organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­sulfanyl-5-phenyl-1,2,4-triazine

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco, bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
*Correspondence e-mail: m.khouili@usms.ma

(Received 14 May 2014; accepted 21 May 2014; online 31 May 2014)

In the mol­ecule of the title compound, C10H9N3S, the dihedral angle between the triazine and phenyl rings is 11.77 (7)°. In the crystal, mol­ecules are linked by ππ stacking inter­actions [centroid–centroid distances = 3.7359 (3) and 3.7944 (4) Å], forming layers parallel to the bc plane.

Related literature

For the biological activity of sulfonamides, see: Abd el-Samii (1992[Abd el-Samii, Z. K. (1992). J. Chem. Technol. Biotechnol. 53, 143-146.]); Kidwai et al. (1998[Kidwai, M., Goel, Y. & Kumar, R. (1998). Indian J. Chem. Sect. B, 37, 174-179.]); Holla et al. (2001[Holla, B. S., Gonsalves, R., Rao, B. S. & Gopala Krishna, H. N. (2001). Il Farmaco, 56, 899-903.]); Abdel-Rahman et al. (1999[Abdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347-351.]); Hay et al. (2004[Hay, M. P., Prujin, F. B., Gamage, S. A., Liyanage, H. D. & Wilson, W. R. (2004). J. Med. Chem. 47, 475-488.]); Sztanke et al. (2005[Sztanke, K., Fidecka, S., Kedzierska, E., Karczmarzyk, Z., Pihlaja, K. & Matosiuk, D. (2005). Eur. J. Med. Chem. 40, 127-134.]). For the structure of a similar compound, see: Wen et al. (2006[Wen, L.-R., Zhou, J.-X. & Liu, P. (2006). Acta Cryst. E62, o4704-o4705.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9N3S

  • Mr = 203.26

  • Monoclinic, P 21 /c

  • a = 7.7513 (3) Å

  • b = 12.9191 (5) Å

  • c = 9.8262 (3) Å

  • β = 94.584 (2)°

  • V = 980.85 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.41 × 0.35 × 0.29 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.747

  • 15588 measured reflections

  • 2859 independent reflections

  • 2544 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.10

  • 2859 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,2,4-Triazine derivatives have been widely studied in terms of their synthetic methodologies and reactivity since some of these compounds were reported to have promising biological activities, including antimicrobial, inflammatory, analgesic, antiviral and anthelminitic activities (Abd el-Samii, 1992; Kidwai et al., 1998; Holla et al., 2001; Abdel-Rahman et al., 1999; Hay et al., 2004; Sztanke et al., 2005). We synthesized the title compound and describe its structure here.

The molecular structure of 3-methylsulfanyl-5-phenyl-1,2,4-triazine is shown in Fig. 1. The triazine ring (N1–N3/C2–C4) forms a dihedral angle of 11.77 (7)° with the phenyl ring. Bond lengths and angles are compatible with those found in a related compound (Wen et al., 2006). The cohesion of the crystal structure is ensured by π···π stacking interaction between triazine and phenyl rings [intercentroid distance = 3.7944 (4) Å] and between centrosymmetrically related triazine rings [intercentroid distance = 3.7359 (3) Å], forming molecular layers parallel to the bc plane.

Related literature top

For the biological activity of sulfonamides, see: Abd el-Samii (1992); Kidwai et al. (1998); Holla et al. (2001); Abdel-Rahman et al. (1999); Hay et al. (2004); Sztanke et al. (2005). For the structure of a similar compound, see: Wen et al. (2006).

Experimental top

To a solution of thiosemicarbazide (50 g, 0.55 mol) in absolute ethanol (500 ml) was added iodomethane (34.1 ml, 0.55 mol). The reaction mixture was stirred at reflux for 3 h then cooled overnight in the refrigerator. The crystals formed were filtered on a Buchner funnel, washed with ethanol and dried in vacuo to give the S-methylthiosemicarbazide iodohydrate beige powder (123 g). An aqueous solution (200 ml) of S-methylthiosemicarbazide iodohydrate (20 g, 85.8 mmol) was added to an aqueous solution (120 ml) of phenyl glyoxal (15.65 g, 103 mmol) and sodium bicarbonate (10 g, 94.4 mmol) at 5°C. The temperature was maintained at 5°C for 6 h then the reaction medium was extracted with dichloromethane. The organic phases are combined, dried over magnesium sulfate, filtered and evaporated under reduced pressure. The crude material was purified by column on silica (hexane/EtOAc 9:1 v/v) as eluent. The title compound (13.95 g) was obtained as yellow crystals (79% yield) on slow evaporation of the solvent.

Refinement top

H atoms were located in a difference Fourier map and treated as riding, with C–H = 0.93–0.96 Å and Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. One outlier (-1 7 1) was omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
3-Methylsulfanyl-5-phenyl-1,2,4-triazine top
Crystal data top
C10H9N3SF(000) = 424
Mr = 203.26Dx = 1.376 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2859 reflections
a = 7.7513 (3) Åθ = 2.6–30.0°
b = 12.9191 (5) ŵ = 0.29 mm1
c = 9.8262 (3) ÅT = 296 K
β = 94.584 (2)°Block, yellow
V = 980.85 (6) Å30.41 × 0.35 × 0.29 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
2859 independent reflections
Radiation source: fine-focus sealed tube2544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.693, Tmax = 0.747k = 1816
15588 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.210P]
where P = (Fo2 + 2Fc2)/3
2859 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H9N3SV = 980.85 (6) Å3
Mr = 203.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7513 (3) ŵ = 0.29 mm1
b = 12.9191 (5) ÅT = 296 K
c = 9.8262 (3) Å0.41 × 0.35 × 0.29 mm
β = 94.584 (2)°
Data collection top
Bruker X8 APEX
diffractometer
2859 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2544 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.747Rint = 0.023
15588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.10Δρmax = 0.32 e Å3
2859 reflectionsΔρmin = 0.24 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.23977 (4)0.83039 (3)0.60310 (3)0.04391 (12)
N10.55958 (14)0.87884 (9)0.70043 (10)0.0411 (2)
N20.49883 (12)0.86358 (7)0.45807 (9)0.0321 (2)
N30.72612 (15)0.90131 (11)0.68242 (11)0.0492 (3)
C10.2219 (2)0.83401 (12)0.78375 (15)0.0478 (3)
H1A0.10530.81760.80250.072*
H1B0.25090.90200.81770.072*
H1C0.29970.78440.82780.072*
C20.45673 (14)0.86159 (8)0.58822 (11)0.0315 (2)
C30.77637 (16)0.90344 (12)0.55773 (13)0.0434 (3)
H30.89150.91880.54610.052*
C40.66358 (14)0.88349 (8)0.44103 (11)0.0308 (2)
C50.72027 (15)0.88557 (8)0.30105 (11)0.0324 (2)
C60.89529 (17)0.88858 (11)0.27791 (14)0.0439 (3)
H60.97850.88870.35150.053*
C70.9461 (2)0.89133 (13)0.14577 (16)0.0537 (4)
H71.06310.89390.13110.064*
C80.8234 (2)0.89027 (12)0.03593 (15)0.0539 (4)
H80.85760.89170.05260.065*
C90.6501 (2)0.88713 (12)0.05779 (13)0.0499 (3)
H90.56770.88630.01640.060*
C100.59717 (17)0.88521 (10)0.18942 (12)0.0403 (3)
H100.47990.88370.20320.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.03440 (17)0.0619 (2)0.03562 (17)0.00433 (12)0.00418 (12)0.00196 (13)
N10.0413 (5)0.0550 (6)0.0266 (4)0.0031 (4)0.0003 (4)0.0005 (4)
N20.0327 (4)0.0367 (5)0.0264 (4)0.0001 (3)0.0000 (3)0.0010 (3)
N30.0410 (6)0.0750 (8)0.0305 (5)0.0083 (5)0.0042 (4)0.0019 (5)
C10.0498 (7)0.0555 (8)0.0397 (7)0.0018 (6)0.0137 (5)0.0043 (5)
C20.0339 (5)0.0325 (5)0.0280 (5)0.0015 (4)0.0020 (4)0.0023 (4)
C30.0328 (5)0.0640 (8)0.0324 (6)0.0063 (5)0.0023 (4)0.0007 (5)
C40.0330 (5)0.0318 (5)0.0271 (5)0.0006 (4)0.0003 (4)0.0008 (4)
C50.0374 (5)0.0321 (5)0.0280 (5)0.0004 (4)0.0033 (4)0.0002 (4)
C60.0389 (6)0.0537 (7)0.0396 (6)0.0064 (5)0.0060 (5)0.0013 (5)
C70.0509 (8)0.0642 (9)0.0485 (8)0.0080 (7)0.0197 (6)0.0016 (7)
C80.0753 (10)0.0539 (8)0.0350 (6)0.0041 (7)0.0192 (6)0.0014 (6)
C90.0675 (9)0.0546 (8)0.0271 (5)0.0046 (6)0.0002 (5)0.0023 (5)
C100.0443 (6)0.0467 (6)0.0294 (5)0.0060 (5)0.0006 (4)0.0012 (5)
Geometric parameters (Å, º) top
S—C21.7469 (11)C4—C51.4773 (15)
S—C11.7921 (14)C5—C61.3939 (17)
N1—C21.3268 (15)C5—C101.3951 (16)
N1—N31.3486 (16)C6—C71.3872 (18)
N2—C41.3263 (14)C6—H60.9300
N2—C21.3451 (14)C7—C81.381 (2)
N3—C31.3153 (17)C7—H70.9300
C1—H1A0.9600C8—C91.378 (2)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.3880 (17)
C3—C41.4091 (15)C9—H90.9300
C3—H30.9300C10—H100.9300
C2—S—C1103.19 (6)C6—C5—C10119.03 (11)
C2—N1—N3116.42 (10)C6—C5—C4121.21 (10)
C4—N2—C2115.65 (9)C10—C5—C4119.76 (11)
C3—N3—N1118.99 (10)C7—C6—C5120.43 (13)
S—C1—H1A109.5C7—C6—H6119.8
S—C1—H1B109.5C5—C6—H6119.8
H1A—C1—H1B109.5C8—C7—C6120.11 (14)
S—C1—H1C109.5C8—C7—H7119.9
H1A—C1—H1C109.5C6—C7—H7119.9
H1B—C1—H1C109.5C9—C8—C7119.87 (12)
N1—C2—N2127.71 (10)C9—C8—H8120.1
N1—C2—S119.19 (9)C7—C8—H8120.1
N2—C2—S113.10 (8)C8—C9—C10120.68 (13)
N3—C3—C4122.93 (11)C8—C9—H9119.7
N3—C3—H3118.5C10—C9—H9119.7
C4—C3—H3118.5C9—C10—C5119.88 (13)
N2—C4—C3118.28 (10)C9—C10—H10120.1
N2—C4—C5118.82 (10)C5—C10—H10120.1
C3—C4—C5122.89 (10)

Experimental details

Crystal data
Chemical formulaC10H9N3S
Mr203.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7513 (3), 12.9191 (5), 9.8262 (3)
β (°) 94.584 (2)
V3)980.85 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.41 × 0.35 × 0.29
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.693, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
15588, 2859, 2544
Rint0.023
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.10
No. of reflections2859
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Sultan Moulay Slimane, Beni-Mellal, for financial support.

References

First citationAbdel-Rahman, R. M., Morsy, J. M., Hanafy, F. & Amene, H. A. (1999). Pharmazie, 54, 347–351.  Web of Science PubMed CAS Google Scholar
First citationAbd el-Samii, Z. K. (1992). J. Chem. Technol. Biotechnol. 53, 143–146.  PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHay, M. P., Prujin, F. B., Gamage, S. A., Liyanage, H. D. & Wilson, W. R. (2004). J. Med. Chem. 47, 475–488.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Gonsalves, R., Rao, B. S. & Gopala Krishna, H. N. (2001). Il Farmaco, 56, 899–903.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKidwai, M., Goel, Y. & Kumar, R. (1998). Indian J. Chem. Sect. B, 37, 174–179.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSztanke, K., Fidecka, S., Kedzierska, E., Karczmarzyk, Z., Pihlaja, K. & Matosiuk, D. (2005). Eur. J. Med. Chem. 40, 127–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, L.-R., Zhou, J.-X. & Liu, P. (2006). Acta Cryst. E62, o4704–o4705.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds