organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro-4-eth­­oxy-1-methyl-1H-indazol-5-yl)-4-meth­­oxy­benzene­sulfonamide

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: a_hannioui@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 May 2014; accepted 11 May 2014; online 17 May 2014)

The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth­oxy group, respectively. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into inversion dimers, which are further linked by ππ inter­actions between the diazole rings [inter­centroid distance = 3.4946 (11) Å], forming chains parallel to [101].

Related literature

For the biological activity of sulfonamides, see: El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]); Mustafa et al. (2012[Mustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535-2539.]); Scozzafava et al. (2003[Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925-953.]); Bouissane et al. (2006[Bouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]). For similar compounds see: Abbassi et al. (2012[Abbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.], 2013[Abbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190-o191.]); Chicha et al. (2014[Chicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18ClN3O4S

  • Mr = 395.85

  • Triclinic, [P \overline 1]

  • a = 8.5296 (9) Å

  • b = 8.6165 (9) Å

  • c = 12.9821 (14) Å

  • α = 91.810 (6)°

  • β = 102.566 (5)°

  • γ = 100.514 (5)°

  • V = 913.10 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.40 × 0.36 × 0.31 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 20149 measured reflections

  • 4353 independent reflections

  • 3825 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.04

  • 4353 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3i 0.86 2.13 2.974 (2) 169
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Sulfonamides constitute an important class of drugs possessing various types of pharmacological activities such as antibacterial, anti-carbonic anhydrase, high-ceiling diuretic, hypoglycemic, antithyroid, anti-inflammatory, and antiglaucoma activities (El-Sayed et al., 2011; Mustafa et al., 2012; Scozzafava et al., 2003; Bouissane et al., 2006). Recently, some N-[7(6)-indazolyl]arylsulfonamides prepared by our research group showed important antiproliferative activity against some human and murine cell lines (Abbassi et al., 2012; Abbassi et al., 2013; Chicha et al., 2014).

The molecule of the title compound (Fig. 1) is built up from two fused five- and six-membered rings (N1/N2/C1–C7) almost coplanar, with a maximum deviation of 0.020 (2) Å for atom C2. The dihedral angles between the indazole ring system and the mean plane through the benzene ring and the 4-ethoxy-1-methyl group are 32.22 (8) and 57.5 (3)°, respectively. The cohesion of the crystal structure is ensured by N3–H3N···O3 hydrogen bonds (Table 1) between centrosymmetric molecules forming dimers, which are linked by ππ interactions between diazole rings [intercentroid distance = 3.4946 (11) Å] into chains parallel to the [1 0 1] direction (Fig. 2).

Related literature top

For the biological activity of sulfonamides, see: El-Sayed et al. (2011); Mustafa et al. (2012); Scozzafava et al. (2003); Bouissane et al. (2006). For similar compounds see: Abbassi et al. (2012, 2013); Chicha et al. (2014).

Experimental top

A mixture of 3-chloro-1-methyl-5-nitroindazole (1.22 mmol) and anhydrous SnCl2 (1.1 g, 6.1 mmol) in 25 mL of absolute ethanol was heated at 333 K for 6 h. After reduction, the starting material disappeared, and the solution was allowed to cool down. The pH was made slightly basic (pH 7–8) by addition of 5% aqueous potassium bicarbonate before extraction with ethyl acetate. The organic phase was washed with brine and dried over magnesium sulfate. The solvent was removed to afford the amine, which was immediately dissolved in pyridine (5 ml) and then reacted with 4-metoxybenzenesulfonyl chloride (1.25 mmol) at room temperature for 24 h. After the reaction mixture was concentrated in vacuo, the resulting residue was purified by flash chromatography (eluted with an ethyl acetate/hexane mixture 1:4 v/v). The title compound was recrystallized from ethanol (yield: 45%, m. p.: 382 K).

Refinement top

H atoms were located in a difference Fourier map and treated as riding with C–H = 0.93–0.97 Å, N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. Two reflections (010 and 001) were removed from the last cycles of refinement because affected by the beam stop.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing molecules linked by hydrogen bonds (blue dashed lines) and forming dimers linked by ππ interaction (green dotted line).
N-(3-Chloro-4-ethoxy-1-methyl-1H-indazol-5-yl)-4-methoxybenzenesulfonamide top
Crystal data top
C17H18ClN3O4SZ = 2
Mr = 395.85F(000) = 412
Triclinic, P1Dx = 1.440 Mg m3
Hall symbol: -P 1Melting point: 382 K
a = 8.5296 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6165 (9) ÅCell parameters from 4353 reflections
c = 12.9821 (14) Åθ = 2.5–27.9°
α = 91.810 (6)°µ = 0.35 mm1
β = 102.566 (5)°T = 296 K
γ = 100.514 (5)°Block, colourless
V = 913.10 (17) Å30.40 × 0.36 × 0.31 mm
Data collection top
Bruker X8 APEX Diffractometer4353 independent reflections
Radiation source: fine-focus sealed tube3825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.693, Tmax = 0.747k = 1111
20149 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.4317P]
where P = (Fo2 + 2Fc2)/3
4353 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C17H18ClN3O4Sγ = 100.514 (5)°
Mr = 395.85V = 913.10 (17) Å3
Triclinic, P1Z = 2
a = 8.5296 (9) ÅMo Kα radiation
b = 8.6165 (9) ŵ = 0.35 mm1
c = 12.9821 (14) ÅT = 296 K
α = 91.810 (6)°0.40 × 0.36 × 0.31 mm
β = 102.566 (5)°
Data collection top
Bruker X8 APEX Diffractometer4353 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3825 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.022
20149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
4353 reflectionsΔρmin = 0.62 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5956 (2)1.2540 (2)0.53435 (14)0.0465 (4)
C20.6304 (2)1.16538 (19)0.62328 (12)0.0362 (3)
C30.4744 (2)1.0918 (2)0.63444 (13)0.0398 (4)
C40.4514 (2)0.9921 (2)0.71502 (15)0.0442 (4)
H40.34770.94330.72150.053*
C50.5905 (2)0.9706 (2)0.78353 (14)0.0415 (4)
H50.58050.90400.83770.050*
C60.7494 (2)1.04510 (19)0.77578 (12)0.0360 (3)
C70.77174 (19)1.14377 (19)0.69596 (12)0.0345 (3)
C80.1867 (2)1.0920 (3)0.53266 (18)0.0650 (6)
H8A0.13961.14480.47300.098*
H8B0.14651.11990.59290.098*
H8C0.15670.97950.51640.098*
C91.0146 (4)1.3349 (4)0.7609 (3)0.1024 (13)
H9A1.07141.28350.81900.123*
H9B0.94091.39020.78810.123*
C101.1304 (4)1.4471 (4)0.7272 (3)0.0911 (10)
H10A1.18811.52220.78540.137*
H10B1.07571.50130.67100.137*
H10C1.20661.39470.70230.137*
C110.8443 (2)0.6987 (2)0.84226 (13)0.0404 (4)
C120.7169 (2)0.6368 (2)0.75581 (14)0.0463 (4)
H120.70980.68280.69150.056*
C130.6019 (3)0.5074 (2)0.76605 (16)0.0497 (4)
H130.51630.46650.70870.060*
C140.6129 (2)0.4373 (2)0.86199 (16)0.0468 (4)
C150.7421 (3)0.4963 (2)0.94719 (15)0.0517 (5)
H150.75180.44751.01060.062*
C160.8564 (2)0.6281 (2)0.93729 (14)0.0477 (4)
H160.94170.66940.99470.057*
C170.4980 (3)0.2324 (3)0.9591 (2)0.0686 (6)
H17A0.40450.14780.94980.103*
H17B0.49820.30511.01670.103*
H17C0.59630.18980.97440.103*
N10.36396 (19)1.1398 (2)0.55635 (13)0.0501 (4)
N20.4375 (2)1.2384 (2)0.49460 (13)0.0539 (4)
N30.89007 (18)1.02121 (17)0.85304 (11)0.0404 (3)
H3N0.88631.03260.91840.048*
O10.92080 (15)1.21799 (16)0.68322 (10)0.0452 (3)
O21.01006 (18)0.87771 (18)0.73054 (11)0.0539 (3)
O31.11721 (16)0.89209 (18)0.92468 (11)0.0527 (3)
O40.4905 (2)0.31318 (18)0.86454 (14)0.0643 (4)
S10.98089 (5)0.87464 (5)0.83452 (3)0.04091 (13)
Cl10.73113 (8)1.37072 (8)0.47676 (5)0.0764 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0518 (10)0.0536 (10)0.0352 (8)0.0137 (8)0.0083 (7)0.0118 (7)
C20.0383 (8)0.0405 (8)0.0305 (7)0.0087 (6)0.0077 (6)0.0051 (6)
C30.0344 (8)0.0495 (9)0.0344 (8)0.0085 (7)0.0054 (6)0.0009 (7)
C40.0357 (8)0.0528 (10)0.0435 (9)0.0017 (7)0.0138 (7)0.0030 (7)
C50.0444 (9)0.0443 (9)0.0377 (8)0.0052 (7)0.0150 (7)0.0100 (7)
C60.0370 (8)0.0391 (8)0.0317 (7)0.0079 (6)0.0062 (6)0.0061 (6)
C70.0335 (7)0.0380 (8)0.0317 (7)0.0048 (6)0.0086 (6)0.0046 (6)
C80.0363 (10)0.1031 (18)0.0536 (12)0.0190 (11)0.0023 (8)0.0030 (12)
C90.098 (2)0.100 (2)0.093 (2)0.0537 (18)0.0542 (18)0.0367 (17)
C100.0769 (18)0.090 (2)0.093 (2)0.0280 (15)0.0291 (16)0.0033 (16)
C110.0454 (9)0.0436 (9)0.0341 (8)0.0157 (7)0.0066 (7)0.0074 (7)
C120.0552 (10)0.0470 (9)0.0354 (8)0.0141 (8)0.0034 (7)0.0070 (7)
C130.0547 (11)0.0460 (10)0.0440 (10)0.0123 (8)0.0002 (8)0.0001 (8)
C140.0537 (10)0.0386 (9)0.0518 (10)0.0150 (8)0.0144 (8)0.0051 (7)
C150.0646 (12)0.0528 (11)0.0407 (9)0.0172 (9)0.0118 (8)0.0139 (8)
C160.0540 (10)0.0529 (10)0.0344 (8)0.0141 (8)0.0023 (7)0.0088 (7)
C170.0824 (16)0.0540 (12)0.0782 (16)0.0135 (11)0.0346 (13)0.0184 (11)
N10.0383 (8)0.0712 (11)0.0393 (8)0.0152 (7)0.0021 (6)0.0049 (7)
N20.0538 (9)0.0712 (11)0.0379 (8)0.0222 (8)0.0034 (7)0.0104 (7)
N30.0430 (8)0.0459 (8)0.0309 (7)0.0105 (6)0.0034 (6)0.0074 (6)
O10.0373 (6)0.0556 (7)0.0418 (7)0.0006 (5)0.0133 (5)0.0069 (5)
O20.0551 (8)0.0700 (9)0.0422 (7)0.0175 (7)0.0175 (6)0.0119 (6)
O30.0402 (7)0.0672 (9)0.0472 (7)0.0139 (6)0.0014 (6)0.0099 (6)
O40.0689 (10)0.0500 (8)0.0710 (10)0.0045 (7)0.0145 (8)0.0114 (7)
S10.0376 (2)0.0510 (3)0.0343 (2)0.01182 (17)0.00498 (16)0.00904 (17)
Cl10.0761 (4)0.0903 (4)0.0633 (4)0.0073 (3)0.0187 (3)0.0442 (3)
Geometric parameters (Å, º) top
C1—N21.315 (3)C10—H10B0.9600
C1—C21.412 (2)C10—H10C0.9600
C1—Cl11.705 (2)C11—C161.385 (2)
C2—C31.406 (2)C11—C121.395 (3)
C2—C71.406 (2)C11—S11.7552 (19)
C3—N11.356 (2)C12—C131.374 (3)
C3—C41.399 (3)C12—H120.9300
C4—C51.366 (3)C13—C141.394 (3)
C4—H40.9300C13—H130.9300
C5—C61.416 (2)C14—O41.358 (3)
C5—H50.9300C14—C151.388 (3)
C6—C71.384 (2)C15—C161.384 (3)
C6—N31.438 (2)C15—H150.9300
C7—O11.3618 (19)C16—H160.9300
C8—N11.454 (3)C17—O41.425 (3)
C8—H8A0.9600C17—H17A0.9600
C8—H8B0.9600C17—H17B0.9600
C8—H8C0.9600C17—H17C0.9600
C9—O11.401 (3)N1—N21.351 (2)
C9—C101.403 (3)N3—S11.6346 (15)
C9—H9A0.9700N3—H3N0.8599
C9—H9B0.9700O2—S11.4249 (14)
C10—H10A0.9600O3—S11.4414 (13)
N2—C1—C2112.46 (17)C16—C11—C12120.00 (18)
N2—C1—Cl1119.64 (14)C16—C11—S1119.51 (14)
C2—C1—Cl1127.89 (15)C12—C11—S1120.31 (13)
C3—C2—C7120.42 (15)C13—C12—C11119.71 (17)
C3—C2—C1103.30 (15)C13—C12—H12120.1
C7—C2—C1136.23 (16)C11—C12—H12120.1
N1—C3—C4130.62 (17)C12—C13—C14120.31 (18)
N1—C3—C2106.77 (16)C12—C13—H13119.8
C4—C3—C2122.60 (16)C14—C13—H13119.8
C5—C4—C3115.92 (16)O4—C14—C15124.41 (18)
C5—C4—H4122.0O4—C14—C13115.58 (18)
C3—C4—H4122.0C15—C14—C13120.01 (18)
C4—C5—C6122.96 (16)C16—C15—C14119.60 (17)
C4—C5—H5118.5C16—C15—H15120.2
C6—C5—H5118.5C14—C15—H15120.2
C7—C6—C5120.98 (15)C15—C16—C11120.33 (18)
C7—C6—N3119.18 (15)C15—C16—H16119.8
C5—C6—N3119.83 (14)C11—C16—H16119.8
O1—C7—C6124.09 (15)O4—C17—H17A109.5
O1—C7—C2118.80 (14)O4—C17—H17B109.5
C6—C7—C2117.09 (14)H17A—C17—H17B109.5
N1—C8—H8A109.5O4—C17—H17C109.5
N1—C8—H8B109.5H17A—C17—H17C109.5
H8A—C8—H8B109.5H17B—C17—H17C109.5
N1—C8—H8C109.5N2—N1—C3111.91 (15)
H8A—C8—H8C109.5N2—N1—C8120.44 (17)
H8B—C8—H8C109.5C3—N1—C8127.59 (19)
O1—C9—C10115.4 (3)C1—N2—N1105.56 (15)
O1—C9—H9A108.4C6—N3—S1120.30 (12)
C10—C9—H9A108.4C6—N3—H3N116.8
O1—C9—H9B108.4S1—N3—H3N110.2
C10—C9—H9B108.4C7—O1—C9118.21 (16)
H9A—C9—H9B107.5C14—O4—C17118.35 (19)
C9—C10—H10A109.5O2—S1—O3119.64 (9)
C9—C10—H10B109.5O2—S1—N3108.12 (8)
H10A—C10—H10B109.5O3—S1—N3104.44 (8)
C9—C10—H10C109.5O2—S1—C11108.74 (9)
H10A—C10—H10C109.5O3—S1—C11108.06 (8)
H10B—C10—H10C109.5N3—S1—C11107.20 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.862.132.974 (2)169
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O3i0.862.132.974 (2)169.0
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationAbbassi, N., Chicha, H., Rakib, E. M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbbassi, N., Rakib, E. M., Hannioui, A., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o190–o191.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouissane, L., El Kazzouli, S., Leonce, S., Pffeifer, P., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChicha, H., Rakib, E. M., Amiri, O., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o181.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, G., Khan, I. U., Ashraf, M., Afzal, I., Shahzad, S. A. & Shafiq, M. (2012). Bioorg. Med. Chem. 20, 2535–2539.  Web of Science CrossRef CAS PubMed Google Scholar
First citationScozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Curr. Med. Chem. 10, 925–953.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds