organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­butano­yl)-3-(3-chloro­phen­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia, bLow Carbon Research Group, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia, and cFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D.E., Malaysia
*Correspondence e-mail: adibatul@salam.uitm.edu.my

(Received 16 April 2014; accepted 24 April 2014; online 17 May 2014)

The two independent mol­ecules in the asymmetric unit of the title compound, C11H12Cl2N2OS, exhibit different conformations, with the benzene ring and the N2CS thio­urea group forming dihedral angles of 87.40 (18) and 69.42 (15)°. An intra­molecular N—H⋯O hydrogen bond is present in each mol­ecule. Two further N—H⋯O hydrogen bonds link the independent mol­ecules into a dimer. In the crystal, the dimers are linked by N—H⋯S and C—H⋯S hydrogen bonds, forming chains parallel to the c axis.

Related literature

For applications and biological activities of thio­urea derivatives, see: Abbas et al. (2013[Abbas, S. Y., El-Sharief, M. A. M. Sh., Basyouni, W. M., Fakhr, I. M. I. & El-Gammal, E. W. (2013). Eur. J. Med. Chem. 64, 111-120.]). For the crystal structure of a related compound, see: Yusof et al. (2012[Yusof, M. S. M., Embong, N. F., Yamin, B. M. & Ngah, N. (2012). Acta Cryst. E68, o1536.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12Cl2N2OS

  • Mr = 291.19

  • Monoclinic, P 21 /c

  • a = 14.7762 (8) Å

  • b = 10.9400 (6) Å

  • c = 17.8153 (10) Å

  • β = 111.327 (2)°

  • V = 2682.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.41 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.835

  • 49874 measured reflections

  • 4987 independent reflections

  • 3897 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.162

  • S = 1.05

  • 4987 reflections

  • 323 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.51 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.89 (4) 1.97 (4) 2.679 (4) 136 (3)
N2—H2⋯O2 0.89 (4) 2.37 (3) 3.089 (4) 139 (3)
N4—H4⋯O1 0.88 (3) 2.38 (3) 3.106 (4) 140 (3)
N4—H4⋯O2 0.88 (3) 1.97 (3) 2.656 (4) 134 (3)
N1—H1⋯S2i 0.88 (3) 2.57 (2) 3.425 (3) 167 (3)
N3—H3⋯S1ii 0.87 (2) 2.54 (2) 3.397 (3) 169 (3)
C3—H3B⋯S1iii 0.97 2.87 3.792 (3) 160
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Halogeno-carbonoylthiourea derivatives are useful starting materials for the synthesis of other derivatives through the reactivity of the C-halogen bonds. It is also known that the compounds are an important class of organic compounds due to their potential application as ligands and to their biological activities (Abbas et al., 2013).

The title compound (Fig. 1) is an isomer of the previously reported compound 1-(4-chlorobutanoyl)-3-(2-chlorophenyl)thiourea (Yusof et al., 2012) where the chlorine atom is at position-3 of the phenyl group. The asymmetric unit consists of two crystallographically independent molecules. Both molecules maintain the trans-cis configuration with respect to the position of the 4-chlorobutanoyl and 3-chlorophenyl groups, respectively, relative to the thiono S1 and S2 atoms across their C—N bonds. The thiourea moities, (N1/N2/C5/S1/C6 and N3/N4/C15/S2/C16) and benzene rings, (C6—C11 and C17–C22) in both molecules are planar with a maximum deviation of 0.023 (3) Å for atom N2. In one molecule, the benzene ring is almost perpendicular to the thiourea moiety with a dihedral angle of 87.40 (18), while in the other molecule the dihedral angle is 69.42 (15)°. Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in found 1-(4-chlorobutanoyl)-3-(2-chlorophenyl)thiourea. There are intramolecular hydrogen bonds between the carbonyl oxygen atom and thioamide hydrogen atom, N2—H2··· O1 and N4—H4···O2 in both molecules (Table 1). In addition, the two molecules are connected by N2—H2···O2 and N4—H4···O1 hydrogen bonds. In the crystal packing the molecules are linked by N—H···O, N—H···S and C—H···S hydrogen bonds to form one-dimensional chains along the c axis (Fig. 2).

Related literature top

For applications and biological activities of thiourea derivatives, see: Abbas et al. (2013). For the crystal structure of a related compound, see: Yusof et al. (2012). For bond-length data, see: Allen et al. (1987).

Experimental top

An acetone solution (30 mL) of 3-chloroaniline (0.01 mol, 1.27 g m) was added dropwise into a two-necked round-bottomed flask containing an equimolar amount of 4-chlorobutanoylisothiocyanate (0.01 mol, 1.636 g m). The mixture was refluxed for about 4 h, filtered into a beaker and left to evaporate at room temperature. The filtrate gave colourless crystals after 7 days on slow evaporation of the solvent (yield 78%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The H atoms on the nitrogen atoms were located in difference Fourier map and refined isotropically with the N—H distances constrained to be 0.88 (1) Å. The highest peak and deepest hole are located at 0.73 Å from atom H10 and 0.74 Å from atom Cl2, respectively. One outlier (2 0 0) was omitted from the last cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The dashed lines indicate intermolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the b axis. The dashes lines indicate hydrogen bonds.
1-(4-chlorobutanoyl)-3-(3-chlorophenyl)thiourea top
Crystal data top
C11H12Cl2N2OSF(000) = 1200
Mr = 291.19Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9934 reflections
a = 14.7762 (8) Åθ = 2.9–25.5°
b = 10.9400 (6) ŵ = 0.62 mm1
c = 17.8153 (10) ÅT = 296 K
β = 111.327 (2)°Block, colourless
V = 2682.7 (3) Å30.41 × 0.35 × 0.30 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4987 independent reflections
Radiation source: fine-focus sealed tube3897 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.9°
ω scanh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1313
Tmin = 0.784, Tmax = 0.835l = 2121
49874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0699P)2 + 5.078P]
where P = (Fo2 + 2Fc2)/3
4987 reflections(Δ/σ)max = 0.001
323 parametersΔρmax = 1.51 e Å3
4 restraintsΔρmin = 0.83 e Å3
Crystal data top
C11H12Cl2N2OSV = 2682.7 (3) Å3
Mr = 291.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.7762 (8) ŵ = 0.62 mm1
b = 10.9400 (6) ÅT = 296 K
c = 17.8153 (10) Å0.41 × 0.35 × 0.30 mm
β = 111.327 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3897 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.835Rint = 0.046
49874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0584 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.51 e Å3
4987 reflectionsΔρmin = 0.83 e Å3
323 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.20900 (11)0.68433 (14)0.71321 (7)0.0842 (4)
Cl20.53415 (11)1.04818 (15)0.11355 (8)0.0871 (4)
Cl30.47334 (9)0.68932 (12)0.00986 (9)0.0842 (4)
Cl41.26802 (10)0.33013 (12)0.45687 (9)0.0839 (4)
S10.75626 (6)1.01805 (8)0.46585 (5)0.0406 (2)
S21.01747 (6)0.48468 (9)0.16368 (5)0.0397 (2)
O10.92224 (18)0.6927 (2)0.42275 (15)0.0509 (7)
O20.79236 (17)0.6402 (3)0.25577 (15)0.0571 (8)
N10.90164 (18)0.8658 (3)0.48549 (16)0.0327 (6)
N20.7673 (2)0.8405 (3)0.36889 (17)0.0400 (7)
N30.84653 (19)0.5491 (3)0.16566 (16)0.0355 (6)
N40.97653 (19)0.5835 (3)0.28377 (17)0.0405 (7)
C11.1947 (3)0.6227 (4)0.6168 (2)0.0580 (11)
H1A1.23530.66830.59440.070*
H1B1.21670.53850.62330.070*
C21.0906 (3)0.6275 (3)0.5587 (2)0.0433 (8)
H2A1.08630.58910.50840.052*
H2B1.05020.58120.58090.052*
C31.0526 (2)0.7563 (3)0.5420 (2)0.0429 (8)
H3A1.05060.79130.59140.051*
H3B1.09740.80460.52580.051*
C40.9534 (2)0.7651 (3)0.4779 (2)0.0362 (7)
C50.8088 (2)0.9018 (3)0.43661 (18)0.0325 (7)
C60.6695 (3)0.8650 (4)0.3146 (2)0.0428 (9)
C70.6542 (3)0.9400 (4)0.2506 (2)0.0484 (9)
H70.70550.97860.24170.058*
C80.5567 (3)0.9572 (4)0.1977 (2)0.0543 (10)
C90.4823 (3)0.9004 (5)0.2106 (3)0.0635 (12)
H90.41900.91260.17490.076*
C100.4990 (3)0.8265 (5)0.2745 (3)0.0674 (13)
H100.44750.78820.28320.081*
C110.5940 (3)0.8079 (4)0.3275 (2)0.0567 (11)
H110.60620.75660.37170.068*
C120.4953 (3)0.6064 (5)0.1009 (3)0.0606 (11)
H12A0.45010.63340.12560.073*
H12B0.48380.52010.08850.073*
C130.5976 (2)0.6237 (4)0.1596 (2)0.0523 (10)
H13A0.61070.71060.16740.063*
H13B0.60270.58910.21110.063*
C140.6733 (2)0.5662 (3)0.1331 (2)0.0383 (8)
H14A0.66240.47870.12780.046*
H14B0.66680.59810.08060.046*
C150.7744 (2)0.5901 (3)0.1911 (2)0.0376 (8)
C160.9453 (2)0.5431 (3)0.20854 (18)0.0310 (7)
C171.0758 (2)0.5800 (3)0.33715 (18)0.0330 (7)
C181.1187 (2)0.4690 (3)0.3653 (2)0.0385 (8)
H181.08500.39610.34810.046*
C191.2132 (3)0.4690 (3)0.4198 (2)0.0414 (8)
C201.2647 (2)0.5753 (4)0.4454 (2)0.0473 (9)
H201.32860.57320.48160.057*
C211.2201 (3)0.6843 (4)0.4166 (3)0.0521 (10)
H211.25390.75710.43360.062*
C221.1247 (3)0.6873 (3)0.3621 (2)0.0426 (8)
H221.09450.76150.34290.051*
H10.923 (2)0.912 (3)0.5285 (13)0.033 (9)*
H30.826 (2)0.521 (3)0.1164 (9)0.030 (9)*
H40.933 (2)0.609 (3)0.303 (2)0.043 (10)*
H20.801 (3)0.779 (3)0.360 (2)0.053 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0966 (10)0.0931 (9)0.0404 (6)0.0185 (8)0.0019 (6)0.0008 (6)
Cl20.0826 (9)0.1067 (11)0.0642 (7)0.0309 (8)0.0174 (7)0.0311 (7)
Cl30.0508 (6)0.0749 (8)0.0930 (9)0.0089 (6)0.0142 (6)0.0095 (7)
Cl40.0744 (8)0.0630 (7)0.0882 (9)0.0298 (6)0.0016 (7)0.0157 (6)
S10.0343 (4)0.0466 (5)0.0349 (4)0.0111 (4)0.0057 (3)0.0043 (4)
S20.0316 (4)0.0535 (5)0.0337 (4)0.0046 (4)0.0116 (3)0.0006 (4)
O10.0388 (14)0.0542 (16)0.0470 (15)0.0099 (12)0.0005 (12)0.0182 (13)
O20.0313 (13)0.087 (2)0.0415 (14)0.0122 (13)0.0002 (11)0.0240 (14)
N10.0259 (13)0.0376 (15)0.0301 (14)0.0035 (11)0.0048 (11)0.0062 (12)
N20.0285 (14)0.0493 (18)0.0343 (15)0.0103 (13)0.0018 (12)0.0088 (13)
N30.0247 (13)0.0504 (17)0.0265 (14)0.0015 (12)0.0036 (11)0.0055 (12)
N40.0257 (14)0.0582 (19)0.0324 (15)0.0087 (13)0.0042 (12)0.0090 (13)
C10.048 (2)0.070 (3)0.046 (2)0.022 (2)0.0051 (18)0.001 (2)
C20.0375 (19)0.047 (2)0.0403 (19)0.0074 (16)0.0084 (15)0.0009 (16)
C30.0273 (16)0.045 (2)0.047 (2)0.0056 (15)0.0021 (15)0.0064 (16)
C40.0287 (16)0.0417 (19)0.0355 (17)0.0030 (14)0.0086 (14)0.0005 (15)
C50.0275 (15)0.0380 (17)0.0305 (16)0.0012 (13)0.0087 (13)0.0049 (14)
C60.0376 (19)0.051 (2)0.0306 (17)0.0129 (16)0.0015 (14)0.0097 (16)
C70.046 (2)0.055 (2)0.039 (2)0.0085 (18)0.0091 (16)0.0054 (17)
C80.056 (2)0.059 (2)0.040 (2)0.016 (2)0.0090 (18)0.0009 (18)
C90.037 (2)0.084 (3)0.059 (3)0.010 (2)0.0051 (19)0.007 (2)
C100.034 (2)0.097 (4)0.062 (3)0.001 (2)0.007 (2)0.005 (3)
C110.038 (2)0.077 (3)0.047 (2)0.001 (2)0.0051 (17)0.003 (2)
C120.0295 (19)0.080 (3)0.068 (3)0.0057 (19)0.0134 (19)0.016 (2)
C130.0291 (18)0.075 (3)0.051 (2)0.0026 (18)0.0115 (16)0.015 (2)
C140.0277 (16)0.046 (2)0.0366 (18)0.0010 (14)0.0056 (14)0.0046 (15)
C150.0281 (16)0.0451 (19)0.0349 (18)0.0054 (14)0.0058 (14)0.0021 (15)
C160.0264 (15)0.0327 (16)0.0300 (16)0.0016 (12)0.0055 (13)0.0039 (13)
C170.0257 (15)0.0437 (19)0.0269 (15)0.0046 (14)0.0065 (13)0.0032 (14)
C180.0343 (17)0.0391 (18)0.0373 (18)0.0011 (14)0.0073 (14)0.0051 (15)
C190.0353 (18)0.048 (2)0.0374 (18)0.0128 (16)0.0088 (15)0.0022 (16)
C200.0242 (16)0.069 (3)0.042 (2)0.0025 (17)0.0035 (14)0.0063 (18)
C210.037 (2)0.050 (2)0.061 (2)0.0093 (17)0.0092 (18)0.0112 (19)
C220.0369 (18)0.0385 (19)0.047 (2)0.0044 (15)0.0084 (16)0.0034 (16)
Geometric parameters (Å, º) top
Cl1—C11.784 (4)C6—C71.357 (5)
Cl2—C81.728 (4)C6—C111.369 (6)
Cl3—C121.782 (5)C7—C81.418 (5)
Cl4—C191.736 (4)C7—H70.9300
S1—C51.669 (3)C8—C91.354 (6)
S2—C161.674 (3)C9—C101.343 (7)
O1—C41.215 (4)C9—H90.9300
O2—C151.215 (4)C10—C111.393 (6)
N1—C41.376 (4)C10—H100.9300
N1—C51.388 (4)C11—H110.9300
N1—H10.876 (10)C12—C131.504 (5)
N2—C51.321 (4)C12—H12A0.9700
N2—C61.441 (4)C12—H12B0.9700
N2—H20.876 (10)C13—C141.502 (5)
N3—C151.376 (4)C13—H13A0.9700
N3—C161.381 (4)C13—H13B0.9700
N3—H30.872 (10)C14—C151.497 (4)
N4—C161.325 (4)C14—H14A0.9700
N4—C171.429 (4)C14—H14B0.9700
N4—H40.874 (10)C17—C221.365 (5)
C1—C21.511 (5)C17—C181.378 (5)
C1—H1A0.9700C18—C191.381 (5)
C1—H1B0.9700C18—H180.9300
C2—C31.506 (5)C19—C201.373 (5)
C2—H2A0.9700C20—C211.369 (6)
C2—H2B0.9700C20—H200.9300
C3—C41.499 (4)C21—C221.391 (5)
C3—H3A0.9700C21—H210.9300
C3—H3B0.9700C22—H220.9300
C4—N1—C5128.6 (3)C9—C10—C11119.5 (4)
C4—N1—H1121 (2)C9—C10—H10120.3
C5—N1—H1110 (2)C11—C10—H10120.3
C5—N2—C6122.5 (3)C6—C11—C10120.1 (4)
C5—N2—H2116 (3)C6—C11—H11120.0
C6—N2—H2121 (3)C10—C11—H11120.0
C15—N3—C16128.5 (3)C13—C12—Cl3111.9 (3)
C15—N3—H3115 (2)C13—C12—H12A109.2
C16—N3—H3117 (2)Cl3—C12—H12A109.2
C16—N4—C17124.0 (3)C13—C12—H12B109.2
C16—N4—H4118 (2)Cl3—C12—H12B109.2
C17—N4—H4118 (2)H12A—C12—H12B107.9
C2—C1—Cl1112.4 (3)C14—C13—C12113.8 (3)
C2—C1—H1A109.1C14—C13—H13A108.8
Cl1—C1—H1A109.1C12—C13—H13A108.8
C2—C1—H1B109.1C14—C13—H13B108.8
Cl1—C1—H1B109.1C12—C13—H13B108.8
H1A—C1—H1B107.9H13A—C13—H13B107.7
C3—C2—C1112.4 (3)C15—C14—C13112.4 (3)
C3—C2—H2A109.1C15—C14—H14A109.1
C1—C2—H2A109.1C13—C14—H14A109.1
C3—C2—H2B109.1C15—C14—H14B109.1
C1—C2—H2B109.1C13—C14—H14B109.1
H2A—C2—H2B107.9H14A—C14—H14B107.9
C4—C3—C2113.7 (3)O2—C15—N3122.0 (3)
C4—C3—H3A108.8O2—C15—C14123.5 (3)
C2—C3—H3A108.8N3—C15—C14114.4 (3)
C4—C3—H3B108.8N4—C16—N3116.9 (3)
C2—C3—H3B108.8N4—C16—S2124.2 (2)
H3A—C3—H3B107.7N3—C16—S2118.8 (2)
O1—C4—N1122.8 (3)C22—C17—C18121.4 (3)
O1—C4—C3123.5 (3)C22—C17—N4119.2 (3)
N1—C4—C3113.7 (3)C18—C17—N4119.4 (3)
N2—C5—N1117.0 (3)C17—C18—C19118.0 (3)
N2—C5—S1123.9 (2)C17—C18—H18121.0
N1—C5—S1119.1 (2)C19—C18—H18121.0
C7—C6—C11121.4 (3)C20—C19—C18122.1 (3)
C7—C6—N2119.8 (4)C20—C19—Cl4119.3 (3)
C11—C6—N2118.8 (3)C18—C19—Cl4118.7 (3)
C6—C7—C8117.2 (4)C21—C20—C19118.7 (3)
C6—C7—H7121.4C21—C20—H20120.7
C8—C7—H7121.4C19—C20—H20120.7
C9—C8—C7121.2 (4)C20—C21—C22120.6 (4)
C9—C8—Cl2120.0 (3)C20—C21—H21119.7
C7—C8—Cl2118.8 (4)C22—C21—H21119.7
C10—C9—C8120.7 (4)C17—C22—C21119.3 (3)
C10—C9—H9119.7C17—C22—H22120.3
C8—C9—H9119.7C21—C22—H22120.3
Cl1—C1—C2—C361.8 (4)Cl3—C12—C13—C1468.4 (5)
C1—C2—C3—C4173.7 (3)C12—C13—C14—C15177.4 (4)
C5—N1—C4—O11.6 (6)C16—N3—C15—O28.2 (6)
C5—N1—C4—C3179.5 (3)C16—N3—C15—C14171.1 (3)
C2—C3—C4—O128.8 (5)C13—C14—C15—O26.6 (5)
C2—C3—C4—N1153.3 (3)C13—C14—C15—N3174.1 (3)
C6—N2—C5—N1177.1 (3)C17—N4—C16—N3177.8 (3)
C6—N2—C5—S12.8 (5)C17—N4—C16—S21.4 (5)
C4—N1—C5—N28.1 (5)C15—N3—C16—N41.2 (5)
C4—N1—C5—S1171.8 (3)C15—N3—C16—S2178.0 (3)
C5—N2—C6—C795.8 (4)C16—N4—C17—C22113.8 (4)
C5—N2—C6—C1186.6 (5)C16—N4—C17—C1869.3 (5)
C11—C6—C7—C80.2 (6)C22—C17—C18—C190.0 (5)
N2—C6—C7—C8177.8 (3)N4—C17—C18—C19176.9 (3)
C6—C7—C8—C90.3 (6)C17—C18—C19—C200.8 (5)
C6—C7—C8—Cl2178.0 (3)C17—C18—C19—Cl4179.3 (3)
C7—C8—C9—C100.4 (7)C18—C19—C20—C211.0 (6)
Cl2—C8—C9—C10178.0 (4)Cl4—C19—C20—C21179.1 (3)
C8—C9—C10—C110.4 (7)C19—C20—C21—C220.4 (6)
C7—C6—C11—C100.2 (6)C18—C17—C22—C210.5 (5)
N2—C6—C11—C10177.8 (4)N4—C17—C22—C21177.4 (3)
C9—C10—C11—C60.3 (7)C20—C21—C22—C170.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.89 (4)1.97 (4)2.679 (4)136 (3)
N2—H2···O20.89 (4)2.37 (3)3.089 (4)139 (3)
N4—H4···O10.88 (3)2.38 (3)3.106 (4)140 (3)
N4—H4···O20.88 (3)1.97 (3)2.656 (4)134 (3)
C3—H3A···Cl10.972.803.184 (4)104
N1—H1···S2i0.88 (3)2.57 (2)3.425 (3)167 (3)
N3—H3···S1ii0.87 (2)2.54 (2)3.397 (3)169 (3)
C3—H3B···S1iii0.972.873.792 (3)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.89 (4)1.97 (4)2.679 (4)136 (3)
N2—H2···O20.89 (4)2.37 (3)3.089 (4)139 (3)
N4—H4···O10.88 (3)2.38 (3)3.106 (4)140 (3)
N4—H4···O20.88 (3)1.97 (3)2.656 (4)134 (3)
N1—H1···S2i0.88 (3)2.57 (2)3.425 (3)167 (3)
N3—H3···S1ii0.874 (18)2.535 (16)3.397 (3)169 (3)
C3—H3B···S1iii0.972.873.792 (3)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+2, y+2, z+1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and both Universiti Teknologi MARA and Universiti Kebangsaan Malaysia for the research grants No. 600-RMI/DANA5/3/RIF(147/2012) and DIP-2012–11, respectively. HMA would like to thank the Ministry of Higher Education of Libya for a scholarship.

References

First citationAbbas, S. Y., El-Sharief, M. A. M. Sh., Basyouni, W. M., Fakhr, I. M. I. & El-Gammal, E. W. (2013). Eur. J. Med. Chem. 64, 111–120.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Yamin, B. M. & Ngah, N. (2012). Acta Cryst. E68, o1536.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds