organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o631-o632

N′-[(E)-2-Chloro­benzyl­­idene]-2-(6-meth­­oxy­naphthalen-2-yl)propano­hydrazide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eAnalytical Development Division, Manchester Metropolitan University, Manchester M1 5GD, England, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 10 April 2014; accepted 16 April 2014; online 3 May 2014)

In the title compound, C21H19ClN2O2, the benzene ring and the naphthalene ring system are oriented at a dihedral angle of 65.24 (10)°. In the crystal, N—H⋯O, C—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules, forming chains along the b-axis direction. Further C—H⋯O hydrogen bonds link the chains, forming corrugated sheets lying parallel to (10-1).

Related literature

For the use of Naproxen [systematic name: (+)-(S)-2-(6-meth­oxy­naphthalen-2-yl)propanoic acid] and hydrazide-hydrazones in the treatment of disease and inflammation, see: Merlet et al. (2013[Merlet, N., Busseuil, D., Rhéaume, E. & Tardif, J.-C. (2013). Anti-Inflamm. Anti-Allergy Agents Med. Chem. 12, 24-35.]); Almasirad et al. (2005[Almasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419-425.], 2006[Almasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180-1185.]). For the harmful side-effects of non-steroidal anti-inflammatory drugs (NSAIDs), see: Uzgören-Baran et al. (2012[Uzgören-Baran, A., Tel, B. C., Deniz Sarıgöl, D., Öztürk, E. I., Kazkayası, I., Okay, G., Ertand, M. & Tozkoparan, B. (2012). Eur. J. Med. Chem. 57, 398-406.]); Tozkoparan et al. (2012[Tozkoparan, B., Aytaç, S. P., Gürsoy, S. & Aktay, G. (2012). Med. Chem. Res. 21, 192-201.]). For the synthesis of NSAIDS with safer pro-drug profiles and enhanced chromphore efficacy, see: Koopaei et al. (2013[Koopaei, M. N., Assarzadeh, M. J., Almasirad, A., Ghasemi-Niri, S. F., Amini, M., Kebriaeezadeh, A., Koopaei, N. N., Ghadimi, M. & Tabei, A. (2013). Iran. J. Pharm. Res. 12, 721-727.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19ClN2O2

  • Mr = 366.83

  • Monoclinic, P 21

  • a = 6.5703 (2) Å

  • b = 8.6166 (2) Å

  • c = 16.3411 (4) Å

  • β = 98.6850 (9)°

  • V = 914.52 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 100 K

  • 0.23 × 0.09 × 0.02 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.87, Tmax = 0.96

  • 13492 measured reflections

  • 3243 independent reflections

  • 3122 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.064

  • S = 1.05

  • 3243 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack parameter determined using 1358 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.056 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.91 1.93 2.829 (2) 169
C12—H12⋯N2i 1.00 2.48 3.444 (3) 163
C15—H15⋯O2i 0.95 2.48 3.259 (3) 139
C19—H19⋯O1ii 0.95 2.57 3.486 (3) 163
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Naproxen ((+)-(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid), among many non-steroidal anti-inflammatory drugs (NSAIDs), is used mainly in the treatment of pain, rehumatiod and inflammatory diseases (Merlet et al., 2013). It was reported that the presence of a carboxylic acid group in the parent drug leads to many undesirable side-effects such as gastrointestinal toxicity and ulceration (Uzgören-Baran et al., 2012; Tozkoparan et al., 2012). Recently, it was found that masking the carboxylic acid residue in the parent drug of NSAIDs led to safer pro-drug profiles and enhanced the chromophore efficacy (Koopaei et al., 2013). On the other hand, hydrazide-hydrazone scaffold compounds have been found to possess significant anti-inflammatory effects (Almasirad et al., 2005; Almasirad et al., 2006). Based on these findings the title compound was designed to be a hydrazone profile incorporating the Naproxen core structure without a carboxylic acid substituent.

The naphthalene ring system of the title compound (I, Fig.-1) is essentialy planar [maximum deviation = 0.025 (2) Å for C7 and -0.022 (2) Å for C9]. The dihedral angle between the mean planes of the naphthalene and phenyl groups is 65.24 (10)°. The C1–O1–C2–C11, C6–C7–C12–C13, C7–C12–C14–O2, C7–C12–C14–N1, C12–C14–N1–N2, O2–C14–N1–N2 and C14–N1–N2–C15 torsion angles are -3.6 (3), 28.5 (3), 82.8 (2), -95.9 (2), 177.67 (18), -3.6 (3) and 177.4 (2) °, respectively. In (I), the bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure, the N—H···O and C—H···N hydrogen bonds link the molecules, forming chains along the b-axis (Table 1 and Fig. 2). However, sensible C—H···O contacts are also present that link molecules into chains along c and extend the packing along the c axis.

Related literature top

For the use of Naproxen [systematic name: (+)-(S)-2-(6-methoxynaphthalen-2-yl)propanoic acid] and hydrazide-hydrazones in the treatment of disease and inflammation, see: Merlet et al. (2013); Almasirad et al. (2005, 2006). For the harmful side-effects of non-steroidal anti-inflammatory drugs (NSAIDs), see: Uzgören-Baran et al. (2012); Tozkoparan et al. (2012). For the synthesis of NSAIDS with safer pro-drug profiles and enhanced chromphore efficacy, see: Koopaei et al. (2013). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 1 mmol (244 mg) Naproxen acid hydrazide [2-(6-methoxy-2-naphthyl)propanehydrazide] and 1 mmol (141 mg) 2-chlorobenzaldehyde was refluxed in 30 ml ethanol for 5hr in the presence of a few catalytic drops of glacial acetic acid. The mixture was cooled and separated, the solid filtered off, dried under vacuum and recrytallized from ethanol to furnish white crystals in a good quality suitable for X-ray diffraction. Mp 488–451 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the title molecule with 50% probability ellipsoids.
[Figure 2] Fig. 2. Crystal packing viewed down the a axis showing hydrogen bonds as dotted lines (N—H···O: purple, C—H···O: black, C—H···N: green).
N'-[(E)-2-Chlorobenzylidene]-2-(6-methoxynaphthalen-2-yl)propanohydrazide top
Crystal data top
C21H19ClN2O2F(000) = 384
Mr = 366.83Dx = 1.332 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9961 reflections
a = 6.5703 (2) Åθ = 2.7–68.2°
b = 8.6166 (2) ŵ = 1.99 mm1
c = 16.3411 (4) ÅT = 100 K
β = 98.6850 (9)°Plate, colourless
V = 914.52 (4) Å30.23 × 0.09 × 0.02 mm
Z = 2
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3243 independent reflections
Radiation source: INCOATEC IµS micro–focus source3122 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 68.2°, θmin = 2.7°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 910
Tmin = 0.87, Tmax = 0.96l = 1919
13492 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.1372P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3243 reflectionsΔρmax = 0.20 e Å3
237 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack parameter determined using 1358 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.056 (5)
Crystal data top
C21H19ClN2O2V = 914.52 (4) Å3
Mr = 366.83Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.5703 (2) ŵ = 1.99 mm1
b = 8.6166 (2) ÅT = 100 K
c = 16.3411 (4) Å0.23 × 0.09 × 0.02 mm
β = 98.6850 (9)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3122 reflections with I > 2σ(I)
Tmin = 0.87, Tmax = 0.96Rint = 0.030
13492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.12 e Å3
3243 reflectionsAbsolute structure: Flack parameter determined using 1358 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
237 parametersAbsolute structure parameter: 0.056 (5)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.26515 (8)0.49714 (7)0.64924 (3)0.0316 (2)
O10.4688 (2)1.0112 (2)0.00565 (9)0.0298 (5)
O20.3102 (2)0.82203 (18)0.49852 (9)0.0270 (5)
N10.5530 (3)0.6307 (2)0.51581 (11)0.0228 (6)
N20.6679 (3)0.7022 (2)0.58251 (11)0.0244 (6)
C10.6649 (4)0.9724 (4)0.02662 (17)0.0422 (9)
C20.4163 (3)0.9427 (3)0.06423 (14)0.0246 (7)
C30.2255 (3)0.9925 (3)0.08485 (12)0.0251 (6)
C40.1563 (3)0.9358 (3)0.15342 (14)0.0255 (7)
C50.2726 (3)0.8254 (3)0.20542 (13)0.0217 (6)
C60.2070 (3)0.7663 (3)0.27802 (14)0.0227 (7)
C70.3221 (3)0.6596 (2)0.32769 (14)0.0220 (6)
C80.5082 (3)0.6063 (3)0.30327 (14)0.0245 (7)
C90.5762 (3)0.6609 (3)0.23431 (14)0.0246 (7)
C100.4627 (3)0.7741 (2)0.18331 (14)0.0227 (6)
C110.5318 (3)0.8356 (3)0.11192 (14)0.0235 (6)
C120.2624 (3)0.5983 (3)0.40812 (13)0.0231 (7)
C130.0309 (3)0.5967 (3)0.41077 (14)0.0272 (7)
C140.3743 (3)0.6955 (2)0.47855 (14)0.0226 (7)
C150.8290 (3)0.6268 (3)0.61428 (14)0.0236 (7)
C160.9609 (3)0.6871 (3)0.68768 (14)0.0243 (7)
C170.8874 (4)0.7958 (3)0.73949 (14)0.0294 (8)
C181.0113 (4)0.8504 (3)0.80960 (15)0.0353 (8)
C191.2109 (4)0.7965 (3)0.82972 (16)0.0387 (9)
C201.2888 (4)0.6892 (3)0.77994 (16)0.0330 (8)
C211.1634 (4)0.6351 (3)0.70945 (15)0.0276 (7)
H10.587500.531500.504700.0270*
H1A0.772300.997700.019900.0630*
H1B0.688301.031700.075500.0630*
H1C0.669400.861100.038600.0630*
H30.145001.066000.050700.0300*
H40.028000.970600.166600.0310*
H60.080200.801200.292700.0270*
H80.587400.530300.336100.0290*
H90.701800.622800.220000.0300*
H110.659300.802100.097300.0280*
H120.313900.489300.415700.0280*
H13A0.003700.539800.459900.0410*
H13B0.040300.545700.360900.0410*
H13C0.019100.703500.413200.0410*
H150.862900.531700.590200.0280*
H170.750100.832800.726400.0350*
H180.959200.925000.843900.0420*
H191.295000.833600.878200.0460*
H201.426200.652700.793600.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0219 (3)0.0340 (3)0.0383 (3)0.0029 (2)0.0027 (2)0.0080 (3)
O10.0250 (8)0.0373 (9)0.0268 (8)0.0025 (8)0.0030 (6)0.0061 (8)
O20.0245 (8)0.0235 (8)0.0314 (9)0.0027 (7)0.0005 (6)0.0002 (7)
N10.0203 (10)0.0203 (9)0.0262 (10)0.0012 (7)0.0014 (7)0.0004 (7)
N20.0211 (9)0.0251 (10)0.0256 (10)0.0019 (7)0.0007 (8)0.0014 (8)
C10.0297 (13)0.0577 (19)0.0408 (14)0.0070 (12)0.0104 (11)0.0197 (13)
C20.0245 (12)0.0266 (12)0.0214 (11)0.0034 (8)0.0003 (9)0.0032 (8)
C30.0248 (11)0.0244 (10)0.0242 (10)0.0035 (10)0.0023 (8)0.0000 (10)
C40.0208 (11)0.0283 (11)0.0260 (12)0.0053 (9)0.0012 (9)0.0028 (9)
C50.0204 (11)0.0210 (11)0.0224 (11)0.0010 (9)0.0011 (8)0.0044 (9)
C60.0168 (11)0.0247 (11)0.0258 (12)0.0018 (8)0.0009 (9)0.0050 (9)
C70.0193 (11)0.0215 (11)0.0242 (11)0.0021 (8)0.0003 (9)0.0037 (8)
C80.0199 (11)0.0211 (11)0.0310 (12)0.0018 (8)0.0005 (9)0.0013 (9)
C90.0168 (11)0.0235 (11)0.0331 (13)0.0031 (8)0.0028 (9)0.0031 (9)
C100.0198 (11)0.0213 (11)0.0258 (11)0.0007 (8)0.0005 (9)0.0065 (8)
C110.0195 (11)0.0240 (11)0.0267 (11)0.0008 (9)0.0023 (9)0.0038 (9)
C120.0190 (11)0.0212 (11)0.0279 (12)0.0016 (8)0.0001 (9)0.0021 (9)
C130.0211 (12)0.0328 (13)0.0272 (12)0.0011 (9)0.0016 (10)0.0029 (10)
C140.0194 (11)0.0225 (11)0.0261 (12)0.0002 (8)0.0039 (9)0.0026 (9)
C150.0215 (11)0.0234 (11)0.0258 (12)0.0004 (9)0.0033 (9)0.0032 (9)
C160.0252 (12)0.0234 (12)0.0237 (11)0.0035 (8)0.0016 (9)0.0054 (8)
C170.0321 (13)0.0267 (13)0.0285 (13)0.0022 (9)0.0019 (10)0.0045 (9)
C180.0487 (16)0.0289 (14)0.0279 (13)0.0086 (11)0.0045 (11)0.0003 (10)
C190.0438 (16)0.0399 (16)0.0281 (13)0.0181 (12)0.0080 (11)0.0046 (11)
C200.0269 (12)0.0356 (14)0.0328 (14)0.0107 (10)0.0071 (10)0.0107 (10)
C210.0250 (12)0.0283 (13)0.0285 (12)0.0051 (9)0.0006 (10)0.0092 (9)
Geometric parameters (Å, º) top
Cl1—C211.740 (3)C16—C171.397 (3)
O1—C11.422 (3)C17—C181.384 (3)
O1—C21.375 (3)C18—C191.383 (4)
O2—C141.231 (2)C19—C201.380 (4)
N1—N21.374 (3)C20—C211.392 (4)
N1—C141.358 (3)C1—H1A0.9800
N2—C151.283 (3)C1—H1B0.9800
N1—H10.9100C1—H1C0.9800
C2—C111.362 (3)C3—H30.9500
C2—C31.413 (3)C4—H40.9500
C3—C41.362 (3)C6—H60.9500
C4—C51.419 (3)C8—H80.9500
C5—C61.417 (3)C9—H90.9500
C5—C101.422 (3)C11—H110.9500
C6—C71.375 (3)C12—H121.0000
C7—C121.522 (3)C13—H13A0.9800
C7—C81.419 (3)C13—H13B0.9800
C8—C91.358 (3)C13—H13C0.9800
C9—C101.419 (3)C15—H150.9500
C10—C111.417 (3)C17—H170.9500
C12—C131.528 (3)C18—H180.9500
C12—C141.520 (3)C19—H190.9500
C15—C161.465 (3)C20—H200.9500
C16—C211.398 (3)
C1—O1—C2116.70 (19)Cl1—C21—C20117.8 (2)
N2—N1—C14120.35 (17)O1—C1—H1A109.00
N1—N2—C15114.50 (18)O1—C1—H1B109.00
N2—N1—H1117.00O1—C1—H1C110.00
C14—N1—H1121.00H1A—C1—H1B109.00
O1—C2—C3114.2 (2)H1A—C1—H1C109.00
O1—C2—C11125.31 (19)H1B—C1—H1C110.00
C3—C2—C11120.5 (2)C2—C3—H3120.00
C2—C3—C4120.4 (2)C4—C3—H3120.00
C3—C4—C5121.10 (19)C3—C4—H4119.00
C6—C5—C10119.4 (2)C5—C4—H4119.00
C4—C5—C6122.54 (19)C5—C6—H6119.00
C4—C5—C10118.05 (19)C7—C6—H6119.00
C5—C6—C7121.66 (19)C7—C8—H8119.00
C6—C7—C8118.1 (2)C9—C8—H8119.00
C6—C7—C12123.46 (18)C8—C9—H9119.00
C8—C7—C12118.43 (18)C10—C9—H9119.00
C7—C8—C9121.8 (2)C2—C11—H11120.00
C8—C9—C10121.1 (2)C10—C11—H11120.00
C5—C10—C11119.72 (19)C7—C12—H12108.00
C9—C10—C11122.36 (19)C13—C12—H12108.00
C5—C10—C9117.92 (19)C14—C12—H12108.00
C2—C11—C10120.28 (19)C12—C13—H13A109.00
C7—C12—C14107.72 (18)C12—C13—H13B109.00
C7—C12—C13114.52 (18)C12—C13—H13C110.00
C13—C12—C14110.68 (18)H13A—C13—H13B109.00
N1—C14—C12113.54 (17)H13A—C13—H13C109.00
O2—C14—C12122.90 (19)H13B—C13—H13C110.00
O2—C14—N1123.55 (19)N2—C15—H15120.00
N2—C15—C16120.1 (2)C16—C15—H15120.00
C17—C16—C21117.6 (2)C16—C17—H17119.00
C15—C16—C17121.2 (2)C18—C17—H17119.00
C15—C16—C21121.2 (2)C17—C18—H18120.00
C16—C17—C18121.1 (2)C19—C18—H18120.00
C17—C18—C19120.1 (2)C18—C19—H19120.00
C18—C19—C20120.5 (2)C20—C19—H19120.00
C19—C20—C21119.1 (2)C19—C20—H20120.00
C16—C21—C20121.7 (2)C21—C20—H20120.00
Cl1—C21—C16120.48 (19)
C1—O1—C2—C3176.4 (2)C8—C7—C12—C13152.7 (2)
C1—O1—C2—C113.6 (3)C8—C7—C12—C1483.7 (2)
C14—N1—N2—C15177.4 (2)C7—C8—C9—C100.2 (4)
N2—N1—C14—O23.6 (3)C8—C9—C10—C51.7 (3)
N2—N1—C14—C12177.67 (18)C8—C9—C10—C11178.7 (2)
N1—N2—C15—C16177.67 (19)C5—C10—C11—C20.4 (3)
O1—C2—C3—C4178.9 (2)C9—C10—C11—C2179.2 (2)
C11—C2—C3—C41.0 (4)C7—C12—C14—O282.8 (2)
O1—C2—C11—C10179.3 (2)C7—C12—C14—N195.9 (2)
C3—C2—C11—C100.7 (4)C13—C12—C14—O243.1 (3)
C2—C3—C4—C50.3 (4)C13—C12—C14—N1138.2 (2)
C3—C4—C5—C6178.8 (2)N2—C15—C16—C1720.3 (3)
C3—C4—C5—C100.8 (3)N2—C15—C16—C21161.3 (2)
C4—C5—C6—C7179.9 (2)C15—C16—C17—C18178.8 (2)
C10—C5—C6—C70.4 (3)C21—C16—C17—C180.3 (4)
C4—C5—C10—C9178.5 (2)C15—C16—C21—Cl10.3 (3)
C4—C5—C10—C111.1 (3)C15—C16—C21—C20178.7 (2)
C6—C5—C10—C92.0 (3)C17—C16—C21—Cl1178.83 (19)
C6—C5—C10—C11178.4 (2)C17—C16—C21—C200.2 (4)
C5—C6—C7—C81.5 (3)C16—C17—C18—C190.5 (4)
C5—C6—C7—C12177.2 (2)C17—C18—C19—C200.6 (4)
C6—C7—C8—C91.8 (3)C18—C19—C20—C210.4 (4)
C12—C7—C8—C9177.0 (2)C19—C20—C21—Cl1178.8 (2)
C6—C7—C12—C1328.5 (3)C19—C20—C21—C160.2 (4)
C6—C7—C12—C1495.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.932.829 (2)169
C12—H12···N2i1.002.483.444 (3)163
C15—H15···O2i0.952.483.259 (3)139
C19—H19···O1ii0.952.573.486 (3)163
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.911.932.829 (2)169
C12—H12···N2i1.002.483.444 (3)163
C15—H15···O2i0.952.483.259 (3)139
C19—H19···O1ii0.952.573.486 (3)163
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAlmasirad, A., Hosseini, R., Jalalizadeh, H., Rahimi-Moghaddam, Z., Abaeian, N., Janafrooz, M., Abbaspour, M., Ziaee, V., Dalvandi, A. & Shafiee, A. (2006). Biol. Pharm. Bull. 29, 1180–1185.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlmasirad, A., Tajik, M., Bakhtiari, D., Shafiee, A., Abdollahi, M., Zamani, M. J. & Esmaily, H. (2005). J. Pharm. Pharm. Sci. 8, 419–425.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoopaei, M. N., Assarzadeh, M. J., Almasirad, A., Ghasemi-Niri, S. F., Amini, M., Kebriaeezadeh, A., Koopaei, N. N., Ghadimi, M. & Tabei, A. (2013). Iran. J. Pharm. Res. 12, 721–727.  CAS PubMed Google Scholar
First citationMerlet, N., Busseuil, D., Rhéaume, E. & Tardif, J.-C. (2013). Anti-Inflamm. Anti-Allergy Agents Med. Chem. 12, 24–35.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTozkoparan, B., Aytaç, S. P., Gürsoy, S. & Aktay, G. (2012). Med. Chem. Res. 21, 192–201.  Web of Science CrossRef CAS Google Scholar
First citationUzgören-Baran, A., Tel, B. C., Deniz Sarıgöl, D., Öztürk, E. I., Kazkayası, I., Okay, G., Ertand, M. & Tozkoparan, B. (2012). Eur. J. Med. Chem. 57, 398–406.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o631-o632
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds