organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl N-[2-(N-iso­butyl-4-meth­­oxy­benzene­sulfonamido)­eth­yl]carbamate

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
*Correspondence e-mail: imbjxwang@gmail.com

(Received 15 April 2014; accepted 23 April 2014; online 17 May 2014)

The title compound, C18H30N2O5S, was synthesized by the reaction of tert-butyl 2-(iso­butyl­amino)­ethyl­carbamate with p-meth­oxy­phenyl­sulfonyl chloride. In the mol­ecule, two intra­molecular C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds involving the imino group N atom and the ester group O atom into chains running parallel to the b axis. The chains are further connected by C—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For potential HIV-1 protease inhibitors, see: Surleraux et al. (2005[Surleraux, D. L. N. G., Tahri, A., Verschueren, W. G., Pille, G. M. E., de Kock, H. A., Jonckers, T. H. M., Peeters, A., De Meyer, S., Azijn, H., Pauwels, R., de Bethune, M.-P., King, N. M., Prabu-Jeyabalan, M., Schiffer, C. A. & Wigerinck, P. B. T. P. (2005). J. Med. Chem. 48, 1813-1822.]); Ghosh et al. (2006[Ghosh, A. K., Sridhar, P. R., Leshchenko, S., Hussain, A. K., Li, J., Kovalevsky, A. Y., Walters, D. E., Wedekind, J. E., Grum-Tokars, V., Das, D., Koh, Y., Maeda, K., Gatanaga, H., Weber, I. T. & Mitsuya, H. (2006). J. Med. Chem. 49, 5252-5261.], 2011[Ghosh, A. K., Chapsal, B. D., Parham, G. L., Steffey, M., Agniswamy, J., Wang, Y.-F., Amano, M., Weber, I. T. & Mitsuya, H. (2011). J. Med. Chem. 54, 5890-5901.]); Guo et al. (2010[Guo, X., Bai, X. G., Li, Y. L. & Wang, Y. C. (2010). Acta Cryst. E66, o1108.]). For the structure of the meth­oxy analogue, see: Chatziefthimiou et al. (2006[Chatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110 23701-23709.])

[Scheme 1]

Experimental

Crystal data
  • C18H30N2O5S

  • Mr = 386.50

  • Monoclinic, P 21 /c

  • a = 19.2484 (5) Å

  • b = 5.29088 (12) Å

  • c = 20.1825 (6) Å

  • β = 92.497 (3)°

  • V = 2053.46 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.65 mm−1

  • T = 293 K

  • 0.28 × 0.16 × 0.14 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.776, Tmax = 1.000

  • 11865 measured reflections

  • 3658 independent reflections

  • 3122 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.05

  • 3658 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2 0.97 2.43 2.9106 (19) 110
C13—H13A⋯O3 0.97 2.48 3.107 (2) 122
C3—H3⋯O4i 0.93 2.59 3.402 (2) 147
N2—H2A⋯O4ii 0.82 (2) 2.38 (2) 3.190 (2) 171 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

As a part of our ongoing project aimed at the development of potential HIV-1 protease inhibitors (Surleraux et al., 2005; Ghosh et al., 2006, 2011; Guo et al., 2010), we have synthesized the title compound and report its crystal structure herein.

The molecular structure of the title compound is illustrated in Fig. 1. Bond distances and angles are similar to those found in the methoxy analogue (Chatziefthimiou et al., 2006). The molecular conformation is stabilized by two intramolecular C—H···O hydrogen bonds (Table 1). In the crystal, the molecules are linked into chains by intermolecular N—H···O hydrogen bonds (Table 1) parallel to the b axis (Fig. 2), which are further connected to form layers parallel to the bc plane by C—H···O hydrogen bonds (Table 1).

Related literature top

For potential HIV-1 protease inhibitors, see: Surleraux et al. (2005); Ghosh et al. (2006, 2011); Guo et al. (2010). For the structure of the methoxy analogue, see: Chatziefthimiou et al. (2006)

Experimental top

To a solution of tert-butyl 2-(isobutylamino)ethylcarbamate (1.13 g, 5.2 mmol) and "N,N-diisopropylethylamine (1.34 g, 10.4 mmol) in dichloromethane (10 ml) was added dropwise a solution of p-methoxyphenylsulfonyl chloride (1.18 g, 5.7 mmol) in dichloromethane (3 ml) over a period of 10 min at room temperature. The reaction mixture was stirred for 5 h at the same temperature and concentrated under reduced pressure. tert-Butyl 2-(N-isobutyl-4-methoxyphenylsulfonamido)ethylcarbamate was obtained as a white solid by flash chromatography (40 g silica gel, petroleum ether/AcOEt, 1:10 v/v). The yield is 42%. Colourless block crystals suitable for X-ray diffraction were obtained in 3 day by slow evaporation of a petroleum ether/AcOEt (4:1 v/v) solution.

Refinement top

All H atoms could be detected in a difference Fourier map. The H atom bonded to N2 was refined freely, all other Hatoms were placed in calculated positions and refined using a riding motion approxmation, with C–H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the title compound showing the formation of a molecular chain through N—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted.
tert-Butyl N-[2-(N-isobutyl-4-methoxybenzenesulfonamido)ethyl]carbamat top
Crystal data top
C18H30N2O5SF(000) = 832
Mr = 386.50Dx = 1.250 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5271 reflections
a = 19.2484 (5) Åθ = 4.4–67.1°
b = 5.29088 (12) ŵ = 1.65 mm1
c = 20.1825 (6) ÅT = 293 K
β = 92.497 (3)°Block, colorless
V = 2053.46 (9) Å30.28 × 0.16 × 0.14 mm
Z = 4
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3658 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3122 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4713 pixels mm-1θmax = 67.2°, θmin = 4.4°
ω scansh = 2122
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 46
Tmin = 0.776, Tmax = 1.000l = 2224
11865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3785P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H30N2O5SV = 2053.46 (9) Å3
Mr = 386.50Z = 4
Monoclinic, P21/cCu Kα radiation
a = 19.2484 (5) ŵ = 1.65 mm1
b = 5.29088 (12) ÅT = 293 K
c = 20.1825 (6) Å0.28 × 0.16 × 0.14 mm
β = 92.497 (3)°
Data collection top
Agilent Xcalibur (Atlas, Gemini ultra)
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3122 reflections with I > 2σ(I)
Tmin = 0.776, Tmax = 1.000Rint = 0.031
11865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
3658 reflectionsΔρmin = 0.30 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85965 (7)0.6201 (3)0.54057 (7)0.0368 (3)
C20.82937 (9)0.6078 (3)0.60169 (8)0.0474 (4)
H20.79210.71210.61070.057*
C30.85494 (9)0.4403 (4)0.64878 (8)0.0527 (4)
H30.83470.43140.68970.063*
C40.91066 (8)0.2845 (3)0.63579 (8)0.0440 (4)
C50.94134 (8)0.2961 (3)0.57509 (8)0.0435 (4)
H50.97880.19210.56620.052*
C60.91528 (8)0.4657 (3)0.52769 (7)0.0403 (3)
H60.93560.47540.48680.048*
C70.98789 (12)0.0418 (4)0.67445 (11)0.0687 (6)
H7A0.97490.15300.63840.103*
H7B0.99830.13960.71370.103*
H7C1.02820.05370.66340.103*
C80.70575 (8)0.5843 (3)0.45894 (8)0.0420 (3)
H8A0.69840.68630.49800.050*
H8B0.70950.40930.47300.050*
C90.64333 (8)0.6121 (3)0.41093 (8)0.0447 (4)
H90.64990.50010.37300.054*
C100.57790 (9)0.5294 (4)0.44490 (10)0.0602 (5)
H10A0.58530.36580.46450.090*
H10B0.53970.52130.41280.090*
H10C0.56750.64910.47880.090*
C110.63562 (11)0.8797 (4)0.38541 (12)0.0743 (6)
H11A0.62880.99210.42190.111*
H11B0.59630.88940.35460.111*
H11C0.67690.92760.36350.111*
C120.80312 (8)0.4772 (3)0.38535 (8)0.0426 (3)
H12A0.77120.33680.37830.051*
H12B0.84540.41140.40690.051*
C130.82046 (9)0.5869 (4)0.31821 (8)0.0517 (4)
H13A0.84750.73990.32540.062*
H13B0.84930.46690.29560.062*
C140.72163 (8)0.4609 (3)0.24696 (7)0.0410 (3)
C150.62067 (9)0.3966 (3)0.17124 (8)0.0459 (4)
C160.57907 (11)0.2465 (4)0.21953 (10)0.0642 (5)
H16A0.60830.12080.24070.096*
H16B0.54080.16550.19610.096*
H16C0.56170.35810.25250.096*
C170.65827 (11)0.2296 (4)0.12362 (9)0.0646 (5)
H17A0.68950.33050.09890.097*
H17B0.62500.14960.09360.097*
H17C0.68420.10280.14810.097*
C180.57448 (13)0.5846 (4)0.13381 (13)0.0827 (7)
H18A0.55340.69580.16470.124*
H18B0.53880.49560.10860.124*
H18C0.60190.68160.10440.124*
N10.77172 (6)0.6617 (2)0.42986 (6)0.0371 (3)
N20.76011 (8)0.6456 (3)0.27567 (7)0.0474 (3)
O10.93204 (7)0.1260 (3)0.68599 (6)0.0611 (3)
O20.78598 (6)1.0150 (2)0.50924 (6)0.0505 (3)
O30.88216 (6)0.8952 (2)0.43790 (5)0.0462 (3)
O40.73211 (6)0.2357 (2)0.25588 (6)0.0495 (3)
O50.67038 (6)0.5608 (2)0.20784 (6)0.0511 (3)
S10.825787 (18)0.82405 (6)0.478139 (18)0.03723 (12)
H2A0.7503 (11)0.793 (4)0.2665 (10)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0318 (7)0.0407 (7)0.0375 (7)0.0033 (6)0.0025 (6)0.0012 (6)
C20.0405 (8)0.0577 (10)0.0443 (8)0.0031 (7)0.0057 (7)0.0026 (7)
C30.0501 (10)0.0697 (11)0.0390 (8)0.0005 (8)0.0101 (7)0.0035 (8)
C40.0441 (8)0.0474 (8)0.0400 (8)0.0088 (7)0.0052 (6)0.0062 (7)
C50.0372 (8)0.0486 (9)0.0442 (8)0.0021 (7)0.0017 (6)0.0011 (7)
C60.0345 (7)0.0497 (8)0.0366 (7)0.0005 (6)0.0007 (6)0.0017 (6)
C70.0723 (13)0.0631 (12)0.0693 (12)0.0052 (10)0.0139 (10)0.0211 (10)
C80.0367 (8)0.0466 (8)0.0428 (8)0.0027 (7)0.0007 (6)0.0046 (7)
C90.0363 (8)0.0500 (9)0.0476 (8)0.0010 (7)0.0013 (6)0.0004 (7)
C100.0389 (9)0.0742 (12)0.0675 (11)0.0056 (9)0.0011 (8)0.0022 (10)
C110.0536 (11)0.0713 (13)0.0980 (16)0.0155 (10)0.0030 (11)0.0339 (12)
C120.0400 (8)0.0428 (8)0.0444 (8)0.0040 (7)0.0050 (6)0.0050 (7)
C130.0422 (9)0.0688 (11)0.0442 (8)0.0069 (8)0.0024 (7)0.0105 (8)
C140.0461 (8)0.0429 (8)0.0342 (7)0.0037 (7)0.0034 (6)0.0027 (6)
C150.0509 (9)0.0383 (8)0.0475 (8)0.0074 (7)0.0082 (7)0.0010 (7)
C160.0576 (11)0.0712 (12)0.0645 (11)0.0108 (10)0.0085 (9)0.0014 (10)
C170.0709 (13)0.0721 (12)0.0509 (10)0.0149 (10)0.0038 (9)0.0163 (9)
C180.0884 (16)0.0549 (11)0.1003 (17)0.0064 (11)0.0478 (14)0.0101 (11)
N10.0324 (6)0.0399 (6)0.0386 (6)0.0009 (5)0.0021 (5)0.0010 (5)
N20.0557 (8)0.0455 (8)0.0405 (7)0.0096 (7)0.0031 (6)0.0014 (6)
O10.0663 (8)0.0678 (8)0.0489 (7)0.0010 (7)0.0025 (6)0.0188 (6)
O20.0520 (7)0.0400 (6)0.0593 (7)0.0084 (5)0.0007 (5)0.0097 (5)
O30.0422 (6)0.0462 (6)0.0502 (6)0.0078 (5)0.0016 (5)0.0059 (5)
O40.0555 (7)0.0411 (6)0.0512 (6)0.0035 (5)0.0035 (5)0.0034 (5)
O50.0606 (7)0.0367 (6)0.0543 (6)0.0050 (5)0.0165 (5)0.0016 (5)
S10.03497 (19)0.03481 (19)0.0416 (2)0.00052 (14)0.00156 (14)0.00101 (14)
Geometric parameters (Å, º) top
C1—C61.381 (2)C11—H11C0.9600
C1—C21.389 (2)C12—N11.474 (2)
C1—S11.7621 (15)C12—C131.524 (2)
C2—C31.375 (2)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.387 (3)C13—N21.448 (2)
C3—H30.9300C13—H13A0.9700
C4—O11.365 (2)C13—H13B0.9700
C4—C51.384 (2)C14—O41.2205 (19)
C5—C61.389 (2)C14—N21.342 (2)
C5—H50.9300C14—O51.345 (2)
C6—H60.9300C15—O51.4677 (19)
C7—O11.421 (3)C15—C171.513 (3)
C7—H7A0.9600C15—C161.513 (3)
C7—H7B0.9600C15—C181.514 (3)
C7—H7C0.9600C16—H16A0.9600
C8—N11.4797 (19)C16—H16B0.9600
C8—C91.518 (2)C16—H16C0.9600
C8—H8A0.9700C17—H17A0.9600
C8—H8B0.9700C17—H17B0.9600
C9—C111.512 (3)C17—H17C0.9600
C9—C101.524 (2)C18—H18A0.9600
C9—H90.9800C18—H18B0.9600
C10—H10A0.9600C18—H18C0.9600
C10—H10B0.9600N1—S11.6378 (12)
C10—H10C0.9600N2—H2A0.82 (2)
C11—H11A0.9600O2—S11.4294 (12)
C11—H11B0.9600O3—S11.4338 (12)
C6—C1—C2119.91 (14)N1—C12—H12B108.8
C6—C1—S1119.56 (11)C13—C12—H12B108.8
C2—C1—S1120.50 (12)H12A—C12—H12B107.7
C3—C2—C1119.52 (15)N2—C13—C12114.06 (14)
C3—C2—H2120.2N2—C13—H13A108.7
C1—C2—H2120.2C12—C13—H13A108.7
C2—C3—C4120.60 (15)N2—C13—H13B108.7
C2—C3—H3119.7C12—C13—H13B108.7
C4—C3—H3119.7H13A—C13—H13B107.6
O1—C4—C5123.89 (16)O4—C14—N2124.23 (15)
O1—C4—C3115.82 (15)O4—C14—O5125.63 (14)
C5—C4—C3120.29 (15)N2—C14—O5110.14 (14)
C4—C5—C6118.87 (15)O5—C15—C17110.24 (14)
C4—C5—H5120.6O5—C15—C16109.76 (14)
C6—C5—H5120.6C17—C15—C16112.57 (16)
C1—C6—C5120.81 (14)O5—C15—C18102.60 (13)
C1—C6—H6119.6C17—C15—C18110.70 (17)
C5—C6—H6119.6C16—C15—C18110.52 (18)
O1—C7—H7A109.5C15—C16—H16A109.5
O1—C7—H7B109.5C15—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
O1—C7—H7C109.5C15—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
N1—C8—C9112.90 (12)C15—C17—H17A109.5
N1—C8—H8A109.0C15—C17—H17B109.5
C9—C8—H8A109.0H17A—C17—H17B109.5
N1—C8—H8B109.0C15—C17—H17C109.5
C9—C8—H8B109.0H17A—C17—H17C109.5
H8A—C8—H8B107.8H17B—C17—H17C109.5
C11—C9—C8111.82 (15)C15—C18—H18A109.5
C11—C9—C10110.57 (16)C15—C18—H18B109.5
C8—C9—C10109.38 (13)H18A—C18—H18B109.5
C11—C9—H9108.3C15—C18—H18C109.5
C8—C9—H9108.3H18A—C18—H18C109.5
C10—C9—H9108.3H18B—C18—H18C109.5
C9—C10—H10A109.5C12—N1—C8116.13 (12)
C9—C10—H10B109.5C12—N1—S1116.31 (10)
H10A—C10—H10B109.5C8—N1—S1116.30 (10)
C9—C10—H10C109.5C14—N2—C13120.87 (16)
H10A—C10—H10C109.5C14—N2—H2A118.5 (15)
H10B—C10—H10C109.5C13—N2—H2A120.5 (15)
C9—C11—H11A109.5C4—O1—C7117.91 (14)
C9—C11—H11B109.5C14—O5—C15120.56 (12)
H11A—C11—H11B109.5O2—S1—O3119.77 (7)
C9—C11—H11C109.5O2—S1—N1107.05 (7)
H11A—C11—H11C109.5O3—S1—N1106.12 (7)
H11B—C11—H11C109.5O2—S1—C1107.89 (7)
N1—C12—C13113.64 (13)O3—S1—C1107.48 (7)
N1—C12—H12A108.8N1—S1—C1108.05 (7)
C13—C12—H12A108.8
C6—C1—C2—C30.4 (2)C5—C4—O1—C71.8 (2)
S1—C1—C2—C3177.48 (13)C3—C4—O1—C7178.47 (16)
C1—C2—C3—C40.1 (3)O4—C14—O5—C150.1 (2)
C2—C3—C4—O1179.80 (16)N2—C14—O5—C15179.50 (14)
C2—C3—C4—C50.1 (3)C17—C15—O5—C1461.01 (19)
O1—C4—C5—C6179.78 (15)C16—C15—O5—C1463.5 (2)
C3—C4—C5—C60.1 (2)C18—C15—O5—C14178.95 (17)
C2—C1—C6—C50.4 (2)C12—N1—S1—O2171.49 (10)
S1—C1—C6—C5177.50 (12)C8—N1—S1—O246.10 (12)
C4—C5—C6—C10.1 (2)C12—N1—S1—O342.49 (12)
N1—C8—C9—C1157.0 (2)C8—N1—S1—O3175.09 (10)
N1—C8—C9—C10179.83 (14)C12—N1—S1—C172.54 (12)
N1—C12—C13—N270.15 (18)C8—N1—S1—C169.88 (12)
C13—C12—N1—C8127.99 (14)C6—C1—S1—O2161.35 (12)
C13—C12—N1—S189.53 (14)C2—C1—S1—O220.79 (15)
C9—C8—N1—C1278.70 (17)C6—C1—S1—O330.90 (14)
C9—C8—N1—S1138.82 (12)C2—C1—S1—O3151.23 (13)
O4—C14—N2—C132.9 (2)C6—C1—S1—N183.23 (13)
O5—C14—N2—C13177.48 (14)C2—C1—S1—N194.64 (13)
C12—C13—N2—C1472.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.972.432.9106 (19)110
C13—H13A···O30.972.483.107 (2)122
C3—H3···O4i0.932.593.402 (2)147
N2—H2A···O4ii0.82 (2)2.38 (2)3.190 (2)171 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O20.972.432.9106 (19)110
C13—H13A···O30.972.483.107 (2)122
C3—H3···O4i0.932.593.402 (2)147
N2—H2A···O4ii0.82 (2)2.38 (2)3.190 (2)171 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (No. 81302644).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationChatziefthimiou, S. D., Lazarou, Y. G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110 23701–23709.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGhosh, A. K., Chapsal, B. D., Parham, G. L., Steffey, M., Agniswamy, J., Wang, Y.-F., Amano, M., Weber, I. T. & Mitsuya, H. (2011). J. Med. Chem. 54, 5890–5901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhosh, A. K., Sridhar, P. R., Leshchenko, S., Hussain, A. K., Li, J., Kovalevsky, A. Y., Walters, D. E., Wedekind, J. E., Grum-Tokars, V., Das, D., Koh, Y., Maeda, K., Gatanaga, H., Weber, I. T. & Mitsuya, H. (2006). J. Med. Chem. 49, 5252–5261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuo, X., Bai, X. G., Li, Y. L. & Wang, Y. C. (2010). Acta Cryst. E66, o1108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurleraux, D. L. N. G., Tahri, A., Verschueren, W. G., Pille, G. M. E., de Kock, H. A., Jonckers, T. H. M., Peeters, A., De Meyer, S., Azijn, H., Pauwels, R., de Bethune, M.-P., King, N. M., Prabu-Jeyabalan, M., Schiffer, C. A. & Wigerinck, P. B. T. P. (2005). J. Med. Chem. 48, 1813–1822.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds