inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Na4.25Mo15S19: a novel ternary reduced molybdenum sulfide containing Mo6 and Mo9 clusters

aFaculty of Science III, Lebanese University, PO Box 826, Kobbeh–Tripoli, Lebanon, and bUnité Sciences Chimiques de Rennes, UMR CNRS No. 6226, Université de Rennes I – INSA Rennes, Campus de Beaulieu, 35042 Rennes Cedex, France
*Correspondence e-mail: Patrick.Gougeon@univ-rennes1.fr

(Received 21 May 2014; accepted 23 May 2014; online 31 May 2014)

The structure of tetra­sodium penta­deca­molybdenum nona­deca­sulfide, Na4.25Mo15S19, is isotypic with Na3.9Mo15Se19 [Salloum et al. (2013[Salloum, D., Gougeon, P. & Gall, P. (2013). Acta Cryst. E69, i67-i68.]). Acta Cryst. E69, i67–i68]. It is characterized by Mo6Si8Sa6 and Mo9Si11Sa6 (where i represents inner and a apical atoms) cluster units that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c, and have point-group symmetry -3 and -6, respectively. The clusters are inter­connected through additional Mo—S bonds. The Na+ cations occupy inter­unit voids formed by six or seven S atoms. One Mo, one S and one Na site [occupancy 0.751 (12)] are situated on mirror planes, and two other S atoms and one Na site (full occupancy) are situated on threefold rotation axes.

Related literature

For previous reports on the crystal structure of the In∼3Mo15Se19 compounds, see: Grüttner et al. (1979[Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285-292.]). For physical properties of this type of compounds, see: Seeber et al. (1979[Seeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419-423.]). The crystal structures of the substituted selenides Ho0.76In1.68Mo15Se19 and In0.87K2Mo15Se19 were reported by Salloum et al. (2006[Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83-i85.]; 2007[Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8-i10.]). For the isotypic sulfides In3.7Mo15S19, In1.6Rb2Mo15S19, In2.2CsMo15S19, ScTl2Mo15S19 and Na3.9Mo15Se19, see: Salloum et al. (2004a[Salloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004a). J. Solid State Compds, 177, 1672-1680.],b[Salloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004b). J. Alloys Compd, 383, 57-62.], 2013[Salloum, D., Gougeon, P. & Gall, P. (2013). Acta Cryst. E69, i67-i68.]) and for V1.42In1.83Mo15Se19, see: Gougeon et al. (2010[Gougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.]). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964[Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.]).

Experimental

Crystal data
  • Na4.25Mo15S19

  • Mr = 2145.95

  • Hexagonal, P 63 /m

  • a = 9.5340 (1) Å

  • c = 18.9803 (3) Å

  • V = 1494.11 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.44 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaar & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014-1018.]) Tmin = 0.363, Tmax = 0.591

  • 16576 measured reflections

  • 1500 independent reflections

  • 1322 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.13

  • 1500 reflections

  • 66 parameters

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.85 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998[Duisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff, 1996[Bergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The reduced molybdenum compounds In3 + xMo15X19 (X = S, Se) (Grüttner et al., 1979; Salloum et al., 2004a) crystallize in an interesting structural type characterized by an equal mixture of Mo6 and Mo9 clusters and by In atoms that occupy two or three different crystallographically positions depending on their formal oxidation state of +1 or +3. Subsequently, isomorphous compounds such as Ho0.76In1.68Mo15Se19 (Salloum et al., 2006), In0.87K2Mo15Se19 (Salloum et al., 2007), V1.42In1.83Mo15Se19 (Gougeon et al., 2010), In3.7Mo15S19 (Salloum et al., 2004a), In1.6Rb2Mo15S19, In2.2CsMo15S19 and ScTl2Mo15S19 (Salloum et al., 2004b) have been synthesized. In the latter compounds, the Ho, V and Sc atoms replace the trivalent indium and the K, Cs, and Tl atoms the monovalent one. Recently, we described the crystal structure of Na3.9Mo15Se19 (Salloum et al., 2013) in which the sodium replaces the monovalent as well as the trivalent indium for the first time. We present here the sulfide analogue Na4.25Mo15S19.

The Mo—S framework of the title compound consists of the cluster units Mo6Si8Sa6 and Mo9Si11Sa6 in a 1:1 ratio (for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964)). Both components are interconnected through additional Mo—Se bonds (Figs. 1 and 2). The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Si and six apical Sa ligands. The Mo9 cluster is surrounded by 11 Si atoms capping one or two faces of the bioctahedron and six Sa ligands above the apical Mo atoms. The Mo6Si8Sa6 and Mo9Si11Sa6 units are centered at Wyckoff positions 2 b and 2c and have point-group symmetry 3 and 6, respectively. The Mo—Mo distances within the Mo6 cluster are 2.6900 (5) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7098 (6) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6349 (5) and 2.6756 (7) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7081 (4) and 2.7303 (4) Å for those between the Mo23 and Mo33 triangles. All the latter Mo—Mo distances are closed to those observed in the selenide analogue indicating that the cationic charge transfer towards the Mo6 and Mo9 clusters are similar in both compounds. The S atoms bridge either one (S1, S2, S4 and S5) or two (S3) triangular faces of the Mo clusters. Moreover, atoms S1 and S2 are linked to an Mo atom of a neighboring cluster. The Mo—S bond distances range from 2.4184 (14) to 2.5624 (10) Å within the Mo6Si8Sa6 unit, and from 2.4033 (13) to 2.5947 (8) Å within the Mo9Si11Sa6 unit. In both cases, the shortest bonds involve the S4 and S5 terminal atoms and the longest ones correspond to the interunit Mo1—S2 and Mo2—S1 bonds. Each Mo9Si11Sa6 cluster is thus interconnected to six Mo6Si8Sa6 units (and vice versa) via Mo2—S1 bonds (and Mo1—S2 bonds, respectively), forming the three-dimensional Mo—S framework, the connective formula of which is Mo9Si5Si-a6/2Sa-i6/2, Mo6Si2Si-a6/2Sa-i6/2. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.5202 (6) Å, indicating only weak metal-metal interactions between the Mo clusters. The Na1+ cations are surrounded by seven S atoms forming a distorted tricapped tetrahedron. The S5 and S2 atoms forming the tetrahedron are at 2.699 (5) and 3.1669 (13) Å from the Na1 atom, and the capping S1 atoms are at 3.3609 (19) Å. The Na2+ cations occupy partially at 75.1% a triangular group of distorted octahedral cavities around the threefold axis, which are formed by two Mo6Si8Sa6 and three Mo9Si11Sa6 units. The Na2—S distances are in the 2.538 (4) - 3.055 (4) Å range.

Related literature top

For previous reports on the crystal structure of the In\sim3Mo15Se19 compounds, see: Grüttner et al. (1979). For physical properties of this type of compounds, see: Seeber et al. (1979). The crystal structures of the substituted selenides Ho0.76In1.68Mo15Se19 and In0.87K2Mo15Se19 were reported by Salloum et al. (2006; 2007). For the isomorphous sulfides In3.7Mo15S19, In1.6Rb2Mo15S19, In2.2CsMo15S19, ScTl2Mo15S19 and Na3.9Mo15Se19, see: Salloum et al. (2004a,b, 2013) and for V1.42In1.83Mo15Se19, see: Gougeon et al. (2010). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964).

Experimental top

Single crystals of Na4.25Mo15S19 were prepared from an ion exchange reaction on single crystals of In3 + xMo15S19 with an excess of NaI at 1073 K. The mixture was sealed under vacuum in a long silica tube. The end of tube containing the crystals of In3 + xMo15S19 and InI was placed in a furnace with about 5 cm of the other end out from the furnace, at about the room temperature. The furnace was heated at 1073 K for 48 h. After reaction, crystals of InI were observed at the cool end of the tube. The black crystals of the title compound were subsequently washed with water to remove the excess of InI. Qualitative microanalyses using a Jeol JSM 6400 scanning electron microscope equipped with a Oxford INCA energy- dispersive-type X-ray spectrometer did not reveal the presence of indium in the crystals and indicated roughly stoichiometries comprised between 3.8 and 4.4 for the Na content.

Refinement top

No significant deviation from full occupancy was observed for Na1. The site occupation factor of Na2 was refined freely leading to the final stoichiometry Na4.25 (4)Mo15S19.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: EVALCCD (Duisenberg, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : View of Na4.25Mo15S19 along [110]. Displacement ellipsoids are drawn at the 97% probability level.
[Figure 2] Fig. 2. Plot showing the atom-numbering scheme and the interunit linkage of the Mo9S11S6 and Mo6S8S6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.
Tetrasodium pentadecamolybdenum nonadecasulfide top
Crystal data top
Na4.25Mo15S19Dx = 4.770 Mg m3
Mr = 2145.95Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63/mCell parameters from 16576 reflections
a = 9.5340 (1) Åθ = 2.2–30.0°
c = 18.9803 (3) ŵ = 7.44 mm1
V = 1494.11 (3) Å3T = 293 K
Z = 2Multi-faceted crystal, black
F(000) = 19620.18 × 0.14 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
1500 independent reflections
Radiation source: fine-focus sealed tube1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ scans (κ = 0) + additional ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
h = 1213
Tmin = 0.363, Tmax = 0.591k = 1311
16576 measured reflectionsl = 2226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0337P)2 + 5.1576P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.13Δρmax = 1.51 e Å3
1500 reflectionsΔρmin = 1.85 e Å3
66 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00266 (19)
Crystal data top
Na4.25Mo15S19Z = 2
Mr = 2145.95Mo Kα radiation
Hexagonal, P63/mµ = 7.44 mm1
a = 9.5340 (1) ÅT = 293 K
c = 18.9803 (3) Å0.18 × 0.14 × 0.08 mm
V = 1494.11 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1500 independent reflections
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
1322 reflections with I > 2σ(I)
Tmin = 0.363, Tmax = 0.591Rint = 0.085
16576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03066 parameters
wR(F2) = 0.0790 restraints
S = 1.13Δρmax = 1.51 e Å3
1500 reflectionsΔρmin = 1.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.84424 (3)0.01344 (3)0.058496 (18)0.01072 (12)
Mo20.50077 (4)0.18303 (4)0.131678 (19)0.01177 (12)
Mo30.34797 (5)0.16448 (5)0.25000.01301 (13)
S10.71650 (10)0.02755 (11)0.05118 (5)0.01268 (18)
S20.36949 (11)0.01601 (11)0.13948 (5)0.01344 (19)
S30.05126 (16)0.30754 (17)0.25000.0171 (3)
S40.00000.00000.15617 (9)0.0184 (3)
S50.33330.33330.03365 (9)0.0156 (3)
Na20.7703 (5)0.0623 (4)0.25000.0283 (12)0.751 (12)
Na10.33330.33330.1085 (3)0.0789 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01252 (16)0.01051 (16)0.00816 (19)0.00505 (11)0.00061 (10)0.00031 (9)
Mo20.01434 (17)0.01410 (17)0.00778 (19)0.00778 (12)0.00017 (10)0.00005 (10)
Mo30.0153 (2)0.0159 (2)0.0075 (2)0.00754 (17)0.0000.000
S10.0121 (4)0.0138 (4)0.0121 (4)0.0064 (3)0.0013 (3)0.0005 (3)
S20.0154 (4)0.0143 (4)0.0112 (4)0.0079 (3)0.0001 (3)0.0008 (3)
S30.0185 (6)0.0198 (6)0.0133 (7)0.0098 (5)0.0000.000
S40.0228 (5)0.0228 (5)0.0095 (8)0.0114 (2)0.0000.000
S50.0187 (4)0.0187 (4)0.0093 (7)0.0094 (2)0.0000.000
Na20.040 (2)0.0256 (19)0.026 (2)0.0218 (16)0.0000.000
Na10.109 (3)0.109 (3)0.018 (2)0.0547 (14)0.0000.000
Geometric parameters (Å, º) top
Mo1—S4i2.4184 (14)S2—Mo1iv2.5624 (10)
Mo1—S12.4492 (10)S2—Na2iv2.781 (2)
Mo1—S1ii2.4565 (9)S2—Na1iv3.1669 (13)
Mo1—S1iii2.4830 (9)S3—Mo3viii2.4419 (14)
Mo1—S2iv2.5624 (10)S3—Na2xi2.538 (4)
Mo1—Mo1v2.6900 (5)S3—Mo2x2.5947 (8)
Mo1—Mo1vi2.6900 (5)S3—Mo2viii2.5947 (8)
Mo1—Mo1iii2.7098 (6)S3—Na2iv3.055 (4)
Mo1—Mo1ii2.7098 (6)S4—Mo1xii2.4184 (14)
Mo1—Na23.7042 (8)S4—Mo1xiii2.4184 (14)
Mo2—S52.4033 (13)S4—Mo1viii2.4184 (14)
Mo2—S22.4733 (9)S4—Na2xiii2.649 (3)
Mo2—S2vii2.5070 (9)S4—Na2viii2.649 (3)
Mo2—S12.5429 (10)S4—Na2xii2.649 (3)
Mo2—S3vii2.5947 (8)S5—Mo2viii2.4033 (13)
Mo2—Mo2vii2.6349 (5)S5—Mo2vii2.4033 (13)
Mo2—Mo2viii2.6349 (5)S5—Na12.699 (5)
Mo2—Mo3vii2.7081 (4)Na2—S3xiv2.538 (4)
Mo2—Mo32.7303 (4)Na2—S4i2.649 (3)
Mo3—S3vii2.4419 (14)Na2—S4xv2.649 (3)
Mo3—S32.4504 (14)Na2—S2xvi2.781 (2)
Mo3—S2ix2.4810 (10)Na2—S2iv2.781 (2)
Mo3—S22.4810 (10)Na2—Mo3iv2.896 (3)
Mo3—Mo3viii2.6756 (7)Na2—S3iv3.055 (4)
Mo3—Mo3vii2.6756 (7)Na2—Na2v3.397 (6)
Mo3—Mo2viii2.7081 (4)Na2—Na2vi3.397 (6)
Mo3—Mo2x2.7081 (4)Na2—Mo1xvii3.7042 (8)
Mo3—Mo2ix2.7303 (4)Na1—S2xviii3.1669 (13)
Mo3—Na2iv2.896 (3)Na1—S2iv3.1669 (13)
S1—Mo1iii2.4565 (9)Na1—S2ii3.1669 (13)
S1—Mo1ii2.4830 (9)Na1—S1iv3.3609 (19)
S1—Na1iv3.3609 (19)Na1—S1xviii3.3609 (19)
S2—Mo2viii2.5070 (9)Na1—S1ii3.3609 (19)
S4i—Mo1—S1171.81 (4)Mo1—S1—Mo1ii66.65 (3)
S4i—Mo1—S1ii90.83 (2)Mo1iii—S1—Mo1ii65.99 (3)
S1—Mo1—S1ii89.17 (2)Mo1—S1—Mo2134.06 (4)
S4i—Mo1—S1iii90.20 (2)Mo1iii—S1—Mo2130.92 (4)
S1—Mo1—S1iii88.56 (2)Mo1ii—S1—Mo282.94 (3)
S1ii—Mo1—S1iii171.12 (4)Mo1—S1—Na1iv127.79 (8)
S4i—Mo1—S2iv93.04 (4)Mo1iii—S1—Na1iv97.39 (3)
S1—Mo1—S2iv95.15 (3)Mo1ii—S1—Na1iv153.45 (7)
S1ii—Mo1—S2iv91.20 (3)Mo2—S1—Na1iv94.64 (6)
S1iii—Mo1—S2iv97.55 (3)Mo2—S2—Mo366.88 (3)
S4i—Mo1—Mo1v56.21 (2)Mo2—S2—Mo2viii63.88 (2)
S1—Mo1—Mo1v116.82 (2)Mo3—S2—Mo2viii65.76 (2)
S1ii—Mo1—Mo1v117.37 (2)Mo2—S2—Mo1iv129.13 (4)
S1iii—Mo1—Mo1v56.53 (2)Mo3—S2—Mo1iv132.33 (4)
S2iv—Mo1—Mo1v135.73 (2)Mo2viii—S2—Mo1iv82.07 (3)
S4i—Mo1—Mo1vi56.21 (2)Mo2—S2—Na2iv133.09 (7)
S1—Mo1—Mo1vi117.46 (2)Mo3—S2—Na2iv66.52 (6)
S1ii—Mo1—Mo1vi57.48 (2)Mo2viii—S2—Na2iv100.94 (8)
S1iii—Mo1—Mo1vi116.43 (2)Mo1iv—S2—Na2iv87.68 (6)
S2iv—Mo1—Mo1vi131.85 (2)Mo2—S2—Na1iv101.03 (3)
Mo1v—Mo1—Mo1vi60.0Mo3—S2—Na1iv122.15 (9)
S4i—Mo1—Mo1iii116.37 (2)Mo2viii—S2—Na1iv160.14 (7)
S1—Mo1—Mo1iii56.60 (2)Mo1iv—S2—Na1iv100.15 (7)
S1ii—Mo1—Mo1iii115.84 (3)Na2iv—S2—Na1iv98.88 (10)
S1iii—Mo1—Mo1iii56.08 (2)Mo3viii—S3—Mo366.31 (4)
S2iv—Mo1—Mo1iii138.14 (2)Mo3viii—S3—Na2xi157.19 (11)
Mo1v—Mo1—Mo1iii60.241 (8)Mo3—S3—Na2xi136.50 (11)
Mo1vi—Mo1—Mo1iii90.0Mo3viii—S3—Mo2x65.57 (3)
S4i—Mo1—Mo1ii116.37 (2)Mo3—S3—Mo2x64.86 (3)
S1—Mo1—Mo1ii57.27 (2)Na2xi—S3—Mo2x119.39 (3)
S1ii—Mo1—Mo1ii56.34 (2)Mo3viii—S3—Mo2viii65.57 (3)
S1iii—Mo1—Mo1ii115.54 (3)Mo3—S3—Mo2viii64.86 (3)
S2iv—Mo1—Mo1ii134.12 (2)Na2xi—S3—Mo2viii119.39 (3)
Mo1v—Mo1—Mo1ii90.0Mo2x—S3—Mo2viii119.89 (5)
Mo1vi—Mo1—Mo1ii60.241 (8)Mo3viii—S3—Na2iv128.66 (8)
Mo1iii—Mo1—Mo1ii59.518 (16)Mo3—S3—Na2iv62.35 (7)
S4i—Mo1—Na245.53 (6)Na2xi—S3—Na2iv74.15 (16)
S1—Mo1—Na2142.51 (6)Mo2x—S3—Na2iv92.16 (5)
S1ii—Mo1—Na283.36 (6)Mo2viii—S3—Na2iv92.16 (5)
S1iii—Mo1—Na2103.55 (6)Mo1xii—S4—Mo1xiii67.58 (5)
S2iv—Mo1—Na248.59 (6)Mo1xii—S4—Mo1viii67.58 (5)
Mo1v—Mo1—Na299.04 (6)Mo1xiii—S4—Mo1viii67.58 (5)
Mo1vi—Mo1—Na288.97 (5)Mo1xii—S4—Na2xiii151.15 (7)
Mo1iii—Mo1—Na2156.07 (6)Mo1xiii—S4—Na2xiii93.82 (5)
Mo1ii—Mo1—Na2137.75 (5)Mo1viii—S4—Na2xiii127.12 (7)
S5—Mo2—S291.79 (2)Mo1xii—S4—Na2viii127.12 (7)
S5—Mo2—S2vii90.96 (2)Mo1xiii—S4—Na2viii151.15 (7)
S2—Mo2—S2vii172.09 (4)Mo1viii—S4—Na2viii93.82 (5)
S5—Mo2—S192.26 (3)Na2xiii—S4—Na2viii79.75 (9)
S2—Mo2—S189.86 (3)Mo1xii—S4—Na2xii93.82 (5)
S2vii—Mo2—S197.44 (3)Mo1xiii—S4—Na2xii127.12 (7)
S5—Mo2—S3vii170.70 (4)Mo1viii—S4—Na2xii151.15 (7)
S2—Mo2—S3vii86.62 (4)Na2xiii—S4—Na2xii79.75 (9)
S2vii—Mo2—S3vii89.47 (4)Na2viii—S4—Na2xii79.75 (9)
S1—Mo2—S3vii96.89 (3)Mo2viii—S5—Mo266.48 (4)
S5—Mo2—Mo2vii56.76 (2)Mo2viii—S5—Mo2vii66.48 (4)
S2—Mo2—Mo2vii118.56 (2)Mo2—S5—Mo2vii66.48 (4)
S2vii—Mo2—Mo2vii57.44 (2)Mo2viii—S5—Na1140.73 (3)
S1—Mo2—Mo2vii136.00 (2)Mo2—S5—Na1140.73 (3)
S3vii—Mo2—Mo2vii116.29 (3)Mo2vii—S5—Na1140.73 (3)
S5—Mo2—Mo2viii56.76 (2)S3xiv—Na2—S4i89.92 (9)
S2—Mo2—Mo2viii58.68 (2)S3xiv—Na2—S4xv89.92 (9)
S2vii—Mo2—Mo2viii117.32 (2)S4i—Na2—S4xv84.49 (12)
S1—Mo2—Mo2viii131.42 (2)S3xiv—Na2—S2xvi112.74 (10)
S3vii—Mo2—Mo2viii115.08 (3)S4i—Na2—S2xvi154.21 (15)
Mo2vii—Mo2—Mo2viii60.0S4xv—Na2—S2xvi83.46 (4)
S5—Mo2—Mo3vii118.14 (2)S3xiv—Na2—S2iv112.74 (10)
S2—Mo2—Mo3vii115.63 (3)S4i—Na2—S2iv83.46 (4)
S2vii—Mo2—Mo3vii56.66 (2)S4xv—Na2—S2iv154.21 (15)
S1—Mo2—Mo3vii137.83 (3)S2xvi—Na2—S2iv97.94 (11)
S3vii—Mo2—Mo3vii54.99 (3)S3xiv—Na2—Mo3iv145.61 (16)
Mo2vii—Mo2—Mo3vii61.444 (11)S4i—Na2—Mo3iv114.79 (9)
Mo2viii—Mo2—Mo3vii90.670 (10)S4xv—Na2—Mo3iv114.79 (9)
S5—Mo2—Mo3117.29 (2)S2xvi—Na2—Mo3iv51.78 (6)
S2—Mo2—Mo356.69 (2)S2iv—Na2—Mo3iv51.78 (6)
S2vii—Mo2—Mo3115.55 (3)S3xiv—Na2—S3iv165.85 (15)
S1—Mo2—Mo3133.65 (3)S4i—Na2—S3iv79.65 (9)
S3vii—Mo2—Mo354.52 (3)S4xv—Na2—S3iv79.65 (9)
Mo2vii—Mo2—Mo390.184 (10)S2xvi—Na2—S3iv75.81 (8)
Mo2viii—Mo2—Mo360.600 (11)S2iv—Na2—S3iv75.81 (8)
Mo3vii—Mo2—Mo358.940 (16)Mo3iv—Na2—S3iv48.54 (6)
S3vii—Mo3—S3173.69 (4)S3xiv—Na2—Na2v119.90 (13)
S3vii—Mo3—S2ix89.88 (3)S4i—Na2—Na2v50.13 (5)
S3—Mo3—S2ix93.48 (3)S4xv—Na2—Na2v50.13 (5)
S3vii—Mo3—S289.88 (3)S2xvi—Na2—Na2v105.50 (12)
S3—Mo3—S293.48 (3)S2iv—Na2—Na2v105.50 (12)
S2ix—Mo3—S2115.45 (4)Mo3iv—Na2—Na2v94.49 (15)
S3vii—Mo3—Mo3viii117.00 (4)S3iv—Na2—Na2v45.95 (11)
S3—Mo3—Mo3viii56.69 (4)S3xiv—Na2—Na2vi59.90 (13)
S2ix—Mo3—Mo3viii118.47 (2)S4i—Na2—Na2vi50.13 (5)
S2—Mo3—Mo3viii118.47 (2)S4xv—Na2—Na2vi50.13 (5)
S3vii—Mo3—Mo3vii57.00 (4)S2xvi—Na2—Na2vi130.76 (6)
S3—Mo3—Mo3vii116.69 (4)S2iv—Na2—Na2vi130.76 (6)
S2ix—Mo3—Mo3vii116.54 (2)Mo3iv—Na2—Na2vi154.49 (15)
S2—Mo3—Mo3vii116.54 (2)S3iv—Na2—Na2vi105.95 (11)
Mo3viii—Mo3—Mo3vii60.0Na2v—Na2—Na2vi60.0
S3vii—Mo3—Mo2viii117.827 (15)S3xiv—Na2—Mo197.96 (5)
S3—Mo3—Mo2viii60.149 (14)S4i—Na2—Mo140.65 (3)
S2ix—Mo3—Mo2viii150.01 (3)S4xv—Na2—Mo1124.10 (12)
S2—Mo3—Mo2viii57.58 (2)S2xvi—Na2—Mo1139.27 (11)
Mo3viii—Mo3—Mo2viii60.944 (12)S2iv—Na2—Mo143.72 (2)
Mo3vii—Mo3—Mo2viii89.804 (10)Mo3iv—Na2—Mo187.79 (5)
S3vii—Mo3—Mo2x117.827 (15)S3iv—Na2—Mo180.39 (5)
S3—Mo3—Mo2x60.149 (14)Na2v—Na2—Mo179.33 (6)
S2ix—Mo3—Mo2x57.58 (2)Na2vi—Na2—Mo187.34 (5)
S2—Mo3—Mo2x150.01 (3)S3xiv—Na2—Mo1xvii97.96 (5)
Mo3viii—Mo3—Mo2x60.944 (12)S4i—Na2—Mo1xvii124.10 (12)
Mo3vii—Mo3—Mo2x89.804 (10)S4xv—Na2—Mo1xvii40.65 (3)
Mo2viii—Mo3—Mo2x112.05 (2)S2xvi—Na2—Mo1xvii43.72 (2)
S3vii—Mo3—Mo2ix59.911 (14)S2iv—Na2—Mo1xvii139.27 (11)
S3—Mo3—Mo2ix117.957 (16)Mo3iv—Na2—Mo1xvii87.79 (5)
S2ix—Mo3—Mo2ix56.42 (2)S3iv—Na2—Mo1xvii80.39 (5)
S2—Mo3—Mo2ix146.91 (3)Na2v—Na2—Mo1xvii79.33 (6)
Mo3viii—Mo3—Mo2ix89.333 (10)Na2vi—Na2—Mo1xvii87.34 (5)
Mo3vii—Mo3—Mo2ix60.116 (12)Mo1—Na2—Mo1xvii157.78 (11)
Mo2viii—Mo3—Mo2ix146.475 (18)S5—Na1—S2xviii100.69 (9)
Mo2x—Mo3—Mo2ix57.956 (12)S5—Na1—S2iv100.69 (9)
S3vii—Mo3—Mo259.911 (14)S2xviii—Na1—S2iv116.64 (6)
S3—Mo3—Mo2117.957 (16)S5—Na1—S2ii100.69 (9)
S2ix—Mo3—Mo2146.91 (3)S2xviii—Na1—S2ii116.64 (6)
S2—Mo3—Mo256.42 (2)S2iv—Na1—S2ii116.64 (6)
Mo3viii—Mo3—Mo289.333 (10)S5—Na1—S1iv71.10 (8)
Mo3vii—Mo3—Mo260.116 (12)S2xviii—Na1—S1iv66.58 (2)
Mo2viii—Mo3—Mo257.956 (12)S2iv—Na1—S1iv65.67 (2)
Mo2x—Mo3—Mo2146.475 (18)S2ii—Na1—S1iv171.77 (17)
Mo2ix—Mo3—Mo2110.679 (19)S5—Na1—S1xviii71.10 (8)
S3vii—Mo3—Na2iv117.20 (8)S2xviii—Na1—S1xviii65.67 (2)
S3—Mo3—Na2iv69.11 (8)S2iv—Na1—S1xviii171.77 (17)
S2ix—Mo3—Na2iv61.70 (3)S2ii—Na1—S1xviii66.58 (2)
S2—Mo3—Na2iv61.70 (3)S1iv—Na1—S1xviii110.03 (8)
Mo3viii—Mo3—Na2iv125.80 (8)S5—Na1—S1ii71.10 (8)
Mo3vii—Mo3—Na2iv174.20 (8)S2xviii—Na1—S1ii171.77 (17)
Mo2viii—Mo3—Na2iv93.43 (4)S2iv—Na1—S1ii66.58 (2)
Mo2x—Mo3—Na2iv93.43 (4)S2ii—Na1—S1ii65.67 (2)
Mo2ix—Mo3—Na2iv117.90 (3)S1iv—Na1—S1ii110.03 (8)
Mo2—Mo3—Na2iv117.90 (3)S1xviii—Na1—S1ii110.03 (8)
Mo1—S1—Mo1iii67.06 (3)
Symmetry codes: (i) x+1, y, z; (ii) xy, x1, z; (iii) y+1, x+y+1, z; (iv) x+1, y, z; (v) x+y+2, x+1, z; (vi) y+1, xy1, z; (vii) x+y+1, x, z; (viii) y, xy1, z; (ix) x, y, z+1/2; (x) y, xy1, z+1/2; (xi) xy1, x1, z; (xii) x+y+1, x+1, z; (xiii) x1, y, z; (xiv) y+1, x+y, z; (xv) x+1, y, z1/2; (xvi) x+1, y, z1/2; (xvii) x, y, z1/2; (xviii) y, x+y, z.

Experimental details

Crystal data
Chemical formulaNa4.25Mo15S19
Mr2145.95
Crystal system, space groupHexagonal, P63/m
Temperature (K)293
a, c (Å)9.5340 (1), 18.9803 (3)
V3)1494.11 (3)
Z2
Radiation typeMo Kα
µ (mm1)7.44
Crystal size (mm)0.18 × 0.14 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaar & Tompa, 1965)
Tmin, Tmax0.363, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
16576, 1500, 1322
Rint0.085
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.13
No. of reflections1500
No. of parameters66
Δρmax, Δρmin (e Å3)1.51, 1.85

Computer programs: COLLECT (Nonius, 1998), EVALCCD (Duisenberg, 1998), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff, 1996).

 

Acknowledgements

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system at the Centre de diffractométrie de l'Université de Rennes I (www.cdifx.univ-rennes1.fr).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBergerhoff, G. (1996). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1998). PhD thesis, University of Utrecht, The Netherlands.  Google Scholar
First citationGougeon, P., Gall, P., Salloum, D. & Potel, M. (2010). Acta Cryst. E66, i73.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292.  CrossRef IUCr Journals Web of Science Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands  Google Scholar
First citationSalloum, D., Gautier, R., Gougeon, P. & Potel, M. (2004a). J. Solid State Compds, 177, 1672–1680.  Web of Science CrossRef CAS Google Scholar
First citationSalloum, D., Gougeon, P. & Gall, P. (2013). Acta Cryst. E69, i67–i68.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSalloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSalloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSalloum, D., Gougeon, P., Roisnel, T. & Potel, M. (2004b). J. Alloys Compd, 383, 57–62.  Web of Science CrossRef CAS Google Scholar
First citationSchäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833–845.  Google Scholar
First citationSeeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun. 29, 419–423.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds