organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o694-o695

1-[Bis(4-fluoro­phen­yl)meth­yl]-4-[(2Z)-3-phenyl­prop-2-en-1-yl]piperazine-1,4-diium dichloride hemihydrate

aVittal Mallya Scientific Research Foundation, #94/3, 23rd Cross; 29th Main; BTM II Stage, Bangalore, 560-076, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 26 April 2014; accepted 14 May 2014; online 21 May 2014)

The asymmetric unit of the title monohydrated salt, 2C26H28F2N22+·4Cl−.H2O, consists of a 1-[bis­(4-fluoro­phen­yl)meth­yl]-4-[(2Z)-3-phenyl­prop-2-en-1-yl]piperazine-1,4-diium cation with a diprotonated piperizine ring in close proximity to two chloride anions and a single water mol­ecule that lies on a twofold rotation axis. In the cation, the piperazine ring adopts a slightly distorted chair conformation. The dihedral angles between the phenyl ring and the 4-fluoro­phenyl rings are 89.3 (9) and 35.0 (5)°. The two fluoro­phenyl rings are inclined at 65.0 (5)° to one another. In the crystal, N—H⋯Cl hydrogen bonds and weak C—H⋯Cl inter­molecular inter­actions link the mol­ecules into chains along [010]. In addition, weak C—H⋯O inter­actions between the piperizine and prop-2-en-1-yl groups with the water mol­ecule, along with weak C—H⋯Cl inter­actions between the prop-2en-1-yl and methyl groups with the chloride ions, weak C—H⋯F inter­actions between the two fluoro­phenyl groups and weak O—H⋯Cl inter­actions between the water mol­ecule and chloride ions form a three-dimensional supra­molecular network.

Related literature

For the use of flunarizine {systematic name: (E)-1-[bis­(4-fluoro­phen­yl)meth­yl]-4-(3-phenyl-2-propen­yl)piperazine} as an anti­histamine and vasodilator, see: Agnoli et al. (1988[Agnoli, A., Manna, V., Martucci, N., Fioravanti, M., Ferromilone, F., Cananzi, A., D'Andrea, G., De Rosa, A., Vizioli, R. & Sinforiani, E. (1988). Int. J. Clin. Pharmacol. Res. 8, 89-97.]); Prasanna & Row (2001[Prasanna, M. D. & Row, T. N. G. (2001). J. Mol. Struct., 562, 55-61.]). For the synthesis of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, see: Cignarella & Testa (1968[Cignarella, G. & Testa, E. V. J. (1968). Med. Chem. 11, 612-615.]) and that of the Z-isomer of cinnerizine, [systematic name: (E)-1-(di­phenyl­meth­yl)-4-(3-phenyl­prop-2-en­yl)piper­azine], see; Shivaprakash & Chandrasekara Reddy (2014[Shivaprakash, S. & Chandrasekara Reddy, G. (2014). Synth. Commun. 44, 600-609.]). For puckering parameters, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • 2C26H28F2N22+·4Cl·H2O

  • Mr = 972.82

  • Monoclinic, P 2/c

  • a = 18.2973 (6) Å

  • b = 7.02041 (14) Å

  • c = 20.1554 (6) Å

  • β = 104.601 (3)°

  • V = 2505.44 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.44 × 0.38 × 0.16 mm

Data collection
  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.914, Tmax = 1.000

  • 32975 measured reflections

  • 8607 independent reflections

  • 6582 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.153

  • S = 1.09

  • 8607 reflections

  • 306 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.84 (2) 2.14 (2) 2.9782 (13) 176 (2)
N2—H2⋯Cl2ii 0.86 (3) 2.17 (3) 3.0248 (13) 174 (2)
C1—H1A⋯O1Wi 0.99 2.68 3.512 (2) 142
C5—H5A⋯O1Wi 0.99 2.67 3.470 (2) 138
C5—H5B⋯Cl1ii 0.99 2.51 3.4934 (16) 176
C14—H14⋯Cl2i 1.00 2.49 3.4735 (15) 168
C19—H19⋯F2iii 0.95 2.46 3.244 (2) 140
O1W—H1W⋯Cl1 0.80 (3) 2.48 (3) 3.2603 (12) 163 (3)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Flunarizine, (E)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2- propenyl)piperazine, is a clinically useful drug used as an antihistamine and vasodilator (Agnoli et al. (1988), Prasanna & Row (2001). Because the greater biological importance of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines has been recognised, several synthetic methods for these isomers have been described (Cignarella & Testa, 1968). However, the synthesis of (Z)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine has only recently been reported (Shivaprakash & Chandrasekara Reddy, 2014).

The title compound, 2(C26H28F2N2), 4(Cl), H2O, (I), is a close analogue of the existing drug, flunarizine, which has an (E) configuration. The crystal structure of flunarizine has been reported (Prasanna & Row, 2001). We have prepared the (Z) isomer (I) for the first time as the crystalline hydrochloride salt to study structure activity relationships and we report its structure here.

The asymmetric unit of the title monohydrated salt, 2(C26H28F2N22+), 4(Cl-), H2O, (I), consists of a [(Z)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine] cation with a diprotonated piperizine ring in close proximity to two chloride anions and a single water molecule that lies on a two-fold rotation axis (Fig. 1). The piperazine group adopts a slightly distorted chair conformation (puckering parameters Q, θ, and ϕ = 0.5911 (15)Å, 0.95 (15)° and 154 (8)°, respectively (Cremer & Pople, 1975). Bond lengths are within normal ranges (Allen et al., 1987). In the cation, the dihedral angles between the mean planes of the two 4-fluorophenyl rings with that of the phenyl ring are 89.3 (9)° and 35.0 (5)°, respectively. The two fluorophenyl groups are inclined at 65.0 (5)° to one another. In the crystal, N—H···Cl hydrogen bonds and weak C—H···Cl intermolecular interactions link the molecules into chains along [010] (Fig. 2). In addition, weak C—H···O interactions between the piperizine and prop-2-en-1-yl groups with the water molecule along with weak C—H···Cl interactions between the prop-2en-1-yl and methyl groups with the chloride ions and weak C—H···F interactions between the two fluorophenyl groups and weak O—H···Cl interactions between the water molecule and chloride ions (Table 1) form a 3-D supramolecular network.

Related literature top

For the use of flunarizine {systematic name: (E)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine} as an antihistamine and vasodilator, see: Agnoli et al. (1988); Prasanna & Row (2001). For the synthesis of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, see: Cignarella & Testa (1968) and that of the Z-isomer of cinnerizine, [systematic name: (E)-1-(diphenylmethyl)-4-(3-phenylprop-2-enyl)piperazine], see; Shivaprakash & Chandrasekara Reddy (2014). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

To a solution of 1-(4, 4'-difluoro phenylmethyl)-4-(2-acetaldehyde) piperazine (5.6 g, 17.0 mmol) in dichloromethane (50 ml) under a nitrogen atmosphere was added benzyltriphenyl phosphonium chloride, (6.9 g, 17.9 mmol). The mixture was cooled to 278 °K and t-BuOK (4.6 g, 41.3 mmol) was added with stirring. After completion, the reaction mass was quenched into water (100 ml). The organic layer was separated, dried over anhydrous sodium sulfate and concentrated under vacuum. The solution was then subjected to column chromatography over silica gel with an EtOAc/Hexane (1:9) elutant mixture to afford (Z)-1-[bis-(4-fluorophenyl)-methyl]-4-(cinnamyl) piperazine as a viscous liquid. This was then converted into the hydrochloride salt using ethanolic HCl and crystallized from acetone/ethanol (2:8) mp 473-475°K.

Refinement top

The H1, H2 and H1W atoms were located from a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using a riding model with Atom—H lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of (I), showing the labeling scheme and with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the c axis. Dashed lines indicate N—H···Cl hydrogen bonds and weak C—H···Cl intermolecular interactions which link the molecules into chains along [010].
1-[Bis(4-fluorophenyl)methyl]-4-[(2Z)-3-phenylprop-2-en-1-yl]piperazine-1,4-diium dichloride hemihydrate top
Crystal data top
2C26H28F2N22+·4Cl·H2OF(000) = 1020
Mr = 972.82Dx = 1.290 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 18.2973 (6) ÅCell parameters from 7981 reflections
b = 7.02041 (14) Åθ = 3.5–32.4°
c = 20.1554 (6) ŵ = 0.29 mm1
β = 104.601 (3)°T = 173 K
V = 2505.44 (13) Å3Irregular, colourless
Z = 20.44 × 0.38 × 0.16 mm
Data collection top
Agilent Eos Gemini
diffractometer
8607 independent reflections
Radiation source: Enhance (Mo) X-ray Source6582 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.034
ω scansθmax = 32.8°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 2726
Tmin = 0.914, Tmax = 1.000k = 1010
32975 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0652P)2 + 1.0043P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
8607 reflectionsΔρmax = 0.65 e Å3
306 parametersΔρmin = 0.41 e Å3
0 restraints
Crystal data top
2C26H28F2N22+·4Cl·H2OV = 2505.44 (13) Å3
Mr = 972.82Z = 2
Monoclinic, P2/cMo Kα radiation
a = 18.2973 (6) ŵ = 0.29 mm1
b = 7.02041 (14) ÅT = 173 K
c = 20.1554 (6) Å0.44 × 0.38 × 0.16 mm
β = 104.601 (3)°
Data collection top
Agilent Eos Gemini
diffractometer
8607 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
6582 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 1.000Rint = 0.034
32975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.65 e Å3
8607 reflectionsΔρmin = 0.41 e Å3
306 parameters
Special details top

Experimental. 1H NMR: δ 7.20 - 7.35(m, 9 H, Ar-H), 6.87-6.98 (m, 4 H, Ar-H), 6.50 (d, J = 12 Hz, 1 H), 5.76 (ddd, J = 12.0, 6.6 Hz, 1 H), 4.20(s, 1 H), 3.27 (dd, J = 6.6, 1.8 Hz, 2 H), 2.40 (bd, 8 H). 13C NMR: δ 163.1, 160.6, 138.3, 137.1, 132.6, 132.5, 131.5, 129.3, 129.2, 128.9, 128.2, 126.9, 115.5, 115.3, 74.5, 56.1, 53.4, 51.7. HRMS calculated for C26H26F2N2 [M+H] + 405.2142; found 405.2145.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.47811 (8)0.7591 (2)0.63602 (8)0.0647 (4)
F20.57160 (8)0.7045 (2)0.20291 (6)0.0572 (3)
N10.92882 (7)0.74830 (17)0.58339 (6)0.0225 (2)
H10.9389 (11)0.865 (3)0.5856 (10)0.032 (5)*
N20.76733 (7)0.75240 (17)0.51554 (6)0.0219 (2)
H20.7600 (14)0.632 (4)0.5145 (13)0.054 (7)*
C10.87041 (8)0.7138 (2)0.62188 (8)0.0263 (3)
H1A0.88930.75890.66970.032*
H1B0.86030.57540.62310.032*
C20.79796 (8)0.8174 (2)0.58809 (7)0.0253 (3)
H2A0.75990.79380.61440.030*
H2B0.80780.95620.58860.030*
C30.82618 (8)0.7885 (2)0.47723 (8)0.0274 (3)
H3A0.83590.92710.47620.033*
H3B0.80750.74400.42930.033*
C40.89918 (9)0.6860 (2)0.51080 (8)0.0279 (3)
H4A0.89010.54680.50950.033*
H4B0.93730.71270.48480.033*
C51.00129 (8)0.6496 (2)0.61791 (8)0.0280 (3)
H5A1.01390.67730.66770.034*
H5B0.99460.51020.61180.034*
C61.06496 (9)0.7136 (2)0.58886 (9)0.0308 (3)
H61.05240.77800.54600.037*
C71.13753 (10)0.6868 (3)0.61864 (9)0.0366 (4)
H71.17210.73810.59520.044*
C81.17121 (9)0.5878 (3)0.68320 (9)0.0388 (4)
C91.23672 (11)0.6637 (5)0.72635 (12)0.0609 (7)
H91.25680.77960.71420.073*
C101.27239 (13)0.5731 (6)0.78600 (13)0.0792 (11)
H101.31710.62640.81450.095*
C111.24474 (16)0.4094 (6)0.80465 (12)0.0829 (12)
H111.27000.34800.84610.100*
C121.17920 (16)0.3301 (5)0.76321 (14)0.0731 (8)
H121.15920.21550.77650.088*
C131.14318 (12)0.4205 (4)0.70195 (11)0.0517 (5)
H131.09900.36590.67310.062*
C140.69337 (8)0.8548 (2)0.48296 (8)0.0251 (3)
H140.70490.99420.48540.030*
C150.63586 (8)0.8223 (2)0.52455 (8)0.0257 (3)
C160.60876 (9)0.6424 (2)0.53524 (9)0.0308 (3)
H160.62710.53350.51650.037*
C170.55524 (9)0.6199 (3)0.57288 (9)0.0357 (4)
H170.53700.49720.58050.043*
C180.52962 (10)0.7797 (3)0.59865 (10)0.0396 (4)
C190.55408 (11)0.9604 (3)0.58915 (11)0.0439 (4)
H190.53481.06840.60750.053*
C200.60802 (10)0.9802 (3)0.55179 (9)0.0355 (4)
H200.62611.10350.54480.043*
C210.66394 (8)0.8064 (2)0.40760 (8)0.0263 (3)
C220.65150 (11)0.9551 (3)0.36112 (9)0.0367 (4)
H220.66451.08120.37680.044*
C230.62021 (12)0.9224 (3)0.29177 (10)0.0463 (5)
H230.61141.02460.25990.056*
C240.60250 (10)0.7394 (3)0.27056 (9)0.0378 (4)
C250.61411 (11)0.5880 (3)0.31451 (9)0.0401 (4)
H250.60130.46240.29820.048*
C260.64509 (11)0.6225 (3)0.38353 (9)0.0374 (4)
H260.65360.51910.41490.045*
Cl20.24638 (3)0.67703 (5)0.48578 (2)0.03563 (11)
Cl10.03137 (3)0.83990 (6)0.40147 (2)0.04480 (13)
O1W0.00001.0343 (4)0.25000.0721 (9)
H1W0.009 (2)0.965 (5)0.2828 (16)0.095 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0528 (8)0.0800 (10)0.0764 (10)0.0008 (7)0.0443 (7)0.0034 (8)
F20.0648 (8)0.0718 (9)0.0270 (5)0.0031 (7)0.0032 (5)0.0023 (6)
N10.0233 (6)0.0167 (5)0.0277 (6)0.0048 (4)0.0065 (4)0.0019 (4)
N20.0232 (6)0.0172 (5)0.0252 (6)0.0048 (4)0.0057 (4)0.0032 (4)
C10.0257 (7)0.0268 (7)0.0268 (7)0.0042 (5)0.0074 (5)0.0011 (5)
C20.0268 (7)0.0246 (7)0.0242 (7)0.0031 (5)0.0059 (5)0.0049 (5)
C30.0259 (7)0.0326 (7)0.0246 (7)0.0066 (6)0.0079 (5)0.0016 (6)
C40.0269 (7)0.0286 (7)0.0291 (7)0.0058 (6)0.0087 (5)0.0083 (6)
C50.0255 (7)0.0218 (6)0.0354 (8)0.0002 (5)0.0055 (6)0.0035 (6)
C60.0285 (7)0.0307 (7)0.0337 (8)0.0028 (6)0.0084 (6)0.0004 (6)
C70.0276 (8)0.0473 (10)0.0362 (9)0.0054 (7)0.0105 (6)0.0044 (7)
C80.0229 (7)0.0622 (12)0.0310 (8)0.0065 (7)0.0065 (6)0.0085 (8)
C90.0273 (9)0.109 (2)0.0442 (11)0.0009 (11)0.0045 (8)0.0229 (12)
C100.0341 (11)0.163 (3)0.0369 (12)0.0208 (16)0.0014 (9)0.0149 (16)
C110.0559 (15)0.161 (3)0.0311 (11)0.0581 (19)0.0092 (10)0.0130 (15)
C120.0650 (16)0.096 (2)0.0596 (15)0.0335 (15)0.0176 (12)0.0297 (15)
C130.0427 (11)0.0628 (14)0.0455 (11)0.0125 (10)0.0034 (8)0.0102 (10)
C140.0268 (7)0.0187 (6)0.0291 (7)0.0030 (5)0.0058 (5)0.0020 (5)
C150.0232 (6)0.0260 (7)0.0261 (7)0.0029 (5)0.0027 (5)0.0045 (5)
C160.0276 (7)0.0285 (7)0.0372 (8)0.0037 (6)0.0098 (6)0.0039 (6)
C170.0278 (8)0.0412 (9)0.0381 (9)0.0067 (7)0.0085 (6)0.0017 (7)
C180.0268 (8)0.0566 (11)0.0378 (9)0.0006 (8)0.0126 (7)0.0026 (8)
C190.0438 (10)0.0455 (11)0.0462 (11)0.0061 (8)0.0185 (8)0.0103 (8)
C200.0388 (9)0.0285 (8)0.0397 (9)0.0006 (7)0.0110 (7)0.0071 (7)
C210.0253 (7)0.0257 (7)0.0277 (7)0.0024 (5)0.0060 (5)0.0008 (5)
C220.0427 (9)0.0303 (8)0.0351 (9)0.0008 (7)0.0059 (7)0.0031 (7)
C230.0562 (12)0.0420 (10)0.0351 (9)0.0020 (9)0.0011 (8)0.0093 (8)
C240.0342 (8)0.0521 (11)0.0245 (7)0.0011 (8)0.0023 (6)0.0019 (7)
C250.0479 (10)0.0377 (9)0.0326 (9)0.0091 (8)0.0064 (7)0.0079 (7)
C260.0532 (11)0.0284 (8)0.0285 (8)0.0073 (7)0.0063 (7)0.0013 (6)
Cl20.0432 (2)0.01969 (17)0.0464 (2)0.00479 (15)0.01574 (17)0.00344 (15)
Cl10.0689 (3)0.02108 (18)0.0417 (2)0.01358 (19)0.0089 (2)0.00149 (15)
O1W0.137 (3)0.0383 (12)0.0386 (13)0.0000.0176 (15)0.000
Geometric parameters (Å, º) top
F1—C181.354 (2)C10—H100.9500
F2—C241.360 (2)C10—C111.346 (5)
N1—H10.84 (2)C11—H110.9500
N1—C11.4903 (19)C11—C121.393 (5)
N1—C41.4920 (19)C12—H120.9500
N1—C51.5023 (19)C12—C131.397 (3)
N2—H20.86 (3)C13—H130.9500
N2—C21.4992 (18)C14—H141.0000
N2—C31.4962 (19)C14—C151.519 (2)
N2—C141.5268 (19)C14—C211.517 (2)
C1—H1A0.9900C15—C161.394 (2)
C1—H1B0.9900C15—C201.389 (2)
C1—C21.515 (2)C16—H160.9500
C2—H2A0.9900C16—C171.391 (2)
C2—H2B0.9900C17—H170.9500
C3—H3A0.9900C17—C181.368 (3)
C3—H3B0.9900C18—C191.374 (3)
C3—C41.518 (2)C19—H190.9500
C4—H4A0.9900C19—C201.391 (3)
C4—H4B0.9900C20—H200.9500
C5—H5A0.9900C21—C221.383 (2)
C5—H5B0.9900C21—C261.391 (2)
C5—C61.499 (2)C22—H220.9500
C6—H60.9500C22—C231.390 (3)
C6—C71.326 (2)C23—H230.9500
C7—H70.9500C23—C241.366 (3)
C7—C81.467 (3)C24—C251.366 (3)
C8—C91.397 (3)C25—H250.9500
C8—C131.372 (3)C25—C261.385 (2)
C9—H90.9500C26—H260.9500
C9—C101.371 (4)O1W—H1W0.80 (3)
C1—N1—H1108.0 (14)C9—C10—H10119.6
C1—N1—C4109.37 (11)C11—C10—C9120.7 (3)
C1—N1—C5110.43 (12)C11—C10—H10119.6
C4—N1—H1111.1 (14)C10—C11—H11120.0
C4—N1—C5112.28 (12)C10—C11—C12120.1 (2)
C5—N1—H1105.5 (14)C12—C11—H11120.0
C2—N2—H2110.0 (17)C11—C12—H12120.3
C2—N2—C14110.42 (11)C11—C12—C13119.4 (3)
C3—N2—H2106.5 (17)C13—C12—H12120.3
C3—N2—C2108.12 (11)C8—C13—C12120.4 (2)
C3—N2—C14111.93 (11)C8—C13—H13119.8
C14—N2—H2109.8 (16)C12—C13—H13119.8
N1—C1—H1A109.6N2—C14—H14106.6
N1—C1—H1B109.6C15—C14—N2110.76 (12)
N1—C1—C2110.42 (12)C15—C14—H14106.6
H1A—C1—H1B108.1C21—C14—N2112.19 (12)
C2—C1—H1A109.6C21—C14—H14106.6
C2—C1—H1B109.6C21—C14—C15113.49 (12)
N2—C2—C1111.21 (12)C16—C15—C14122.98 (14)
N2—C2—H2A109.4C20—C15—C14118.21 (14)
N2—C2—H2B109.4C20—C15—C16118.80 (15)
C1—C2—H2A109.4C15—C16—H16119.5
C1—C2—H2B109.4C17—C16—C15120.94 (16)
H2A—C2—H2B108.0C17—C16—H16119.5
N2—C3—H3A109.5C16—C17—H17121.0
N2—C3—H3B109.5C18—C17—C16118.02 (17)
N2—C3—C4110.88 (13)C18—C17—H17121.0
H3A—C3—H3B108.1F1—C18—C17118.46 (19)
C4—C3—H3A109.5F1—C18—C19118.21 (18)
C4—C3—H3B109.5C17—C18—C19123.32 (17)
N1—C4—C3111.06 (12)C18—C19—H19121.1
N1—C4—H4A109.4C18—C19—C20117.90 (17)
N1—C4—H4B109.4C20—C19—H19121.1
C3—C4—H4A109.4C15—C20—C19121.03 (17)
C3—C4—H4B109.4C15—C20—H20119.5
H4A—C4—H4B108.0C19—C20—H20119.5
N1—C5—H5A109.4C22—C21—C14117.74 (14)
N1—C5—H5B109.4C22—C21—C26118.70 (15)
H5A—C5—H5B108.0C26—C21—C14123.46 (14)
C6—C5—N1111.30 (13)C21—C22—H22119.6
C6—C5—H5A109.4C21—C22—C23120.81 (17)
C6—C5—H5B109.4C23—C22—H22119.6
C5—C6—H6117.7C22—C23—H23120.8
C7—C6—C5124.69 (16)C24—C23—C22118.38 (17)
C7—C6—H6117.7C24—C23—H23120.8
C6—C7—H7115.9F2—C24—C23119.28 (17)
C6—C7—C8128.16 (17)F2—C24—C25117.85 (17)
C8—C7—H7115.9C25—C24—C23122.87 (17)
C9—C8—C7118.3 (2)C24—C25—H25120.9
C13—C8—C7123.18 (17)C24—C25—C26118.21 (17)
C13—C8—C9118.4 (2)C26—C25—H25120.9
C8—C9—H9119.6C21—C26—H26119.5
C10—C9—C8120.9 (3)C25—C26—C21121.02 (17)
C10—C9—H9119.6C25—C26—H26119.5
F1—C18—C19—C20178.84 (18)C9—C10—C11—C120.0 (4)
F2—C24—C25—C26179.58 (17)C10—C11—C12—C130.8 (4)
N1—C1—C2—N259.47 (16)C11—C12—C13—C81.1 (4)
N1—C5—C6—C7163.61 (17)C13—C8—C9—C100.2 (3)
N2—C3—C4—N158.67 (16)C14—N2—C2—C1178.60 (12)
N2—C14—C15—C1661.46 (18)C14—N2—C3—C4179.76 (11)
N2—C14—C15—C20119.97 (15)C14—C15—C16—C17179.06 (15)
N2—C14—C21—C22123.12 (15)C14—C15—C20—C19178.65 (16)
N2—C14—C21—C2660.5 (2)C14—C21—C22—C23176.00 (17)
C1—N1—C4—C357.27 (16)C14—C21—C26—C25176.01 (17)
C1—N1—C5—C6168.49 (13)C15—C14—C21—C22110.39 (16)
C2—N2—C3—C457.92 (15)C15—C14—C21—C2665.9 (2)
C2—N2—C14—C1557.12 (15)C15—C16—C17—C180.5 (3)
C2—N2—C14—C21174.93 (12)C16—C15—C20—C190.0 (3)
C3—N2—C2—C158.64 (15)C16—C17—C18—F1179.29 (16)
C3—N2—C14—C15177.63 (12)C16—C17—C18—C190.0 (3)
C3—N2—C14—C2154.42 (15)C17—C18—C19—C200.5 (3)
C4—N1—C1—C257.40 (16)C18—C19—C20—C150.4 (3)
C4—N1—C5—C669.16 (16)C20—C15—C16—C170.5 (2)
C5—N1—C1—C2178.55 (12)C21—C14—C15—C1665.78 (19)
C5—N1—C4—C3179.78 (12)C21—C14—C15—C20112.80 (16)
C5—C6—C7—C81.9 (3)C21—C22—C23—C240.4 (3)
C6—C7—C8—C9141.2 (2)C22—C21—C26—C250.3 (3)
C6—C7—C8—C1341.5 (3)C22—C23—C24—F2179.79 (18)
C7—C8—C9—C10177.3 (2)C22—C23—C24—C250.1 (3)
C7—C8—C13—C12178.0 (2)C23—C24—C25—C260.1 (3)
C8—C9—C10—C110.5 (4)C24—C25—C26—C210.0 (3)
C9—C8—C13—C120.7 (3)C26—C21—C22—C230.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.84 (2)2.14 (2)2.9782 (13)176 (2)
N2—H2···Cl2ii0.86 (3)2.17 (3)3.0248 (13)174 (2)
C1—H1A···O1Wi0.992.683.512 (2)142
C5—H5A···O1Wi0.992.673.470 (2)138
C5—H5B···Cl1ii0.992.513.4934 (16)176
C14—H14···Cl2i1.002.493.4735 (15)168
C19—H19···F2iii0.952.463.244 (2)140
O1W—H1W···Cl10.80 (3)2.48 (3)3.2603 (12)163 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.84 (2)2.14 (2)2.9782 (13)176 (2)
N2—H2···Cl2ii0.86 (3)2.17 (3)3.0248 (13)174 (2)
C1—H1A···O1Wi0.992.683.512 (2)141.8
C5—H5A···O1Wi0.992.673.470 (2)138.1
C5—H5B···Cl1ii0.992.513.4934 (16)175.8
C14—H14···Cl2i1.002.493.4735 (15)167.9
C19—H19···F2iii0.952.463.244 (2)140.1
O1W—H1W···Cl10.80 (3)2.48 (3)3.2603 (12)163 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1/2.
 

Acknowledgements

We express our sincere thanks to Dr Anil Kush, Director, VMSRF for his keen inter­est and support throughout this work. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAgnoli, A., Manna, V., Martucci, N., Fioravanti, M., Ferromilone, F., Cananzi, A., D'Andrea, G., De Rosa, A., Vizioli, R. & Sinforiani, E. (1988). Int. J. Clin. Pharmacol. Res. 8, 89–97.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCignarella, G. & Testa, E. V. J. (1968). Med. Chem. 11, 612–615.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrasanna, M. D. & Row, T. N. G. (2001). J. Mol. Struct., 562, 55–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivaprakash, S. & Chandrasekara Reddy, G. (2014). Synth. Commun. 44, 600–609.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o694-o695
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds