Sn6—Cs5i4.0847 (9)
Cs1—Sn1ii4.3395 (8)Sn6—Cs4i4.1507 (8)
Cs5—O12.817 (5)Sn4—Sn12.9323 (9)
Cs5—N2iv3.661 (6)Sn4—Sn72.9516 (7)
Cs5—Cs43.9951 (7)Sn4—Sn53.1880 (9)
Cs5—Sn9iii4.0210 (7)Sn4—Sn33.2457 (8)
Cs5—Sn6v4.0847 (9)Sn4—Cs2vii4.0234 (7)
Cs5—Sn3ii4.1089 (9)Sn4—Cs2xi4.1038 (7)
Cs5—Sn4ii4.1474 (8)Sn4—Cs5xi4.1473 (8)
Cs5—Sn8ii4.3519 (8)Sn5—Sn12.9434 (8)
Cs5—Cs24.3741 (7)Sn5—Sn72.9530 (9)
Cs2—Sn74.0045 (7)Sn5—Sn23.1732 (8)
Cs2—Sn4vi4.0235 (7)Sn5—Cs3xiii4.2463 (8)
Cs2—Sn4ii4.1038 (7)Sn5—Cs4vii4.3400 (8)
Cs2—Cs44.1961 (9)Sn5—Cs2vii4.4459 (8)
Cs2—Sn7vi4.2398 (7)Sn3—Sn12.9301 (8)
Cs2—Sn1ii4.2575 (9)Sn3—Sn23.2277 (9)
Cs2—Sn5vi4.4460 (8)Sn3—Cs1xi3.8882 (7)
Cs2—Cs2vii5.7408 (5)Sn3—Cs5xi4.1088 (9)
Cs2—Cs2vi5.7408 (5)Sn3—Cs1xii4.1174 (8)
Cs3—N2viii3.639 (7)Sn3—Cs3xii4.2017 (8)
Cs3—Sn83.9656 (8)Sn2—Sn12.9581 (9)
Cs3—Sn9iii4.1786 (8)Sn2—Cs4xiii4.0580 (8)
Cs3—Sn3iii4.2016 (8)Sn2—Cs3xii4.2103 (7)
Cs3—Sn2iii4.2102 (7)Sn7—Cs2vii4.2398 (7)
Cs3—Sn1ix4.2123 (9)Sn1—Cs4xiii4.0449 (9)
Cs3—Cs44.2445 (7)Sn1—Cs3xiii4.2122 (9)
Cs3—Sn5ix4.2463 (8)Sn1—Cs2xi4.2576 (9)
Cs3—Cs4viii4.8028 (7)Sn1—Cs1xi4.3396 (8)
Cs4—N13.292 (8)O1—H10.9500
Cs4—Sn1ix4.0449 (9)N4—H4A0.9100
Cs4—Sn2ix4.0579 (8)N4—H4B0.9100
Cs4—Sn6v4.1507 (8)N4—H4C0.9100
Cs4—Sn5vi4.3399 (8)N3—H3A0.9100
Cs4—Cs3x4.8027 (7)N3—H3B0.9100
Sn8—Sn42.9314 (8)N3—H3C0.9100
Sn8—Sn32.9518 (8)N2—H2A0.9100
Sn8—Sn92.9658 (9)N2—H2B0.9100
Sn8—Sn72.9735 (8)N2—H2C0.9100
Sn8—Cs5xi4.3518 (8)N1—H1A0.9100
Sn8—Cs1xii4.5284 (7)N1—H1B0.9100
Sn9—Sn32.9310 (8)N1—H1C0.9100
N2i—Cs1—Sn3ii82.78 (11)Sn4—Sn8—Cs3133.97 (2)
N2i—Cs1—Sn8107.85 (11)Sn3—Sn8—Cs3141.10 (2)
Sn3ii—Cs1—Sn8167.198 (19)Sn9—Sn8—Cs3120.16 (2)
N2i—Cs1—Sn9iii98.37 (12)Sn7—Sn8—Cs3113.08 (2)
Sn3ii—Cs1—Sn9iii75.913 (15)Cs1—Sn8—Cs367.283 (14)
Sn8—Cs1—Sn9iii108.664 (18)Sn4—Sn8—Cs5xi66.113 (17)
N2i—Cs1—Sn964.56 (11)Sn3—Sn8—Cs5xi65.218 (18)
Sn3ii—Cs1—Sn9146.35 (2)Sn9—Sn8—Cs5xi121.53 (2)
Sn8—Cs1—Sn943.304 (13)Sn7—Sn8—Cs5xi123.40 (2)
Sn9iii—Cs1—Sn9115.038 (15)Cs1—Sn8—Cs5xi159.03 (2)
N2i—Cs1—Sn7108.20 (12)Cs3—Sn8—Cs5xi91.952 (17)
Sn3ii—Cs1—Sn7127.309 (17)Sn4—Sn8—Cs1xii127.17 (2)
Sn8—Cs1—Sn743.347 (12)Sn3—Sn8—Cs1xii62.688 (16)
Sn9iii—Cs1—Sn7145.99 (2)Sn9—Sn8—Cs1xii60.572 (16)
Sn9—Cs1—Sn761.588 (12)Sn7—Sn8—Cs1xii149.81 (2)
N2i—Cs1—Sn3iii79.70 (12)Cs1—Sn8—Cs1xii94.875 (13)
Sn3ii—Cs1—Sn3iii110.648 (15)Cs3—Sn8—Cs1xii83.040 (14)
Sn8—Cs1—Sn3iii78.928 (14)Cs5xi—Sn8—Cs1xii79.056 (13)
Sn9iii—Cs1—Sn3iii42.236 (12)Sn3—Sn9—Sn6106.16 (2)
Sn9—Cs1—Sn3iii72.811 (14)Sn3—Sn9—Sn860.07 (2)
Sn7—Cs1—Sn3iii121.949 (15)Sn6—Sn9—Sn890.20 (2)
N2i—Cs1—Sn666.66 (12)Sn3—Sn9—Sn266.20 (2)
Sn3ii—Cs1—Sn6118.956 (19)Sn6—Sn9—Sn259.70 (2)
Sn8—Cs1—Sn661.522 (14)Sn8—Sn9—Sn2105.39 (2)
Sn9iii—Cs1—Sn6155.360 (17)Sn3—Sn9—Cs1xii70.784 (18)
Sn9—Cs1—Sn641.531 (12)Sn6—Sn9—Cs1xii169.28 (3)
Sn7—Cs1—Sn641.560 (13)Sn8—Sn9—Cs1xii79.36 (2)
Sn3iii—Cs1—Sn6113.663 (16)Sn2—Sn9—Cs1xii125.31 (2)
N2i—Cs1—Cs5138.34 (11)Sn3—Sn9—Cs5xii128.26 (2)
Sn3ii—Cs1—Cs559.790 (14)Sn6—Sn9—Cs5xii121.89 (2)
Sn8—Cs1—Cs5111.923 (17)Sn8—Sn9—Cs5xii131.32 (2)
Sn9iii—Cs1—Cs557.548 (12)Sn2—Sn9—Cs5xii121.93 (2)
Sn9—Cs1—Cs5153.592 (18)Cs1xii—Sn9—Cs5xii65.078 (14)
Sn7—Cs1—Cs5108.945 (16)Sn3—Sn9—Cs1126.40 (2)
Sn3iii—Cs1—Cs596.014 (16)Sn6—Sn9—Cs171.633 (18)
Sn6—Cs1—Cs5146.084 (16)Sn8—Sn9—Cs166.348 (17)
N2i—Cs1—Sn1ii84.70 (11)Sn2—Sn9—Cs1130.83 (2)
Sn3ii—Cs1—Sn1ii41.268 (12)Cs1xii—Sn9—Cs1101.571 (16)
Sn8—Cs1—Sn1ii130.739 (17)Cs5xii—Sn9—Cs188.619 (15)
Sn9iii—Cs1—Sn1ii116.464 (15)Sn3—Sn9—Cs3xii69.949 (18)
Sn9—Cs1—Sn1ii122.702 (19)Sn6—Sn9—Cs3xii124.49 (3)
Sn7—Cs1—Sn1ii87.394 (15)Sn8—Sn9—Cs3xii125.68 (2)
Sn3iii—Cs1—Sn1ii149.840 (16)Sn2—Sn9—Cs3xii69.766 (18)
Sn6—Cs1—Sn1ii82.772 (15)Cs1xii—Sn9—Cs3xii64.795 (14)
Cs5—Cs1—Sn1ii78.830 (14)Cs5xii—Sn9—Cs3xii67.783 (13)
O1—Cs5—N2iv148.09 (15)Cs1—Sn9—Cs3xii155.890 (17)
O1—Cs5—Cs450.21 (11)Sn9—Sn6—Sn790.51 (2)
N2iv—Cs5—Cs4143.27 (13)Sn9—Sn6—Sn260.87 (2)
O1—Cs5—Sn9iii84.88 (10)Sn7—Sn6—Sn2105.96 (2)
N2iv—Cs5—Sn9iii63.22 (10)Sn9—Sn6—Sn5105.16 (2)
Cs4—Cs5—Sn9iii116.228 (16)Sn7—Sn6—Sn559.94 (2)
O1—Cs5—Sn6v111.48 (12)Sn2—Sn6—Sn564.902 (19)
N2iv—Cs5—Sn6v86.59 (13)Sn9—Sn6—Cs5i143.95 (3)
Cs4—Cs5—Sn6v61.811 (14)Sn7—Sn6—Cs5i124.76 (2)
Sn9iii—Cs5—Sn6v121.556 (19)Sn2—Sn6—Cs5i98.21 (2)
O1—Cs5—Sn3ii95.23 (12)Sn5—Sn6—Cs5i88.99 (2)
N2iv—Cs5—Sn3ii77.16 (13)Sn9—Sn6—Cs4i110.94 (2)
Cs4—Cs5—Sn3ii139.478 (18)Sn7—Sn6—Cs4i124.08 (2)
Sn9iii—Cs5—Sn3ii73.429 (15)Sn2—Sn6—Cs4i129.80 (2)
Sn6v—Cs5—Sn3ii149.616 (17)Sn5—Sn6—Cs4i143.42 (2)
O1—Cs5—Sn4ii97.15 (11)Cs5i—Sn6—Cs4i58.034 (13)
N2iv—Cs5—Sn4ii99.27 (12)Sn9—Sn6—Cs166.836 (19)
Cs4—Cs5—Sn4ii109.876 (16)Sn7—Sn6—Cs167.046 (18)
Sn9iii—Cs5—Sn4ii119.695 (19)Sn2—Sn6—Cs1127.23 (2)
Sn6v—Cs5—Sn4ii113.434 (16)Sn5—Sn6—Cs1126.39 (2)
Sn3ii—Cs5—Sn4ii46.295 (12)Cs5i—Sn6—Cs1129.785 (16)
O1—Cs5—Cs145.22 (11)Cs4i—Sn6—Cs175.135 (14)
N2iv—Cs5—Cs1110.56 (12)Sn8—Sn4—Sn1108.31 (2)
Cs4—Cs5—Cs195.417 (14)Sn8—Sn4—Sn760.719 (19)
Sn9iii—Cs5—Cs157.374 (13)Sn1—Sn4—Sn7109.03 (3)
Sn6v—Cs5—Cs1155.179 (17)Sn8—Sn4—Sn5100.07 (2)
Sn3ii—Cs5—Cs154.861 (13)Sn1—Sn4—Sn557.31 (2)
Sn4ii—Cs5—Cs182.331 (15)Sn7—Sn4—Sn557.344 (19)
O1—Cs5—Sn8ii130.91 (12)Sn8—Sn4—Sn356.818 (17)
N2iv—Cs5—Sn8ii59.02 (12)Sn1—Sn4—Sn356.350 (19)
Cs4—Cs5—Sn8ii145.780 (16)Sn7—Sn4—Sn399.29 (2)
Sn9iii—Cs5—Sn8ii96.897 (15)Sn5—Sn4—Sn389.49 (2)
Sn6v—Cs5—Sn8ii108.922 (16)Sn8—Sn4—Cs2vii125.66 (2)
Sn3ii—Cs5—Sn8ii40.711 (12)Sn1—Sn4—Cs2vii112.72 (2)
Sn4ii—Cs5—Sn8ii40.262 (11)Sn7—Sn4—Cs2vii73.050 (17)
Cs1—Cs5—Sn8ii95.499 (16)Sn5—Sn4—Cs2vii75.125 (17)
O1—Cs5—Cs243.82 (10)Sn3—Sn4—Cs2vii164.60 (3)
N2iv—Cs5—Cs2155.66 (13)Sn8—Sn4—Cs2xi136.64 (2)
Cs4—Cs5—Cs259.978 (14)Sn1—Sn4—Cs2xi72.311 (18)
Sn9iii—Cs5—Cs2119.331 (17)Sn7—Sn4—Cs2xi162.15 (2)
Sn6v—Cs5—Cs2108.391 (15)Sn5—Sn4—Cs2xi113.97 (2)
Sn3ii—Cs5—Cs280.651 (15)Sn3—Sn4—Cs2xi96.036 (17)
Sn4ii—Cs5—Cs257.504 (12)Cs2vii—Sn4—Cs2xi89.873 (12)
Cs1—Cs5—Cs262.723 (12)Sn8—Sn4—Cs5xi73.625 (18)
Sn8ii—Cs5—Cs297.327 (15)Sn1—Sn4—Cs5xi100.52 (2)
Sn7—Cs2—Sn4vi91.823 (15)Sn7—Sn4—Cs5xi131.17 (2)
Sn7—Cs2—Sn4ii128.598 (19)Sn5—Sn4—Cs5xi154.56 (2)
Sn4vi—Cs2—Sn4ii124.596 (16)Sn3—Sn4—Cs5xi66.228 (17)
Sn7—Cs2—Cs4100.440 (16)Cs2vii—Sn4—Cs5xi128.909 (19)
Sn4vi—Cs2—Cs499.106 (17)Cs2xi—Sn4—Cs5xi64.025 (13)
Sn4ii—Cs2—Cs4106.844 (17)Sn1—Sn5—Sn7108.69 (3)
Sn7—Cs2—Sn7vi133.131 (16)Sn1—Sn5—Sn6108.66 (2)
Sn4vi—Cs2—Sn7vi41.753 (11)Sn7—Sn5—Sn659.59 (2)
Sn4ii—Cs2—Sn7vi87.418 (14)Sn1—Sn5—Sn257.697 (19)
Cs4—Cs2—Sn7vi94.530 (17)Sn7—Sn5—Sn2100.16 (2)
Sn7—Cs2—Sn1ii89.560 (17)Sn6—Sn5—Sn257.184 (18)
Sn4vi—Cs2—Sn1ii125.124 (19)Sn1—Sn5—Sn456.97 (2)
Sn4ii—Cs2—Sn1ii41.007 (13)Sn7—Sn5—Sn457.300 (19)
Cs4—Cs2—Sn1ii134.426 (17)Sn6—Sn5—Sn499.31 (2)
Sn7vi—Cs2—Sn1ii110.573 (16)Sn2—Sn5—Sn491.23 (2)
Sn7—Cs2—Cs5109.417 (15)Sn1—Sn5—Cs3xiii69.015 (19)
Sn4vi—Cs2—Cs5148.679 (19)Sn7—Sn5—Cs3xiii176.91 (2)
Sn4ii—Cs2—Cs558.471 (13)Sn6—Sn5—Cs3xiii118.80 (2)
Cs4—Cs2—Cs555.525 (13)Sn2—Sn5—Cs3xiii76.893 (18)
Sn7vi—Cs2—Cs5115.608 (16)Sn4—Sn5—Cs3xiii121.47 (2)
Sn1ii—Cs2—Cs579.136 (14)Sn1—Sn5—Cs4vii111.766 (19)
Sn7—Cs2—Sn5vi116.490 (16)Sn7—Sn5—Cs4vii115.01 (2)
Sn4vi—Cs2—Sn5vi43.871 (13)Sn6—Sn5—Cs4vii138.10 (2)
Sn4ii—Cs2—Sn5vi114.834 (16)Sn2—Sn5—Cs4vii144.45 (2)
Cs4—Cs2—Sn5vi60.207 (13)Sn4—Sn5—Cs4vii111.50 (2)
Sn7vi—Cs2—Sn5vi39.663 (12)Cs3xiii—Sn5—Cs4vii68.012 (13)
Sn1ii—Cs2—Sn5vi149.209 (16)Sn1—Sn5—Cs2vii102.07 (2)
Cs5—Cs2—Sn5vi104.930 (17)Sn7—Sn5—Cs2vii66.404 (18)
Sn7—Cs2—Cs156.821 (12)Sn6—Sn5—Cs2vii123.73 (2)
Sn4vi—Cs2—Cs1148.568 (16)Sn2—Sn5—Cs2vii152.23 (2)
Sn4ii—Cs2—Cs180.342 (13)Sn4—Sn5—Cs2vii61.004 (16)
Cs4—Cs2—Cs189.708 (14)Cs3xiii—Sn5—Cs2vii115.845 (16)
Sn7vi—Cs2—Cs1167.741 (16)Cs4vii—Sn5—Cs2vii57.042 (13)
Sn1ii—Cs2—Cs159.123 (12)Sn1—Sn3—Sn9109.13 (3)
Cs5—Cs2—Cs158.068 (11)Sn1—Sn3—Sn8107.82 (2)
Sn5vi—Cs2—Cs1148.656 (18)Sn9—Sn3—Sn860.55 (2)
Sn7—Cs2—Cs2vii47.576 (10)Sn1—Sn3—Sn257.17 (2)
Sn4vi—Cs2—Cs2vii45.631 (12)Sn9—Sn3—Sn257.62 (2)
Sn4ii—Cs2—Cs2vii157.83 (2)Sn8—Sn3—Sn299.76 (2)
Cs4—Cs2—Cs2vii95.020 (15)Sn1—Sn3—Sn456.415 (19)
Sn7vi—Cs2—Cs2vii87.268 (15)Sn9—Sn3—Sn498.90 (2)
Sn1ii—Cs2—Cs2vii122.60 (2)Sn8—Sn3—Sn456.218 (17)
Cs5—Cs2—Cs2vii142.091 (16)Sn2—Sn3—Sn489.22 (2)
Sn5vi—Cs2—Cs2vii72.807 (14)Sn1—Sn3—Cs1xi77.654 (18)
Cs1—Cs2—Cs2vii103.840 (12)Sn9—Sn3—Cs1xi157.53 (2)
Sn7—Cs2—Cs2vi146.38 (2)Sn8—Sn3—Cs1xi139.24 (3)
Sn4vi—Cs2—Cs2vi80.443 (14)Sn2—Sn3—Cs1xi115.45 (2)
Sn4ii—Cs2—Cs2vi44.495 (8)Sn4—Sn3—Cs1xi102.444 (18)
Cs4—Cs2—Cs2vi113.053 (17)Sn1—Sn3—Cs5xi101.43 (2)
Sn7vi—Cs2—Cs2vi44.205 (11)Sn9—Sn3—Cs5xi130.87 (2)
Sn1ii—Cs2—Cs2vi69.422 (13)Sn8—Sn3—Cs5xi74.07 (2)
Cs5—Cs2—Cs2vi92.580 (11)Sn2—Sn3—Cs5xi155.51 (2)
Sn5vi—Cs2—Cs2vi79.856 (14)Sn4—Sn3—Cs5xi67.477 (17)
Cs1—Cs2—Cs2vi123.659 (15)Cs1xi—Sn3—Cs5xi65.349 (14)
Cs2vii—Cs2—Cs2vi123.070 (17)Sn1—Sn3—Cs1xii170.99 (3)
N2viii—Cs3—Sn863.17 (13)Sn9—Sn3—Cs1xii66.980 (17)
N2viii—Cs3—Sn9iii115.20 (10)Sn8—Sn3—Cs1xii77.744 (18)
Sn8—Cs3—Sn9iii105.364 (18)Sn2—Sn3—Cs1xii115.47 (2)
N2viii—Cs3—Sn3iii75.92 (11)Sn4—Sn3—Cs1xii131.33 (2)
Sn8—Cs3—Sn3iii77.873 (16)Cs1xi—Sn3—Cs1xii102.944 (15)
Sn9iii—Cs3—Sn3iii40.943 (12)Cs5xi—Sn3—Cs1xii86.825 (17)
N2viii—Cs3—Sn2iii87.77 (10)Sn1—Sn3—Cs3xii107.44 (2)
Sn8—Cs3—Sn2iii121.638 (18)Sn9—Sn3—Cs3xii69.109 (18)
Sn9iii—Cs3—Sn2iii41.602 (12)Sn8—Sn3—Cs3xii125.34 (2)
Sn3iii—Cs3—Sn2iii45.128 (14)Sn2—Sn3—Cs3xii67.578 (17)
N2viii—Cs3—Sn1ix99.02 (13)Sn4—Sn3—Cs3xii156.79 (2)
Sn8—Cs3—Sn1ix126.998 (17)Cs1xi—Sn3—Cs3xii88.437 (15)
Sn9iii—Cs3—Sn1ix126.514 (18)Cs5xi—Sn3—Cs3xii135.489 (17)
Sn3iii—Cs3—Sn1ix149.810 (19)Cs1xii—Sn3—Cs3xii63.713 (14)
Sn2iii—Cs3—Sn1ix105.654 (18)Sn6—Sn2—Sn1108.91 (2)
N2viii—Cs3—Cs4136.56 (10)Sn6—Sn2—Sn959.43 (2)
Sn8—Cs3—Cs4100.445 (16)Sn1—Sn2—Sn9107.09 (3)
Sn9iii—Cs3—Cs4107.813 (15)Sn6—Sn2—Sn557.914 (18)
Sn3iii—Cs3—Cs4143.281 (17)Sn1—Sn2—Sn557.249 (18)
Sn2iii—Cs3—Cs4131.129 (17)Sn9—Sn2—Sn599.29 (2)
Sn1ix—Cs3—Cs457.148 (13)Sn6—Sn2—Sn398.82 (2)
N2viii—Cs3—Sn5ix58.32 (13)Sn1—Sn2—Sn356.34 (2)
Sn8—Cs3—Sn5ix101.741 (16)Sn9—Sn2—Sn356.183 (19)
Sn9iii—Cs3—Sn5ix143.904 (18)Sn5—Sn2—Sn390.07 (2)
Sn3iii—Cs3—Sn5ix126.547 (16)Sn6—Sn2—Cs4xiii164.74 (3)
Sn2iii—Cs3—Sn5ix103.266 (17)Sn1—Sn2—Cs4xiii68.353 (18)
Sn1ix—Cs3—Sn5ix40.724 (12)Sn9—Sn2—Cs4xiii135.78 (2)
Cs4—Cs3—Sn5ix89.967 (15)Sn5—Sn2—Cs4xiii111.62 (2)
N2viii—Cs3—Cs1107.90 (13)Sn3—Sn2—Cs4xiii91.928 (19)
Sn8—Cs3—Cs156.307 (13)Sn6—Sn2—Cs3xii123.22 (2)
Sn9iii—Cs3—Cs155.779 (13)Sn1—Sn2—Cs3xii106.66 (2)
Sn3iii—Cs3—Cs157.211 (13)Sn9—Sn2—Cs3xii68.632 (17)
Sn2iii—Cs3—Cs192.782 (15)Sn5—Sn2—Cs3xii157.36 (3)
Sn1ix—Cs3—Cs1147.903 (16)Sn3—Sn2—Cs3xii67.296 (17)
Cs4—Cs3—Cs190.915 (15)Cs4xiii—Sn2—Cs3xii70.996 (14)
Sn5ix—Cs3—Cs1157.780 (18)Sn6—Sn7—Sn4105.59 (2)
N2viii—Cs3—Cs5164.84 (13)Sn6—Sn7—Sn560.47 (2)
Sn8—Cs3—Cs5106.815 (17)Sn4—Sn7—Sn565.36 (2)
Sn9iii—Cs3—Cs554.469 (11)Sn6—Sn7—Sn889.94 (2)
Sn3iii—Cs3—Cs591.162 (14)Sn4—Sn7—Sn859.306 (18)
Sn2iii—Cs3—Cs588.612 (13)Sn5—Sn7—Sn8104.72 (2)
Sn1ix—Cs3—Cs596.134 (15)Sn6—Sn7—Cs2118.88 (2)
Cs4—Cs3—Cs553.719 (11)Sn4—Sn7—Cs2135.04 (2)
Sn5ix—Cs3—Cs5136.804 (17)Sn5—Sn7—Cs2143.35 (2)
Cs1—Cs3—Cs557.588 (12)Sn8—Sn7—Cs2111.92 (2)
N2viii—Cs3—Cs4viii43.41 (12)Sn6—Sn7—Cs171.394 (18)
Sn8—Cs3—Cs4viii104.556 (15)Sn4—Sn7—Cs1125.38 (2)
Sn9iii—Cs3—Cs4viii93.062 (13)Sn5—Sn7—Cs1131.21 (2)
Sn3iii—Cs3—Cs4viii71.279 (13)Sn8—Sn7—Cs166.117 (17)
Sn2iii—Cs3—Cs4viii53.023 (12)Cs2—Sn7—Cs168.033 (13)
Sn1ix—Cs3—Cs4viii84.558 (15)Sn6—Sn7—Cs2vii131.71 (2)
Cs4—Cs3—Cs4viii141.674 (15)Sn4—Sn7—Cs2vii65.197 (16)
Sn5ix—Cs3—Cs4viii56.920 (12)Sn5—Sn7—Cs2vii73.933 (18)
Cs1—Cs3—Cs4viii127.162 (15)Sn8—Sn7—Cs2vii117.69 (2)
Cs5—Cs3—Cs4viii139.627 (15)Cs2—Sn7—Cs2vii88.220 (12)
N1—Cs4—Cs5111.82 (14)Cs1—Sn7—Cs2vii154.315 (19)
N1—Cs4—Sn1ix107.34 (13)Sn3—Sn1—Sn467.23 (2)
Cs5—Cs4—Sn1ix108.886 (17)Sn3—Sn1—Sn5100.91 (2)
N1—Cs4—Sn2ix66.34 (14)Sn4—Sn1—Sn565.72 (2)
Cs5—Cs4—Sn2ix135.927 (17)Sn3—Sn1—Sn266.48 (2)
Sn1ix—Cs4—Sn2ix42.824 (13)Sn4—Sn1—Sn2101.03 (2)
N1—Cs4—Sn6v165.43 (14)Sn5—Sn1—Sn265.05 (2)
Cs5—Cs4—Sn6v60.155 (14)Sn3—Sn1—Cs4xiii96.83 (2)
Sn1ix—Cs4—Sn6v87.136 (17)Sn4—Sn1—Cs4xiii163.88 (2)
Sn2ix—Cs4—Sn6v128.14 (2)Sn5—Sn1—Cs4xiii117.52 (3)
N1—Cs4—Cs255.63 (14)Sn2—Sn1—Cs4xiii68.824 (19)
Cs5—Cs4—Cs264.497 (14)Sn3—Sn1—Cs3xiii145.08 (2)
Sn1ix—Cs4—Cs2150.248 (18)Sn4—Sn1—Cs3xiii130.33 (2)
Sn2ix—Cs4—Cs2120.324 (18)Sn5—Sn1—Cs3xiii70.26 (2)
Sn6v—Cs4—Cs2110.600 (16)Sn2—Sn1—Cs3xiii79.59 (2)
N1—Cs4—Cs383.55 (13)Cs4xiii—Sn1—Cs3xiii61.826 (14)
Cs5—Cs4—Cs367.362 (13)Sn3—Sn1—Cs2xi97.98 (2)
Sn1ix—Cs4—Cs361.026 (14)Sn4—Sn1—Cs2xi66.681 (18)
Sn2ix—Cs4—Cs368.737 (13)Sn5—Sn1—Cs2xi115.64 (2)
Sn6v—Cs4—Cs3102.670 (15)Sn2—Sn1—Cs2xi163.63 (3)
Cs2—Cs4—Cs391.084 (16)Cs4xiii—Sn1—Cs2xi120.338 (17)
N1—Cs4—Sn5vi63.77 (13)Cs3xiii—Sn1—Cs2xi116.465 (16)
Cs5—Cs4—Sn5vi114.035 (17)Sn3—Sn1—Cs1xi61.077 (16)
Sn1ix—Cs4—Sn5vi136.305 (18)Sn4—Sn1—Cs1xi98.27 (2)
Sn2ix—Cs4—Sn5vi104.233 (16)Sn5—Sn1—Cs1xi160.44 (2)
Sn6v—Cs4—Sn5vi107.003 (15)Sn2—Sn1—Cs1xi109.90 (2)
Cs2—Cs4—Sn5vi62.751 (14)Cs4xiii—Sn1—Cs1xi74.730 (14)
Cs3—Cs4—Sn5vi145.75 (2)Cs3xiii—Sn1—Cs1xi128.664 (17)
N1—Cs4—Cs3x69.42 (14)Cs2xi—Sn1—Cs1xi63.520 (13)
Cs5—Cs4—Cs3x167.984 (17)Cs5—O1—H1180.0
Sn1ix—Cs4—Cs3x81.400 (14)H4A—N4—H4B109.5
Sn2ix—Cs4—Cs3x55.981 (12)H4A—N4—H4C109.5
Sn6v—Cs4—Cs3x115.700 (17)H4B—N4—H4C109.5
Cs2—Cs4—Cs3x109.695 (15)H3A—N3—H3B109.5
Cs3—Cs4—Cs3x124.270 (12)H3A—N3—H3C109.5
Sn5vi—Cs4—Cs3x55.068 (12)H3B—N3—H3C109.5
Sn4—Sn8—Sn366.964 (19)H2A—N2—H2B109.5
Sn4—Sn8—Sn9105.62 (2)H2A—N2—H2C109.5
Sn3—Sn8—Sn959.38 (2)H2B—N2—H2C109.5
Sn4—Sn8—Sn759.975 (18)Cs4—N1—H1A109.5
Sn3—Sn8—Sn7105.81 (2)Cs4—N1—H1B109.5
Sn9—Sn8—Sn789.35 (2)H1A—N1—H1B109.5
Sn4—Sn8—Cs1130.47 (2)Cs4—N1—H1C109.5
Sn3—Sn8—Cs1129.70 (2)H1A—N1—H1C109.5
Sn9—Sn8—Cs170.347 (17)H1B—N1—H1C109.5
Sn7—Sn8—Cs170.536 (17)
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z+1; (iv) x+2, y+1/2, z+1/2; (v) x+3/2, y+1, z1/2; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+1/2, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x+1/2, y+1, z1/2; (x) x+1, y1/2, z+1/2; (xi) x1, y, z; (xii) x1/2, y+3/2, z+1; (xiii) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaCs5Sn9(OH)·4NH3
Mr1817.90
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)10.0935 (1), 14.8256 (2), 20.0419 (3)
V3)2999.11 (7)
Z4
Radiation typeMo Kα
µ (mm1)13.34
Crystal size (mm)0.32 × 0.15 × 0.06
Data collection
DiffractometerAgilent SuperNova (single source at offset, Eos)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.263, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
34752, 5910, 5754
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.037, 1.05
No. of reflections5910
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.61
Absolute structureFlack x determined using 2458 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Absolute structure parameter0.037 (17)

Computer programs: CrysAlis PRO (Agilent, 2012), OLEX2.SOLVE (Bourhis et al., 2014), SHELXL2013 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2011), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

UF thanks the Chemical Industry Fund for a scholarship.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBoss, M., Petri, D., Pickhard, F., Zönnchen, P. & Röhr, C. (2005). Z. Anorg. Allg. Chem. 631, 1181–1190.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2011). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFässler, T. F. & Hoffmann, R. (1999). Dalton Trans. 19, 3339–3340.  Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationRöhr, C. (1995). Z. Naturforsch. Teil B, 50, 802–808.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds