organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o687-o688

1,3-Bis(3-tert-butyl-2-hy­dr­oxy-5-meth­­oxy­benz­yl)hexa­hydro­pyrimidin-5-ol monohydrate

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, bUniversidad Nacional de Colombia, Sede Manizales, Colombia, and cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 8 May 2014; accepted 10 May 2014; online 21 May 2014)

The asymmetric unit of the title compound, C28H42N2O5·H2O, consists of one half of the organic mol­ecule and one half-mol­ecule of water, both of which are located on a mirror plane which passes through the central C atoms and the hydroxyl group of the heterocyclic system. The hydroxyl group at the central ring is disordered over two equally occupied positions. The six-membered ring adopts a chair conformation, and the 2-hy­droxy­benzyl substituents occupy the sterically preferred equatorial positions. The aromatic rings make dihedral angles of 75.57 (9)° with the mean plane of the heterocyclic ring. The dihedral angle between the two aromatic rings is 19.18 (10)°. The mol­ecular structure features two intra­molecular phenolic O—H⋯N hydrogen bonds with graph-set motif S(6). In the crystal, mol­ecules are connected via O—H⋯O hydrogen bonds into zigzag chains running along the a-axis direction.

Related literature

For related structures, see: Rivera et al. (2012[Rivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191-o192.]), Zhang et al. (2012[Zhang, M., Li, L., Yuan, F. & Qian, H. (2012). Acta Cryst. E68, o2123.]). For the synthesis, see: Rivera et al. (2013[Rivera, A., Ríos-Motta, J., Trujillo, G. P., González, D. M. & Alcázar, D. (2013). Synth. Commun. 43, 791-799.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H42N2O5·H2O

  • Mr = 504.65

  • Orthorhombic, P n m a

  • a = 8.2629 (5) Å

  • b = 33.093 (3) Å

  • c = 10.0877 (6) Å

  • V = 2758.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.25 × 0.23 × 0.16 mm

Data collection
  • STOE IPDS II two-circle-diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.975, Tmax = 0.982

  • 22328 measured reflections

  • 2464 independent reflections

  • 2228 reflections with I > 2σ(I)

  • Rint = 0.109

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.140

  • S = 1.17

  • 2464 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.94 (3) 1.80 (3) 2.671 (2) 153 (3)
O3—H3⋯O1W 0.89 (6) 1.93 (6) 2.813 (4) 174 (5)
O1W—H1W⋯O1i 0.84 2.19 3.029 (2) 173
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Recently our group reported a protocol for the synthesis of a series of 2,2'-(dihydropyrimidine-1,3(2H,4H)-diyldimethanediyl)diphenols via a Mannich-type reaction (Rivera et al., 2013). As an extension of these studies, in this paper we describe the synthesis and crystal structure of the title compound, 1,3-bis(3-tert-butyl-2-hydroxy-5-methoxybenzyl)hexahydropyrimidin-5-ol, C28H42N2O5, as a monohydrate. The molecular structure and atom-numbering scheme for the title compound are shown in Fig. 1. The asymmetric unit contains one half-organic molecule and one half water molecule, which are both located on a mirror plane which passes through the central C atoms and the hydroxyl group of the heterocyclic system. In Fig. 1, atoms without labels were generated by the symmetry operator x, 1/2 - y, z. The 1,3-diazinane ring of the title compound adopts a chair conformation with a diequatorial substitution with puckering parameters Q, θ and ϕ of 0.594 (2) Å, 2.23 (19)°, 60 (4)° (Cremer & Pople, 1975). The aromatic rings make dihedral angles of 75.57 (9)° with the mean plane of the heterocyclic ring. The benzyl groups are located in a 1,3-diequatorial syn arrangement in the heterocyclic ring with a dihedral angle between the planes containing the aromatic rings of 19.18 (10)°. In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are normal and comparable to those observed in related structures namely 4,4',6,6'-tetra-tert-butyl-2,2'- [1,3-diazinane-1,3-diylbis(methylene)]diphenol 0.25-hydrate (Zhang et al., 2012) and 6,6'-di-tert-butyl-4,4'-dimethoxy-2,2'- [1,3-diazinane-1,3-diylbis(methylene)]- diphenol 0.19-hydrate (Rivera et al., 2012). The crystal structure shows two intramolecular O—H···N(1,3-diazinane) hydrogen bonds with graph-set motif S(6) (Bernstein et al., 1995) (Table 1), where the N···O distance [N1···O1, 2.671 (2) Å] is shorter in comparison with the values observed in the related structure (Zhang et al. 2012). In contrast to the 4',6'-di-tert-butyl analog, the title compound was found to be more similar to the other related structure (Rivera et al., 2012), indicating that the methoxy substituent slightly influences the strength of the intermolecular hydrogen bonds in these compounds. In the crystal, hydroxyl groups of the 1,3-diazinane ring are linked to water molecules via O—H···O hydrogen bonds, leading to a two-molecule aggregate where the water-O accepts these interactions. These are linked into a zigzag chain along the a axis via O—H···O interactions between the water molecules and the phenolic-O atoms. (Fig. 2 and Table 1).

Related literature top

For related structures, see: Rivera et al. (2012), Zhang et al. (2012). For the synthesis, see: Rivera et al. (2013). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared as follows: In a 50 ml round bottom flask equipped with a magnetic stir bar, 1 equiv. of 1,3-diamino-2-propanol, 3 equiv. of paraformaldehyde, and 2 equiv. of 2-tert-butyl-4-methoxyphenol were combined with 15 ml of methanol. Upon completion of the addition, the reaction mixture was stirred under reflux for 36 h. Then the reflux was stopped, the solvent was removed on a rotary evaporator under vacuum and the residue obtained (Anal. calcd. for C28H42N2O5: C 69.14%; H 8.64%; N 5.76%, O 16.46% found C 69.50%; H 8.66%; N 5.77%) was recrystallized from methanol to provide high quality crystals of the title compound (Yield 30.6%. M.p. = 393 K).

Refinement top

H atoms bonded to C were positioned geometrically, with C–H = 0.95–0.99 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The non disordered hydroxyl H atoms were refined isotropically, but the disordered ones were refined with Uiso(H) = 1.5Ueq(O). The water H atoms were geometrically positioned with O–H = 0.84 Å and constrained to ride on their parent atom with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are drawn as dashed lines. Only one of the two sites of the disordered hydroxyl group is shown. Symmetry operator for generating equivalent atoms. x, 1/2 - y, z.
[Figure 2] Fig. 2. Partial packing diagram of the title compound. The bonds of the second hydroxyl group site (on the left) are drawn with open bonds. Hydrogen bonds involving the two different sites of the disordered hydroxy groups are drawn with full (right hand side) or open dashed (left hand side) bonds.
1,3-Bis(3-tert-butyl-2-hydroxy-5-methoxybenzyl)hexahydropyrimidin-5-ol monohydrate top
Crystal data top
C28H42N2O5·H2ODx = 1.215 Mg m3
Mr = 504.65Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 25046 reflections
a = 8.2629 (5) Åθ = 1.9–26.5°
b = 33.093 (3) ŵ = 0.09 mm1
c = 10.0877 (6) ÅT = 173 K
V = 2758.4 (3) Å3Block, colourless
Z = 40.25 × 0.23 × 0.16 mm
F(000) = 1096
Data collection top
STOE IPDS II two-circle-
diffractometer
2228 reflections with I > 2σ(I)
ω scansRint = 0.109
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
θmax = 25.0°, θmin = 2.1°
Tmin = 0.975, Tmax = 0.982h = 99
22328 measured reflectionsk = 3839
2464 independent reflectionsl = 1112
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0336P)2 + 2.7349P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.009
2464 reflectionsΔρmax = 0.26 e Å3
179 parametersΔρmin = 0.31 e Å3
Crystal data top
C28H42N2O5·H2OV = 2758.4 (3) Å3
Mr = 504.65Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.2629 (5) ŵ = 0.09 mm1
b = 33.093 (3) ÅT = 173 K
c = 10.0877 (6) Å0.25 × 0.23 × 0.16 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
2464 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2228 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.109
22328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.26 e Å3
2464 reflectionsΔρmin = 0.31 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4835 (2)0.17942 (5)0.52432 (17)0.0322 (4)
H10.405 (4)0.1990 (10)0.546 (3)0.064 (10)*
O20.1840 (2)0.03093 (5)0.5809 (2)0.0503 (6)
O30.0101 (4)0.25000.3032 (3)0.0390 (10)0.836 (8)
H30.109 (8)0.25000.338 (6)0.059*0.836 (8)
O3'0.253 (2)0.25000.3421 (19)0.058 (6)*0.164 (8)
H3'0.23340.25000.26060.087*0.164 (8)
N10.2068 (2)0.21393 (5)0.60143 (18)0.0261 (4)
C10.1795 (4)0.25000.6823 (3)0.0264 (7)
H1A0.25440.25000.75890.032*
H1B0.06720.25000.71650.032*
C20.1058 (4)0.25000.4066 (3)0.0310 (7)
H20.21620.25000.36590.037*0.836 (8)
H2'0.01740.25000.33890.037*0.164 (8)
C30.0894 (3)0.21229 (6)0.4924 (2)0.0302 (5)
H3A0.02170.21060.52870.036*
H3B0.10900.18790.43790.036*
C40.2008 (3)0.17720 (6)0.6846 (2)0.0301 (5)
H4A0.08740.17210.71140.036*
H4B0.26490.18180.76620.036*
C50.2659 (3)0.14019 (6)0.6138 (2)0.0267 (5)
C60.4081 (3)0.14241 (6)0.5402 (2)0.0269 (5)
C70.4776 (3)0.10750 (6)0.4830 (2)0.0272 (5)
C80.3949 (3)0.07128 (7)0.5020 (2)0.0322 (5)
H80.43830.04720.46480.039*
C90.2515 (3)0.06899 (7)0.5731 (3)0.0339 (6)
C100.1861 (3)0.10328 (7)0.6299 (2)0.0301 (5)
H100.08840.10180.67930.036*
C110.6395 (3)0.10903 (7)0.4079 (2)0.0302 (5)
C120.6259 (3)0.13624 (8)0.2851 (2)0.0386 (6)
H12A0.73000.13680.23850.058*
H12B0.59700.16370.31260.058*
H12C0.54220.12560.22580.058*
C130.7719 (3)0.12506 (8)0.5006 (2)0.0375 (6)
H13A0.87510.12610.45300.056*
H13B0.78220.10710.57740.056*
H13C0.74290.15230.53090.056*
C140.6927 (3)0.06718 (8)0.3597 (3)0.0463 (7)
H14A0.79570.06950.31220.070*
H14B0.61020.05610.30010.070*
H14C0.70620.04920.43600.070*
C150.0445 (4)0.02625 (8)0.6617 (4)0.0574 (9)
H15A0.00900.00200.65940.086*
H15B0.04230.04370.62840.086*
H15C0.07070.03390.75310.086*
O1W0.3119 (4)0.25000.4322 (3)0.0694 (9)
H1W0.36660.27060.45100.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0300 (9)0.0264 (8)0.0403 (9)0.0030 (7)0.0049 (8)0.0005 (7)
O20.0512 (12)0.0248 (9)0.0750 (14)0.0087 (8)0.0206 (11)0.0029 (9)
O30.0355 (19)0.0515 (19)0.0301 (17)0.0000.0060 (14)0.000
N10.0302 (10)0.0222 (9)0.0261 (10)0.0024 (7)0.0019 (8)0.0003 (7)
C10.0272 (17)0.0238 (15)0.0281 (17)0.0000.0024 (14)0.000
C20.0301 (18)0.0344 (17)0.0287 (17)0.0000.0030 (15)0.000
C30.0318 (13)0.0288 (12)0.0300 (12)0.0011 (9)0.0027 (10)0.0029 (9)
C40.0338 (13)0.0271 (12)0.0294 (12)0.0022 (9)0.0058 (10)0.0028 (9)
C50.0265 (12)0.0273 (11)0.0261 (11)0.0029 (9)0.0001 (9)0.0029 (9)
C60.0253 (11)0.0270 (11)0.0283 (12)0.0008 (9)0.0029 (10)0.0025 (9)
C70.0253 (12)0.0298 (11)0.0263 (11)0.0029 (9)0.0035 (10)0.0002 (9)
C80.0352 (13)0.0258 (11)0.0356 (13)0.0035 (9)0.0011 (11)0.0018 (9)
C90.0360 (13)0.0234 (11)0.0421 (14)0.0026 (10)0.0004 (12)0.0026 (10)
C100.0265 (12)0.0300 (12)0.0337 (13)0.0000 (9)0.0027 (10)0.0044 (9)
C110.0269 (12)0.0349 (12)0.0290 (12)0.0031 (10)0.0010 (10)0.0020 (10)
C120.0331 (14)0.0535 (15)0.0292 (13)0.0014 (11)0.0031 (11)0.0023 (11)
C130.0243 (12)0.0557 (15)0.0324 (13)0.0027 (11)0.0006 (10)0.0006 (11)
C140.0408 (16)0.0419 (14)0.0563 (17)0.0058 (12)0.0137 (14)0.0075 (13)
C150.0542 (18)0.0335 (14)0.085 (2)0.0102 (13)0.0229 (17)0.0044 (14)
O1W0.0420 (18)0.096 (3)0.070 (2)0.0000.0107 (17)0.000
Geometric parameters (Å, º) top
O1—C61.383 (3)C5—C101.397 (3)
O1—H10.94 (3)C6—C71.413 (3)
O2—C91.380 (3)C7—C81.393 (3)
O2—C151.420 (3)C7—C111.538 (3)
O3—C21.417 (4)C8—C91.388 (3)
O3—H30.89 (6)C8—H80.9500
O3'—C21.378 (19)C9—C101.381 (3)
O3'—H3'0.8375C10—H100.9500
N1—C11.463 (2)C11—C141.532 (3)
N1—C31.468 (3)C11—C131.534 (3)
N1—C41.478 (3)C11—C121.536 (3)
C1—N1i1.463 (2)C12—H12A0.9800
C1—H1A0.9900C12—H12B0.9800
C1—H1B0.9900C12—H12C0.9800
C2—C3i1.525 (3)C13—H13A0.9800
C2—C31.525 (3)C13—H13B0.9800
C2—H21.0000C13—H13C0.9800
C2—H2'1.0000C14—H14A0.9800
C3—H3A0.9900C14—H14B0.9800
C3—H3B0.9900C14—H14C0.9800
C4—C51.516 (3)C15—H15A0.9800
C4—H4A0.9900C15—H15B0.9800
C4—H4B0.9900C15—H15C0.9800
C5—C61.392 (3)O1W—H1W0.8401
C6—O1—H1106 (2)C8—C7—C6116.6 (2)
C9—O2—C15117.4 (2)C8—C7—C11121.5 (2)
C2—O3—H3109 (4)C6—C7—C11121.83 (19)
C2—O3'—H3'107.1C9—C8—C7122.5 (2)
C1—N1—C3110.24 (19)C9—C8—H8118.8
C1—N1—C4110.44 (18)C7—C8—H8118.8
C3—N1—C4111.89 (17)O2—C9—C10124.6 (2)
N1—C1—N1i109.3 (2)O2—C9—C8115.1 (2)
N1—C1—H1A109.8C10—C9—C8120.2 (2)
N1i—C1—H1A109.8C9—C10—C5119.0 (2)
N1—C1—H1B109.8C9—C10—H10120.5
N1i—C1—H1B109.8C5—C10—H10120.5
H1A—C1—H1B108.3C14—C11—C13107.6 (2)
O3'—C2—C3i110.3 (4)C14—C11—C12107.2 (2)
O3—C2—C3i110.95 (19)C13—C11—C12110.0 (2)
O3'—C2—C3110.3 (4)C14—C11—C7112.09 (19)
O3—C2—C3110.95 (19)C13—C11—C7109.33 (19)
C3i—C2—C3109.9 (3)C12—C11—C7110.68 (19)
O3—C2—H2108.3C11—C12—H12A109.5
C3i—C2—H2108.3C11—C12—H12B109.5
C3—C2—H2108.3H12A—C12—H12B109.5
O3'—C2—H2'108.8C11—C12—H12C109.5
C3i—C2—H2'108.8H12A—C12—H12C109.5
C3—C2—H2'108.8H12B—C12—H12C109.5
N1—C3—C2109.6 (2)C11—C13—H13A109.5
N1—C3—H3A109.7C11—C13—H13B109.5
C2—C3—H3A109.7H13A—C13—H13B109.5
N1—C3—H3B109.7C11—C13—H13C109.5
C2—C3—H3B109.7H13A—C13—H13C109.5
H3A—C3—H3B108.2H13B—C13—H13C109.5
N1—C4—C5112.64 (18)C11—C14—H14A109.5
N1—C4—H4A109.1C11—C14—H14B109.5
C5—C4—H4A109.1H14A—C14—H14B109.5
N1—C4—H4B109.1C11—C14—H14C109.5
C5—C4—H4B109.1H14A—C14—H14C109.5
H4A—C4—H4B107.8H14B—C14—H14C109.5
C6—C5—C10120.4 (2)O2—C15—H15A109.5
C6—C5—C4120.53 (19)O2—C15—H15B109.5
C10—C5—C4118.9 (2)H15A—C15—H15B109.5
O1—C6—C5119.23 (19)O2—C15—H15C109.5
O1—C6—C7119.6 (2)H15A—C15—H15C109.5
C5—C6—C7121.2 (2)H15B—C15—H15C109.5
C3—N1—C1—N1i63.1 (3)C5—C6—C7—C11176.6 (2)
C4—N1—C1—N1i172.70 (17)C6—C7—C8—C90.0 (3)
C1—N1—C3—C259.1 (3)C11—C7—C8—C9177.8 (2)
C4—N1—C3—C2177.6 (2)C15—O2—C9—C105.2 (4)
O3'—C2—C3—N167.0 (8)C15—O2—C9—C8174.9 (2)
O3—C2—C3—N1177.8 (2)C7—C8—C9—O2179.1 (2)
C3i—C2—C3—N154.8 (3)C7—C8—C9—C100.9 (4)
C1—N1—C4—C5166.7 (2)O2—C9—C10—C5179.5 (2)
C3—N1—C4—C570.1 (2)C8—C9—C10—C50.5 (4)
N1—C4—C5—C644.2 (3)C6—C5—C10—C90.7 (3)
N1—C4—C5—C10139.5 (2)C4—C5—C10—C9175.5 (2)
C10—C5—C6—O1179.2 (2)C8—C7—C11—C140.1 (3)
C4—C5—C6—O14.6 (3)C6—C7—C11—C14177.9 (2)
C10—C5—C6—C71.7 (3)C8—C7—C11—C13119.1 (2)
C4—C5—C6—C7174.6 (2)C6—C7—C11—C1358.7 (3)
O1—C6—C7—C8179.5 (2)C8—C7—C11—C12119.7 (2)
C5—C6—C7—C81.3 (3)C6—C7—C11—C1262.6 (3)
O1—C6—C7—C112.6 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.94 (3)1.80 (3)2.671 (2)153 (3)
O3—H3···O1W0.89 (6)1.93 (6)2.813 (4)174 (5)
O1W—H1W···O1ii0.842.193.029 (2)173
Symmetry code: (ii) x1, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.94 (3)1.80 (3)2.671 (2)153 (3)
O3—H3···O1W0.89 (6)1.93 (6)2.813 (4)174 (5)
O1W—H1W···O1i0.842.193.029 (2)172.6
Symmetry code: (i) x1, y+1/2, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., González, D. M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o191–o192.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J., Trujillo, G. P., González, D. M. & Alcázar, D. (2013). Synth. Commun. 43, 791–799.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhang, M., Li, L., Yuan, F. & Qian, H. (2012). Acta Cryst. E68, o2123.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 6| June 2014| Pages o687-o688
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds